首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Role of RB and RB2/P130 genes in marrow stromal stem cells plasticity   总被引:5,自引:0,他引:5  
Marrow stromal cells (MSCs) are stem-like cells having a striking somatic plasticity. In fact, besides differentiating into mesenchymal lineages (bone, cartilage, and fat), they are capable of differentiating into neurons and astrocytes in vitro and in vivo. The RB and RB2/P130 genes, belonging to the retinoblastoma gene family, play a key role in neurogenesis, and for this reason, we investigated their role in neural commitment and differentiation of MSCs. In MSCs that were either uncommitted or committed toward neural differentiation, we ectopically expressed RB and RB2/P130 genes and analyzed their role in regulating the cell cycle, apoptosis and differentiation. In uncommitted MSCs, the activity of RB and RB2/P130 appeared limited to negatively regulating cell cycle progression, having no role in apoptosis and differentiation (toward either mesenchymal or neural lineages). On the other hand, in MSCs committed toward the neural phenotype, both RB and RB2/P130 reduced cell proliferation rate and affected the apoptotic process. RB protected differentiating cells from programmed cell death. On the contrary, RB2/P130 increased the percentage of cells in apoptosis. All of these activities were accomplished mainly in an HDAC-independent way. The retinoblastoma genes also influenced differentiation in neural committed MSCs. RB2/P130 contributes mainly to the induction of generic neural properties, while RB triggers cholinergic differentiation. These differentiating activities are HDAC-dependent. Our research shows that there is a critical temporal requirement for the RB genes during neuronal differentiation of MSCs: they are not required for cell commitment but play a role in the maturation process. For the above reasons, RB and RB2/P130 may have a role in neural differentiation but not in neural determination.  相似文献   

2.
Abstract The epiblast, derived from the inner cell mass (ICM), represents the final embryonic founder cell population of mouse embryo and can give rise to all germ layer lineages including the neuroectoderm. The generation of neural stem cells from epiblast-like cells is of great value for studying the mechanism of neural determination during gastrulation stages of embryonic development. Mouse embryonic carcinoma (EC) P19 cells are equivalent to the epiblast of early post-implantation blastocysts. In this study, we establish a feasible induction system that allows rapid and efficient derivation of a high percentage (∼95%) of neural stem cells from P19 EC cell in N2B27 serum-free medium. The induced neural stem cells bear anterior neuroectoderm characters, and can be efficiently caudalized by retinoic acid (RA). These neural stem cells have multilineage potential to differentiate into neurons, astrocytes, and oligodendrocytes. Mechanistic analysis indicates that inhibition of the bone morphogenetic protein (BMP) pathway may be the main reason for N2B27-neural induction, and that fibroblast growth factor (FGF) signaling is also involved in this process. This method will provide an in vitro system to dissect the molecular mechanisms involved in neural induction of early mouse embryos.  相似文献   

3.
Marrow stromal stem cells (MSCs) are stem-like cells that are currently being tested for their potential use in cell therapy for a number of human diseases. MSCs can differentiate into both mesenchymal and nonmesenchymal lineages. In fact, in addition to bone, cartilage and fat, it has been demonstrated that MSCs are capable of differentiating into neurons and astrocytes. RB and RB2/p130 genes are involved in the differentiation of several systems. For this reason, we evaluated the role of RB and RB2/p130 in the differentiation and apoptosis of MSCs under experimental conditions that allow for MSC differentiation toward the neuron-like phenotype. To this end, we ectopically expressed either RB or RB2/p130 and monitored proliferation, differentiation and apoptosis in rat primary MSC cultures induced to differentiate toward the neuron-like phenotype. Both RB and RB2/P130 decreased cell proliferation rate. In pRb-overexpressing cells, the arrest of cell growth was also observed in the presence of the HDAC-inhibitor TSA, suggesting that its antiproliferative activity does not rely upon the HDAC pathway, while the addition of TSA to pRb2/p130-overexpressing cells relieved growth inhibition. TUNEL reactions and studies on the expression of genes belonging to the Bcl-2 family showed that while RB protected differentiating MSCs from apoptosis, RB2/p130 induced an increase of apoptosis compared to controls. The effects of both RB and RB2/p130 on programmed cell death appeared to be HDAC- independent. Molecular analysis of neural differentiation markers and immunocytochemistry revealed that RB2/p130 contributes mainly to the induction of generic neural properties and RB triggers cholinergic differentiation. Moreover, the differentiation potentials of RB2/p130 and RB appear to rely, at least in part, on the activity of HDACs.  相似文献   

4.
SV40 T antigen (LT) transformation of renal MDCK epithelial cells resulted in massive apoptosis in the presence of serum. Cell death was dependent on the ability of LT to bind RB or a related protein, since MDCK cells expressing LT mutants unable to bind RB did not die. Apoptosis could be rescued by treatment of cells with EGF and TPA, a property linked to their ability to promote cell growth. Our results indicate an inverse correlation between proliferation and apoptosis. Thus LT transformation induced survival-factor dependence in epithelial cells, in contrast to its effect in fibroblasts. RB inactivation also resulted in a strong down-regulation of c-myc and c-fos, which were previously found to be highly and constitutively expressed in epithelial cells. RB gene transfer in MDCK(LT) cells restored cell viability and high c-myc expression. C-myc gene transfer in these cells also resulted in a significant survival effect. These results suggest that RB anti-cell death activity is at least partly mediated by up-regulation of c-myc. Overexpression of Bcl2 also protected cells against apoptosis. The role of RB and c-myc in cell survival is discussed and related to maintenance of the differentiation state rather than to their properties in cell cycle progression.  相似文献   

5.
Induction of apoptosis seems to be a key function in maintaining normal cell growth by exerting negative controls on cell proliferation and suppressing tumorigenesis. The adenovirus E1A oncogene shows both cell cycle progression and apoptotic functions. To understand the mechanism of E1A-induced apoptosis, the apoptotic function of E1A 13S was investigated in p53-null cells. We show here that E1A is sufficient by itself to induce substantial apoptosis independent of p53 and other adenoviral genes. The apoptotic function of E1A is accompanied by processing of caspase-3 and cleavage of poly(ADP-ribose)-polymerase. Cell death is significantly blocked by the caspase inhibitor zVAD-fmk and when coexpressed with E1B19K, Bcl-2 or the retinoblastoma protein (RB). Analyses of E1A mutants indicated that the apoptotic activity of E1A correlates closely with the ability to bind the key regulators of E2F1-induced apoptosis, p300 and RB. Finally, in vivo relevance of down-modulation of p53-independent apoptosis for efficient transformation is demonstrated.  相似文献   

6.
7.
In this report, we show that the overexpression of tissue transglutaminase (tTG) in the human neuroblastoma cell line SK-N-BE(2) renders these neural crest-derived cells highly susceptible to death by apoptosis. Cells transfected with a full-length tTG cDNA, under the control of a constitutive promoter, show a drastic reduction in proliferative capacity paralleled by a large increase in cell death rate. The dying tTG-transfected cells exhibit both cytoplasmic and nuclear changes characteristic of cells undergoing apoptosis. The tTG-transfected cells express high Bcl-2 protein levels as well as phenotypic neural cell adhesion molecule markers (NCAM and neurofilaments) of cells differentiating along the neuronal pathway. In keeping with these findings, transfection of neuroblastoma cells with an expression vector containing segments of the human tTG cDNA in antisense orientation resulted in a pronounced decrease of both spontaneous and retinoic acid (RA)-induced apoptosis. We also present evidence that (i) the apoptotic program of these neuroectodermal cells is strictly regulated by RA and (ii) cell death by apoptosis in the human neuroblastoma SK-N-BE(2) cells preferentially occurs in the substrate-adherent phenotype. For the first time, we report here a direct effect of tTG in the phenotypic maturation toward apoptosis. These results indicate that the tTG-dependent irreversible cross-linking of intracellular protein represents an important biochemical event in the induction of the structural changes featuring cells dying by apoptosis.  相似文献   

8.
We exposed midgut cells from primary cultures of Heliothis virescens larvae to cell-free previously used medium, the Vaughn X and HyQ SFtrade mark media used for serum-free culture of insect cell lines which do not support H. virescens midgut cells, and to toxin from Bacillus thuringiensis. A statistically significant increase in the percent of dying cells was counted in cell populations in Vaughn X medium. Use of the TUNEL method to detect apoptosis indicated a low rate (7.2%) of apoptosis in control cultures grown in Heliothis medium, an increase to approximately 20% in previously used and HyQ SFtrade mark media, and to approximately 45% of cells remaining after exposure to and initial destruction by B. thuringiensis toxin. Apoptotic nuclei were predominant (approximately 6%) in mature columnar cells in control cultures. Approximately 1% of goblet, stem, and differentiating cells were apoptotic. However, apoptosis rose to 12% in stem and differentiating cells exposed to used and unsuitable medium. B. thuringiensis exposure to toxin for 2-3 days resulted in visible membrane damage and necrosis, causing the death of 84% of the cells as measured by both the TUNEL and Annexin methods. Some of the columnar cells and stem and differentiating cells that remained also contained apoptotic nuclei. Stem and differentiating cells normally replace dying mature cells in the midgut. Thus, exposure of cultures of H. virescens midgut cells to adverse environments such as unsuitable or poisonous media appeared to induce down-regulation of the cell populations by apoptosis.  相似文献   

9.
A P19 embryonal carcinoma stem cell line carrying an insertion of the E. coli LacZ gene in an endogenous copy of the Pax-3 gene was identified. Expression of the Pax-3/LacZ fusion gene in neuroectodermal and mesodermal lineages following induction of differentiation by chemical treatments (retinoic acid and dimethylsulfoxide) was characterized using this line and is consistent with the previous localization of Pax-3 expression in the embryo to mitotically active cells of the dorsal neuroectoderm and the adjacent segmented dermomyotome. Pax-3/LacZ marked stem cells were also utilized as target cells in mixing experiments with unmarked P19 cells that had been differentiated by pretreatment with chemical inducers. Induction of beta-galactosidase and neuroectodermal markers in the target cells demonstrates that: (1) some differentiated P19 cell derivatives transiently express endogenous Pax-3- and neuroectoderm-inducing activities, (2) undifferentiated target stem cells respond to these activities even in the presence of leukemia inhibitory factor and (3) the endogenous activities can be distinguished from, and are more potent than, retinoic acid treatment in inducing neuroectoderm. These observations demonstrate that P19 embryonal carcinoma cells provide a useful in vitro system for analysis of the cellular interactions responsible for neuroectoderm induction in mammals.  相似文献   

10.
Dying cells of both chromaffin and cortical cell types were found scattered throughout the adrenal gland of 14-18 day mouse embryos and 17-19 day chick embryos. The ultrastructural appearance of these dying cells was unlike that of cells undergoing apoptosis and there was no evidence of macrophages or other phagocytes removing these cells from the adrenal. Possible morphogenetic functions of cell death in the developing adrenal are discussed.  相似文献   

11.
Tumor necrosis factor (TNF)-alpha-mediated death signaling induces oligomerization of proapoptotic Bcl-2 family member Bax into a high molecular mass protein complex in mitochondrial membranes. Bax complex formation is associated with the release of cytochrome c, which propagates death signaling by acting as a cofactor for caspase-9 activation. The adenovirus Bcl-2 homologue E1B 19K blocks TNF-alpha-mediated apoptosis by preventing cytochrome c release, caspase-9 activation, and apoptosis of virus-infected cells. TNF-alpha induces E1B 19K-Bax interaction and inhibits Bax oligomerization. Oligomerized Bax may form a pore to release mitochondrial proteins, analogous to the homologous pore-forming domains of bacterial toxins. E1B 19K can also bind to proapoptotic Bak, but the functional significance is not known. TNF-alpha signaling induced Bak-Bax interaction and both Bak and Bax oligomerization. E1B 19K was constitutively in a complex with Bak, and blocked the Bak-Bax interaction and oligomerization of both. The TNF-alpha-mediated cytochrome c and Smac/DIABLO release from mitochondria was inhibited by E1B 19K expression in adenovirus-infected cells. Since either Bax or Bak is essential for death signaling by TNF-alpha, the interaction between E1B 19K and both Bak and Bax may be required to inhibit their cooperative or independent oligomerization to release proteins from mitochondria which promote caspase activation and cell death.  相似文献   

12.

Background  

The RB-E2F pathway is conserved in most eukaryotic lineages, including animals and plants. E2F and RB family proteins perform crucial functions in cycle controlling, differentiation, development and apoptosis. However, there are two kinds of E2Fs (repressive E2Fs and active E2Fs) and three RB family members in human. Till now, the detail evolutionary history of these protein families and how RB-E2F pathway evolved in different organisms remain poorly explored.  相似文献   

13.
One of the initial steps of neurogenesis in the Drosophila embryo is the delamination of a stereotype set of neural progenitor cells (neuroblasts) from the neuroectoderm. The time window of neuroblast segregation has been divided into five successive waves (S1-S5) in which subsets of neuroblasts with specific identities are formed. To test when identity specification of the various neuroblasts takes place and whether extrinsic signals are involved, we have performed heterochronic transplantation experiments. Single neuroectodermal cells from stage 10 donor embryos (after S2) were transplanted into the neuroectoderm of host embryos at stage 7 (before S1) and vice versa. The fate of these cells was uncovered by their lineages at stage 16/17. Transplanted cells adjusted their fate to the new temporal situation. Late neuroectodermal cells were able to take over the fate of early (S1/S2) neuroblasts. The early neuroectodermal cells preferentially generated late (S4/S5) neuroblasts, despite their reduced time of exposure to the neuroectoderm. Furthermore, neuroblast fates are independent from divisions of neuroectodermal progenitor cells. We conclude from these experiments that neuroblast specification occurs sequentially under the control of non-cell-autonomous and stage-specific inductive signals that act in the neuroectoderm.  相似文献   

14.
Infection of human epithelial cells with adenoviruses induces an apoptosis paradigm that is efficiently suppressed by the expression of viral E1B-19K protein, which is a functional homolog of the cellular antiapoptosis protein BCL-2. The mechanisms of adenovirus (Ad)-induced apoptosis appear to involve the cellular BCL-2 family proapoptotic proteins. Recent genetic studies with fibroblasts derived from mutant mouse embryos indicate that a class of the BCL-2 family proapoptotic proteins (designated BH-123 or multidomain proteins) such as BAX and BAK constitutes an essential component of the core apoptosis machinery in animal cells. We have examined the role of BAX in Ad-induced apoptosis in human epithelial cells using two colon cancer cell lines, HCT116Bax (Bax(+/-)) and HCT116BaxKO (Bax(-/-)) (L. Zhang, J. Yu, B. H. Park, K. W. Kinzler, and B. Vogelstein, Science 290:989-992, 2000). Infection of Bax(+/-) cells with an Ad type 2 mutant (dl250) defective in expression of the E1B-19K protein resulted in enhanced cytopathic effect, large plaques on cell monolayers, fragmentation of cellular DNA, and enhanced cell death. These mutant phenotypes were not efficiently expressed in Bax(-/-) cells, suggesting that BAX is essential for Ad-induced apoptosis. Infection of Bax(+/-) cells with dl250 induced increased levels of an N-terminally processed form of BAX. Cells infected with the 19K mutant also contained enhanced levels of truncated BAX in membrane-inserted form. Our results suggest that at least a part of the mechanism utilized by E1B-19K to suppress apoptosis during Ad infection may involve modulation of the activities of BAX.  相似文献   

15.
16.
We studied the development of NCAM and gap junctional communication, and their mutual relationship in chick neuroectoderm in vitro. Expression of NCAM, as detected by monoclonal and polyclonal antibodies, and development of junctional communication, as detected by extensive cell-to-cell transfer of 400-500-D fluorescent tracers, occurred in cultures from stage-2 embryos onward. Both expressions presumably required primary induction. The differentiating cells formed discrete fields of expression on the second to third day in culture, with the NCAM fields coinciding with the junctional communication fields delineated by the tracers. Other neural differentiations developed in the following order: tetanus toxin receptors, neurofilament protein, and neurite outgrowth. Chronic treatment with antibody Fab fragments against NCAM interfered with the development of communication, suggesting that NCAM-mediated adhesion promotes formation of cell-to-cell channels. Temperature-sensitive mutant Rous sarcoma virus blocked (reversibly) communication and the subsequent development of neurofilament protein and neurites, but expression of NCAM continued.  相似文献   

17.
It is now well documented that apoptosis represents the prevalent mode of death in lymphoid cultures and occurs spontaneously in late-exponential phase of batch cultures following nutrient exhaustion. In an attempt to enhance the cell survival of these cell lines, we have initially engineered nonproducing NS/0 myeloma cells with a vector expressing the adenoviral E1B-19K protein. NS/0 cells transfected with E1B-19K were found to be more resistant to apoptosis occurring in the late phase of batch culture and under stressful conditions such as cultivation in glutamine-free medium or following heat shock. In this study, we have characterised a number of NS/0 subclones constitutively expressing different levels of E1B-19K, as well as several subclones in which the expression of E1B-19K was regulated by a tetracycline-controllable gene switch. We have found that a threshold E1B-19K level was required in order to achieve protection against apoptosis. The extent of resistance against cell death induced by nutrient deprivation in glutamine-free medium and in the late phase of batch cultures correlated with the level of E1B-19K expression up to an optimal level where further increases in E1B-19K levels did not result in significant additional protection. To assess the effects of E1B-19K on antibody productivity, an apoptosis-resistant NS/0 clone was then transfected with a chimeric antibody construct. Despite their improved viability, the antibody productivity of E1B-19K clones in batch culture was not significantly improved. Moreover, while the use of E1B-19K considerably delayed cell death, cells eventually died by apoptosis. Surprisingly, E1B-19K had no beneficial effect on the efficiency of fusion of NS/0 myelomas and splenocytes for the generation of hybridoma cells. Furthermore, the resulting hybridomas, although expressing E1B-19K at levels comparable to the myeloma parent, were no longer resistant to apoptosis. This indicates that the ability of E1B-19K to prevent apoptosis is not only dose-dependent but also seems to be cell-type dependent.  相似文献   

18.
The retinoblastoma (RB) family consists of three genes, RB1, RBL1, and RBL2, that code for the pRb, p107, and pRb2/p130 proteins, respectively. All these factors have pivotal roles in controlling fundamental cellular mechanisms such as cell cycle, differentiation and apoptosis. The founder and the most investigated RB family protein is pRb, which is considered to be the paradigm of tumor suppressors. However, p107 and pRb2/p130 clearly display a high degree of structural and functional homology with pRb. Interestingly, these factors were first identified as physical targets of the Adenovirus E1A oncoprotein. Indeed, RB family proteins are the most important and widely investigated targets of small DNA virus oncoproteins, such as Adenovirus E1A, human papillomavirus E7 and Simian virus 40 large T antigen. By interacting with pRb and with other RB family members, these oncoproteins neutralize their growth suppressive properties, thus stimulating proliferation of the infected cells, de‐differentiation, and resistance to apoptosis. All these acquired features strongly favor the rise and selection of immortalized and mutation‐prone cells, leading to a higher propensity in undergoing transformation. Our present work aims to illustrate and delve into these protein–protein interactions. Considering that these viral oncoproteins are dispensable for normal cellular functions, they can create “oncogene addiction” in the infected/transformed cells. This makes the possibility to dismantle these interactions extremely attractive, thus promoting the development of highly specific smart molecules capable of targeting only the infected/transformed cells that express these viral factors. J. Cell. Physiol. 228: 285–291, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

19.
Lamin proteolysis facilitates nuclear events during apoptosis   总被引:16,自引:4,他引:12       下载免费PDF全文
《The Journal of cell biology》1996,135(6):1441-1455
  相似文献   

20.
S K Chiou  C C Tseng  L Rao    E White 《Journal of virology》1994,68(10):6553-6566
Expression of the adenovirus E1A oncogene induces apoptosis which impedes both the transformation of primary rodent cells and productive adenovirus infection of human cells. Coexpression of E1A with the E1B 19,000-molecular-weight protein (19K protein) or the Bcl-2 protein, both of which have antiapoptotic activity, is necessary for efficient transformation. Induction of apoptosis by E1A in rodent cells is mediated by the p53 tumor suppressor gene, and both the E1B 19K protein and the Bcl-2 protein can overcome this p53-dependent apoptosis. The functional similarity between Bcl-2 and the E1B 19K protein suggested that they may act by similar mechanisms and that Bcl-2 may complement the requirement for E1B 19K expression during productive infection. Infection of human HeLa cells with E1B 19K loss-of-function mutant adenovirus produces apoptosis characterized by enhanced cytopathic effects (cyt phenotype) and degradation of host cell chromosomal DNA and viral DNA (deg phenotype). Failure to inhibit apoptosis results in premature host cell death, which impairs virus yield. HeLa cells express extremely low levels of p53 because of expression of human papillomavirus E6 protein. Levels of p53 were substantially increased by E1A expression during adenovirus infection. Therefore, E1A may induce apoptosis by overriding the E6-induced degradation of p53 and promoting p53 accumulation. Stable Bcl-2 overexpression in HeLa cells infected with the E1B 19K- mutant adenovirus blocked the induction of the cyt and deg phenotypes. Expression of Bcl-2 in HeLa cells also conferred resistance to apoptosis mediated by tumor necrosis factor alpha and Fas antigen, which is also an established function of the E1B 19K protein. A comparison of the amino acid sequences of Bcl-2 family members and that of the E1B 19K protein indicated that there was limited amino acid sequence homology between the central conserved domains of E1B 19K and Bcl-2. This domain of the E1B 19K protein is important in transformation and regulation of apoptosis, as determined by mutational analysis. The limited sequence homology and functional equivalency provided further evidence that the Bcl-2 and E1B 19K proteins may possess related mechanisms of action and that the E1B 19K protein may be the adenovirus equivalent of the cellular Bcl-2 protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号