首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Most eukaryotic centromeres contain large quantities of repetitive DNA, such as satellite repeats and retrotransposons. Unlike most transposons in plant genomes, the centromeric retrotransposon (CR) family is conserved over long evolutionary periods among a majority of the grass species. CR elements are highly concentrated in centromeres, and are likely to play a role in centromere function. In order to study centromere evolution in the Oryza (rice) genus, we sequenced the orthologous region to centromere 8 of Oryza sativa from a related species, Oryza brachyantha. We found that O. brachyantha does not have the canonical CRR (CR of rice) found in the centromeres of all other Oryza species. Instead, a new Ty3‐gypsy (Metaviridae) retroelement (FRetro3) was found to colonize the centromeres of this species. This retroelement is found in high copy numbers in the O. brachyantha genome, but not in other Oryza genomes, and based on the dating of long terminal repeats (LTRs) of FRetro3 it was amplified in the genome in the last few million years. Interestingly, there is a high level of removal of FRetro3 based on solo‐LTRs to full‐length elements, and this rapid turnover may have played a role in the replacement of the canonical CRR with the new element by active deletion. Comparison with previously described ChIP cloning data revealed that FRetro3 is found in CENH3‐associated chromatin sequences. Thus, within a single lineage of the Oryza genus, the canonical component of grass centromeres has been replaced with a new retrotransposon that has all the hallmarks of a centromeric retroelement.  相似文献   

2.
A portion of an insertion sequence present in a member of the RIRE3 family of retrotransposons in Oryza sativa L. cv. IR36 was found to have an LTR sequence followed by a PBS sequence complementary to the 3'-end region of tRNAMet, indicative of another rice retrotransposon (named RIRE7). Cloning and sequencing of PCR-amplified fragments that made up all parts of the RIRE7 sequence showed that RIRE7 is a gypsy-type retrotransposon with partial homology in the pol region to the rice gypsy-type retrotransposons RIRE2 and RIRE3 identified in rice previously. Interestingly, various portions of the RIRE7 sequence were homologous to several DNA segments present in the centromere regions of cereal chromosomes. Further cloning and nucleotide sequencing of fragments flanking RIRE7 copies showed that RIRE7 was inserted into a site within a tandem repeat sequence that has a unit length of 155 bp. The tandem repeat sequence, named TrsD, was homologous to tandem repeat sequences RCS2 and CentC, previously identified in the centromeric regions of rice and maize chromosomes. Fluorescence in situ hybridization (FISH) analysis of the metaphase chromosomes of O. sativa cv. Nipponbare showed that both RIRE7 and TrsD sequences were present in the centromere regions of the chromosomes. The presence of RIRE7 and the TrsD sequences in the centromere regions of several chromosomes was confirmed by the identification of several YAC clones whose chromosomal locations are known. Further FISH analysis of rice pachytene chromosomes showed that the TrsD sequences were located in a pericentromeric heterochromatin region. These findings strongly suggest that RIRE7 and TrsD are components of the pericentromeric heterochromatin of rice chromosomes.  相似文献   

3.
M G Francki 《Génome》2001,44(2):266-274
A diminutive rye chromosome (midget) in wheat was used as a model system to isolate a highly reiterated centromeric sequence from a rye chromosome. Fluorescence in situ hybridization (FISH) shows this sequence localized within all rye centromeres and no signal was detected on wheat chromosomes. DNA sequencing of the repetitive element has revealed the presence of some catalytic domains and signature motifs typical of retrotransposon genes and has been called the Bilby family, representing a diverged family of retrotransposon-like elements. Extensive DNA database searching revealed some sequence similarity to centromeric retrotransposons from wheat, barley, and centromeric repetitive sequences from rice. Very low levels of signal were observed when Bilby was used as a probe against barley, and no signal was detected with rice DNA during Southern hybridization. The abundance of Bilby in rye indicates that this family may have diverged from other distantly related centromeric retrotransposons or incorporated in the centromere but rapidly evolved in rye during speciation. The isolation of a rye retrotransposon also allowed the analysis of centromeric breakpoints in wheat-rye translocation lines. A quantitative analysis shows that the breakpoint in IDS.1RL and 1DL.1RS and recombinant lines containing proximal rye chromatin have a portion of the rye centromere that may contribute to the normal function of the centromeric region.  相似文献   

4.
Oryza officinalis (CC, 2n=24) and Oryza rhizomatis (CC, 2n=24) belong to the Oryza genus, which contains more than 20 identified wild rice species. Although much has been known about the molecular composition and organization of centromeres in Oryza sativa, relatively little is known of its wild relatives. In the present study, we isolated and characterized a 126-bp centromeric satellite (CentO-C) from three bacterial artificial chromosomes of O. officinalis. In addition to CentO-C, low abundance of CentO satellites is also present in O. officinalis. In order to determine the chromosomal locations and distributions of CentO-C (126-bp), CentO (155 bp) and TrsC (366 bp) satellite within O. officinalis, fluorescence in situ hybridization examination was done on pachytene or metaphase I chromosomes. We found that only ten centromeres (excluding centromere 7 and 2) contain CentO-C arrays in O. officinalis, while centromere 7 comprises CentO satellites, and centromere 2 is devoid of any detectable satellites. For TrsC satellites, it was detected at multiple subtelomeric regions in O. officinalis, however, in O. rhizomatis, TrsC sequences were detected both in the four centromeric regions (CEN 3, 4, 10, 11) and the multiple subtelomeric regions. Therefore, these data reveal the evolutionary diversification pattern of centromere DNA within/or between close related species, and could provide an insight into the dynamic evolutionary processes of rice centromere.  相似文献   

5.
The evolution of five chromosomes of Brachypodium distachyon from a 12-chromosome ancestor of all grasses by dysploidy raises an interesting question about the fate of redundant centromeres. Three independent but complementary approaches were pursued to study centromeric region homologies among the chromosomes of Brachypodium, wheat, and rice. The genes present in pericentromeres of the basic set of seven chromosomes of wheat and the Triticeae, and the 80 rice centromeric genes spanning the CENH3 binding domain of centromeres 3, 4, 5, 7, and 8 were used as “anchor” markers to identify centromere locations in the B. distachyon chromosomes. A total of 53 B. distachyon bacterial artificial chromosome (BAC) clones anchored by wheat pericentromeric expressed sequence tags (ESTs) were used as probes for BAC-fluorescence in situ hybridization (FISH) analysis of B. distachyon mitotic chromosomes. Integrated sequence alignment and BAC-FISH data were used to determine the approximate positions of active and inactive centromeres in the five B. distachyon chromosomes. The following syntenic relationships of the centromeres for Brachypodium (Bd), rice (R), and wheat (W) were evident: Bd1-R6, Bd2-R5-W1, Bd3-R10, Bd4-R11-W4, and Bd5-R4. Six rice centromeres syntenic to five wheat centromeres were inactive in Brachypodium chromosomes. The conservation of centromere gene synteny among several sets of homologous centromeres of three species indicates that active genes can persist in ancient centromeres with more than 40 million years of shared evolutionary history. Annotation of a BAC contig spanning an inactive centromere in chromosome Bd3 which is syntenic to rice Cen8 and W7 pericentromeres, along with BAC FISH data from inactive centromeres revealed that the centromere inactivation was accompanied by the loss of centromeric retrotransposons and turnover of centromere-specific satellites during Bd chromosome evolution.  相似文献   

6.
7.
J T Miller  F Dong  S A Jackson  J Song  J Jiang 《Genetics》1998,150(4):1615-1623
Several distinct DNA fragments were subcloned from a sorghum (Sorghum bicolor) bacterial artificial chromosome clone 13I16 that was derived from a centromere. Three fragments showed significant sequence identity to either Ty3/gypsy- or Ty1/copia-like retrotransposons. Fluorescence in situ hybridization (FISH) analysis revealed that the Ty1/copia-related DNA sequences are not specific to the centromeric regions. However, the Ty3/gypsy-related sequences were present exclusively in the centromeres of all sorghum chromosomes. FISH and gel-blot hybridization showed that these sequences are also conserved in the centromeric regions of all species within Gramineae. Thus, we report a new retrotransposon that is conserved in specific chromosomal regions of distantly related eukaryotic species. We propose that the Ty3/gypsy-like retrotransposons in the grass centromeres may be ancient insertions and are likely to have been amplified during centromere evolution. The possible role of centromeric retrotransposons in plant centromere function is discussed.  相似文献   

8.
Bacterial Artificial Chromosomes (BACs) derived from the B chromosome, based on homology with the B specific sequence, were subcloned and sequenced. Analysis of DNA sequence data indicated the presence of 23 common retroelements, as well as novel sequences of B chromosome origin. Generally, where the same retrotransposon type was observed in both A and B chromosomes, there were more copies per unit of sequence in the B centromeric region (the major site of B repeat) than in the A centromere, except for Huck-1. Based on previous estimates of the age of the major burst of transposition into the maize genome, the oldest retrotransposons (Ji-6 and Tekay, approximately 5.0 and 5.2 million years ago, respectively) were found in the B centromere region only, while the next two oldest (Huck-1 and Opie-1) were found in both the A and B sequences. Phylogenetic analysis of Opie retroelements from both A and B centromeres indicated that some of the B Opie centromeric sequences share a more recent common ancestor with A Opie retroelements than they do with other B Opie centromeric sequences. These results imply that the supernumerary maize B chromosome has coexisted with the A chromosomes during that period of transposition. They also support the hypothesis that the B chromosome had its origins from A chromosome elements, or that alternative origins, such as being donated to the maize genome in a wide species cross, preceded six million years ago, because the spectrum of retrotransposons in the two chromosomes is quite similar.  相似文献   

9.
We describe a comprehensive and general approach for mapping centromeres and present a detailed characterization of two maize centromeres. Centromeres are difficult to map and analyze because they consist primarily of repetitive DNA sequences, which in maize are the tandem satellite repeat CentC and interspersed centromeric retrotransposons of maize (CRM). Centromeres are defined epigenetically by the centromeric histone H3 variant, CENH3. Using novel markers derived from centromere repeats, we have mapped all ten centromeres onto the physical and genetic maps of maize. We were able to completely traverse centromeres 2 and 5, confirm physical maps by fluorescence in situ hybridization (FISH), and delineate their functional regions by chromatin immunoprecipitation (ChIP) with anti-CENH3 antibody followed by pyrosequencing. These two centromeres differ substantially in size, apparent CENH3 density, and arrangement of centromeric repeats; and they are larger than the rice centromeres characterized to date. Furthermore, centromere 5 consists of two distinct CENH3 domains that are separated by several megabases. Succession of centromere repeat classes is evidenced by the fact that elements belonging to the recently active recombinant subgroups of CRM1 colonize the present day centromeres, while elements of the ancestral subgroups are also found in the flanking regions. Using abundant CRM and non-CRM retrotransposons that inserted in and near these two centromeres to create a historical record of centromere location, we show that maize centromeres are fluid genomic regions whose borders are heavily influenced by the interplay of retrotransposons and epigenetic marks. Furthermore, we propose that CRMs may be involved in removal of centromeric DNA (specifically CentC), invasion of centromeres by non-CRM retrotransposons, and local repositioning of the CENH3.  相似文献   

10.
Knowledge about the composition and structure of centromeres is critical for understanding how centromeres perform their functional roles. Here, we report the sequences of one centromere-associated bacterial artificial chromosome clone from a Coix lacryma-jobi library. Two Ty3/gypsy-class retrotransposons, centromeric retrotransposon of C. lacryma-jobi (CRC) and peri-centromeric retrotransposon of C. lacryma-jobi, and a (peri)centromere-specific tandem repeat with a unit length of 153 bp were identified. The CRC is highly homologous to centromere-specific retrotransposons reported in grass species. An 80-bp DNA region in the 153-bp satellite repeat was found to be conserved to centromeric satellite repeats from maize, rice, and pearl millet. Fluorescence in situ hybridization showed that the three repetitive sequences were located in (peri-)centromeric regions of both C. lacryma-jobi and Coix aquatica. However, the 153-bp satellite repeat was only detected on 20 out of the 30 chromosomes in C. aquatica. Immunostaining with an antibody against rice CENH3 indicates that the 153-bp satellite repeat and CRC might be both the major components for functional centromeres, but not all the 153-bp satellite repeats or CRC sequences are associated with CENH3. The evolution of centromeric repeats of C. lacryma-jobi during the polyploidization was discussed.  相似文献   

11.
Centromeres are sites for assembly of the chromosomal structures that mediate faithful segregation at mitosis and meiosis. This function is conserved across species, but the DNA components that are involved in kinetochore formation differ greatly, even between closely related species. To shed light on the nature, evolutionary timing and evolutionary dynamics of rice centromeres, we decoded a 2.25‐Mb DNA sequence covering the centromeric region of chromosome 8 of an indica rice variety, ‘Kasalath’ (Kas‐Cen8). Analysis of repetitive sequences in Kas‐Cen8 led to the identification of 222 long terminal repeat (LTR)‐retrotransposon elements and 584 CentO satellite monomers, which account for 59.2% of the region. A comparison of the Kas‐Cen8 sequence with that of japonica rice ‘Nipponbare’ (Nip‐Cen8) revealed that about 66.8% of the Kas‐Cen8 sequence was collinear with that of Nip‐Cen8. Although the 27 putative genes are conserved between the two subspecies, only 55.4% of the total LTR‐retrotransposon elements in ‘Kasalath’ had orthologs in ‘Nipponbare’, thus reflecting recent proliferation of a considerable number of LTR‐retrotransposons since the divergence of two rice subspecies of indica and japonica within Oryza sativa. Comparative analysis of the subfamilies, time of insertion, and organization patterns of inserted LTR‐retrotransposons between the two Cen8 regions revealed variations between ‘Kasalath’ and ‘Nipponbare’ in the preferential accumulation of CRR elements, and the expansion of CentO satellite repeats within the core domain of Cen8. Together, the results provide insights into the recent proliferation of LTR‐retrotransposons, and the rapid expansion of CentO satellite repeats, underlying the dynamic variation and plasticity of plant centromeres.  相似文献   

12.
Using comparative genetics, genes, repetitive DNA sequences and chromosomes were studied in the Oryzeae in order to more fully exploit the rice genome sequence data. Of particular focus was Zizania palustris L., n = 15, commonly known as American wildrice. Previous work has shown that rice chromosomes 1, 4 and 9 are duplicated in wildrice. The Adh1 and Adh2 genes were sequenced and, based on phylogenetic analyses, found to be duplicated in wildrice. The majority of the sequence diversity in the Adh sequences was in intron 3, in which were found several MITE insertions. Cytological and molecular approaches were used to analyze the evolution of rDNA and centromeric repetitive sequences in the Oryzeae. In wildrice, copies of the 5S rDNA monomer were found at two loci on two different chromosomes near the centromeres, as in rice. One nucleolar organizer region (NOR) locus was found adjacent to the telomere, as in rice. RCS1, a middle repetitive sequence in rice, was present in all of the centromeres of wildrice. RCS2/CentO, the highly repetitive component of Oryza sativa L. centromeres, was conserved in eight of the Oryza species examined, but was not found in wildrice. Three other middle repetitive centromeric sequences (RCH1, RCH2/CentO and RCH3) were also examined and found to have variable evolutionary patterns between species of Oryza and Zizania.Communicated by B. Friebe  相似文献   

13.
Liu Z  Yue W  Li D  Wang RR  Kong X  Lu K  Wang G  Dong Y  Jin W  Zhang X 《Chromosoma》2008,117(5):445-456
Little is known of the dynamics of centromeric DNA in polyploid plants. We report the sequences of two centromere-associated bacterial artificial chromosome clones from a Triticum boeoticum library. Both autonomous and non-autonomous wheat centromeric retrotransposons (CRWs) were identified, both being closely associated with the centromeres of wheat. Fiber-fluorescence in situ hybridization and chromatin immunoprecipitation analysis showed that wheat centromeric retrotransposons (CRWs) represent a dominant component of the wheat centromere and are associated with centromere function. CRW copy number showed variation among different genomes: the D genome chromosomes contained fewer copies than either the A or B genome chromosomes. The frequency of lengthy continuous CRW arrays was higher than that in either rice or maize. The dynamics of CRWs and other retrotransposons at centromeric and pericentromeric regions during diploid speciation and polyploidization of wheat and its related species are discussed. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Zhao Liu and Wei Yue made an equal contribution to this work.  相似文献   

14.
15.
16.
The maize (Zea mays) B centromere is composed of B centromere–specific repeats (ZmBs), centromere-specific satellite repeats (CentC), and centromeric retrotransposons of maize (CRM). Here we describe a newly formed B centromere in maize, which has lost CentC sequences and has dramatically reduced CRM and ZmBs sequences, but still retains the molecular features of functional centromeres, such as CENH3, H2A phosphorylation at Thr-133, H3 phosphorylation at Ser-10, and Thr-3 immunostaining signals. This new centromere is stable and can be transmitted to offspring through meiosis. Anti-CENH3 chromatin immunoprecipitation sequencing revealed that a 723-kb region from the short arm of chromosome 9 (9S) was involved in the formation of the new centromere. The 723-kb region, which is gene poor and enriched for transposons, contains two abundant DNA motifs. Genes in the new centromere region are still transcribed. The original 723-kb region showed a higher DNA methylation level compared with native centromeres but was not significantly changed when it was involved in new centromere formation. Our results indicate that functional centromeres may be formed without the known centromere-specific sequences, yet the maintenance of a high DNA methylation level seems to be crucial for the proper function of a new centromere.  相似文献   

17.
Sequence organization of barley centromeres   总被引:14,自引:1,他引:13       下载免费PDF全文
By sequencing, fingerprinting and in situ hybridization of a centromere-specific large insert clone (BAC 7), the sequence organization of centromeric DNA of barley could be elucidated. Within 23 kb, three copies of the Ty3/gypsy-like retroelement cereba were present. Two elements of ~7 kb, arranged in tandem, include long terminal repeats (LTRs) (~1 kb) similar to the rice centromeric retrotransposon RIRE 7 and to the cereal centromeric sequence family, the primer binding site, the complete polygene flanked by untranslated regions, as well as a polypurine tract 5′ of the downstream LTR. The high density (~200 elements/centromere) and completeness of cereba elements and the absence of internally deleted elements and solo LTRs from the BAC 7 insert represent unique features of the barley centromeres as compared to those of other cereals. Obviously, the conserved cereba elements together with barley-specific G+C-rich satellite sequences constitute the major components of centromeric DNA in this species.  相似文献   

18.
Rice (Oryza sativa L.) centromeres are composed of 155-bp satellite repeats (CentO), centromere-specific retrotransposon (CRR), and a variety of other repeats. Previous studies have shown that CentO and CRR elements are both parts of the functional centromere/kinetochore complex. In this study, a naturally occurring karyotype rearrangement involving a reciprocal translocation between chromosomes 9 and 11 in an indica rice Zhongxian 3037 has been identified. The recombinant centromere in Chr11L?·?9L has two CentO tandem arrays, separated by a long array of 5S rDNAs. Chromatin immunoprecipitation and immunostaining showed that centromere-specific histone H3 (cenH3) variant was bound to the two flanking CentO arrays, but not to the 5S rDNAs residing between the CentO repeats. No obvious difference was detected in H3K4me2 and H3K9ac modification of the 5S rDNAs between the wild type and the mutant. Therefore, the translocation results in a recombinant stable chromosome with interrupted centromeric domains. A lack of cenH3 binding in 5S rDNA sequences residing within the centromeric core suggests that not all centromeric sequences confer centromere identity in rice.  相似文献   

19.
Long terminal repeat (LTR) retrotransposons are the major class I mobile elements in plants. They play crucial roles in gene expansion, diversification and evolution. However, their captured genes are yet to be genome-widely identified and characterized in most of plants although many genomes have been completely sequenced. In this study, we have identified 7,043 and 23,915 full-length LTR retrotransposons in the rice and sorghum genomes, respectively. High percentages of rice full-length LTR retrotransposons were distributed near centromeric region in each of the chromosomes. In contrast, sorghum full-length LTR retrotransposons were not enriched in centromere regions. This dissimilarity could be due to the discrepant retrotransposition during and after divergence from their common ancestor thus might be contributing to species divergence. A total of 672 and 1,343 genes have been captured by these elements in rice and sorghum, respectively. Gene Ontology (GO) and gene set enrichment analysis (GSEA) showed that no over-represented GO term was identified in LTR captured rice genes. For LTR captured sorghum genes, GO terms with functions in DNA/RNA metabolism and chromatin organization were over-represented. Only 36% of LTR captured rice genes were expressed and expression divergence was estimated as 11.9%. Higher percentage of LTR captured rice genes have evolved into pseudogenes under neutral selection. On the contrary, higher percentage of LTR captured sorghum genes were under purifying selection and 72.4% of them were expressed. Thus, higher percentage of LTR captured sorghum genes was functional. Small RNA analysis suggested that some of LTR captured genes in rice and sorghum might have been involved in negative regulation. On the other hand, positive selection has been observed in both rice and sorghum LTR captured genes and some of them were still expressed and functional. The data suggest that some of these LTR captured genes might have evolved into new gene functions.  相似文献   

20.
DeBaryshe PG  Pardue ML 《Genetics》2011,187(1):51-60
Repeated DNA in heterochromatin presents enormous difficulties for whole-genome sequencing; hence, sequence organization in a significant portion of the genomes of multicellular organisms is relatively unknown. Two sequenced BACs now allow us to compare telomeric retrotransposon arrays from Drosophila melanogaster telomeres with an array of telomeric retrotransposons that transposed into the centromeric region of the Y chromosome >13 MYA, providing a unique opportunity to compare the structural evolution of this retrotransposon in two contexts. We find that these retrotransposon arrays, both heterochromatic, are maintained quite differently, resulting in sequence organizations that apparently reflect different roles in the two chromosomal environments. The telomere array has grown only by transposition of new elements to the chromosome end; the centromeric array instead has grown by repeated amplifications of segments of the original telomere array. Many elements in the telomere have been variably 5'-truncated apparently by gradual erosion and irregular deletions of the chromosome end; however, a significant fraction (4 and possibly 5 or 6 of 15 elements examined) remain complete and capable of further retrotransposition. In contrast, each element in the centromere region has lost ≥ 40% of its sequence by internal, rather than terminal, deletions, and no element retains a significant part of the original coding region. Thus the centromeric array has been restructured to resemble the highly repetitive satellite sequences typical of centromeres in multicellular organisms, whereas, over a similar or longer time period, the telomere array has maintained its ability to provide retrotransposons competent to extend telomere ends.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号