首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Metabolic origin of urinary 3-hydroxy dicarboxylic acids   总被引:1,自引:0,他引:1  
K Y Tserng  S J Jin 《Biochemistry》1991,30(9):2508-2514
3-Hydroxy dicarboxylic acids with chain lengths ranging from 6 to 14 carbons are excreted in human urine. The urinary excretion of these acids is increased in conditions of increased mobilization of fatty acids or inhibited fatty acid oxidation. Similar urinary profiles of 3-hydroxy dicarboxylic acids were also observed in fasting rats. The metabolic genesis of these urinary 3-hydroxy dicarboxylic acids was investigated in vitro with rat liver postmitochondrial and mitochondrial fractions. 3-Hydroxy monocarboxylic acids ranging from 3-hydroxyhexanoic acid to 3-hydroxyhexadecanoic acid were synthesized. In the rat liver postmitochondrial fraction fortified with NADPH, these 3-hydroxy fatty acids with carbon chains equal to or longer than 10 were oxidized to (omega - 1)- and omega-hydroxy metabolites as well as to the corresponding 3-hydroxy dicarboxylic acids. 3-Hydroxyhexanoic (3OHMC6) and 3-hydroxyoctanoic (3OHMC8) acids were not metabolized. Upon the addition of mitochondria together with ATP, CoA, carnitine, and MgCl2, the 3-hydroxy dicarboxylic acids were converted to 3-hydroxyoctanedioic, trans-2-hexenedioic, suberic, and adipic acids. In the urine of children with elevated 3-hydroxy dicarboxylic acid levels, 3OHMC6, 3OHMC8, 3-hydroxydecanoic, 3,10-dihydroxydecanoic, 3,9-dihydroxydecanoic, and 3,11-dihydroxydodecanoic acids were identified. On the basis of these data, we propose that the urinary 3-hydroxy dicarboxylic acids are derived from the omega-oxidation of 3-hydroxy fatty acids and the subsequent beta-oxidation of longer chain 3-hydroxy dicarboxylic acids. These urinary 3-hydroxy dicarboxylic acids are not derived from the beta-oxidation of unsubstituted dicarboxylic acids.  相似文献   

3.
The mitochondrial metabolism of unsaturated fatty acids with conjugated double bonds at odd-numbered positions, e.g. 9-cis, 11-trans-octadecadienoic acid, was investigated. These fatty acids are substrates of beta-oxidation in isolated rat liver mitochondria and hence are expected to yield 5,7-dienoyl-CoA intermediates. 5, 7-Decadienoyl-CoA was used to study the degradation of these intermediates. After introduction of a 2-trans-double bond by acyl-CoA dehydrogenase or acyl-CoA oxidase, the resultant 2,5, 7-decatrienoyl-CoA can either continue its pass through the beta-oxidation cycle or be converted by Delta3,Delta2-enoyl-CoA isomerase to 3,5,7-decatrienoyl-CoA. The latter compound was isomerized by a novel enzyme, named Delta3,5,7,Delta2,4, 6-trienoyl-CoA isomerase, to 2,4,6-decatrienoyl-CoA, which is a substrate of 2,4-dienoyl-CoA reductase (Wang, H.-Y. and Schulz, H. (1989) Biochem. J. 264, 47-52) and hence can be completely degraded via beta-oxidation. Delta3,5,7,Delta2,4,6-Trienoyl-CoA isomerase was purified from pig heart to apparent homogeneity and found to be a component enzyme of Delta3,5,Delta2,4-dienoyl-CoA isomerase. Although the direct beta-oxidation of 2,5,7-decatrienoyl-CoA seems to be the major pathway, the degradation via 2,4,6-trienoyl-CoA makes a significant contribution to the total beta-oxidation of this intermediate.  相似文献   

4.
Crystals of short-chain delta 3,delta 2-enoyl-CoA isomerase (EC 5.3.3.8) from rat liver mitochondria have been grown using the hanging-drop vapour diffusion technique. The enoyl-CoA isomerase is an auxiliary enzyme in the beta-oxidation pathway of fatty acid metabolism, and catalyzes the isomerization of unsaturated fatty acids to produce the metabolizable delta 2-trans isomer. The crystals belong to the orthorhombic space group P2(1)2(1)2(1) with unit cell dimensions a = 47.9, b = 118.4 and c = 164.8 A, and diffract to 3 A.  相似文献   

5.
The mitochondrial beta-oxidation of octa-2,4,6-trienoic acid was studied with the aim of elucidating the degradation of unsaturated fatty acids with conjugated double bonds. Octa-2,4,6-trienoic acid was found to be a respiratory substrate of coupled rat liver mitochondria, but not of rat heart mitochondria. Octa-2,4,6-trienoyl-CoA, the product of the inner-mitochondrial activation of the acid, was chemically synthesized and its degradation by purified enzymes of beta-oxidation was studied spectrophotometrically and by use of h.p.l.c. This compound is a substrate of NADPH-dependent 2,4-dienoyl-CoA reductase or 4-enoyl-CoA reductase (EC 1.3.1.34), which facilitates its further beta-oxidation. The product obtained after the NADPH-dependent reduction of octa-2,4,6-trienoyl-CoA and one round of beta-oxidation was hex-4-enoyl-CoA, which can be completely degraded via beta-oxidation. It is concluded that polyunsaturated fatty acids with two conjugated double bonds extending from even-numbered carbon atoms can be completely degraded via beta-oxidation because their presumed 2,4,6-trienoyl-CoA intermediates are substrates of 2,4-dienoyl-CoA reductase.  相似文献   

6.
The metabolism of the double bonds at the delta 3 position in fatty acids was studied in rat liver. Infusion of delta 3-trans-dodecenoic acid into isolated perfused liver and subcellular fractionation studies showed the presence of both peroxisomal and mitochondrial delta 3,delta 2-enoyl-CoA isomerase activity (EC 5.3.3.8). These findings together with the previous demonstration of peroxisomal 2,4-dienoyl-CoA reductase (EC 1.3.1.34) [(1981) J. Biol. Chem. 256, 8259-8262] and D-3-OH-acyl-CoA epimerase (EC 5.1.2.3) [(1985) FEBS Lett. 185, 129-134] activities show that peroxisomes possess all the auxiliary enzymes required for the beta-oxidation of unsaturated fatty acids.  相似文献   

7.
The crystal structure of Delta3-Delta2-enoyl-CoA isomerase from human mitochondria (hmEci), complexed with the substrate analogue octanoyl-CoA, has been refined at 1.3 A resolution. This enzyme takes part in the beta-oxidation of unsaturated fatty acids by converting both cis-3 and trans-3-enoyl-CoA esters (with variable length of the acyl group) to trans-2-enoyl-CoA. hmEci belongs to the hydratase/isomerase (crotonase) superfamily. Most of the enzymes belonging to this superfamily are hexamers, but hmEci is shown to be a trimer. The mode of binding of the ligand, octanoyl-CoA, shows that the omega-end of the acyl group binds in a hydrophobic tunnel formed by residues of the loop preceding helix H4 as well as by side-chains of the kinked helix H9. From the structure of the complex it can be seen that Glu136 is the only catalytic residue. The importance of Glu136 for catalysis is confirmed by mutagenesis studies. A cavity analysis shows the presence of two large, adjacent empty hydrophobic cavities near the active site, which are shaped by side-chains of helices H1, H2, H3 and H4. The structure comparison of hmEci with structures of other superfamily members, in particular of rat mitochondrial hydratase (crotonase) and yeast peroxisomal enoyl-CoA isomerase, highlights the variable mode of binding of the fatty acid moiety in this superfamily.  相似文献   

8.
Isoproteins of delta 3,delta 2-enoyl-CoA isomerase (EC 5.3.3.8), an auxiliary enzyme in the beta-oxidation of unsaturated fatty acids having double bonds at odd-numbered positions, were studied in livers of control and clofibrate-treated rats. When liver extracts were applied to a hydroxyapatite column at pH 7.0, the previously characterized peroxisomal trifunctional hydratase-dehydrogenase-isomerase enzyme and the mitochondrial isomerase, which shows a preference for short-chain substrates, were eluted almost in parallel. In addition to these activities, a separate isomerase was observed to elute at a lower potassium phosphate concentration in the gradient. Experiments with extracts of purified mitochondria and peroxisomes demonstrated the mitochondrial origin of this third activity. Studies on the kinetic properties of the third isomerase showed that it has a preference for C10-C12 substrates. An Mr of 200,000 was obtained for the native protein by gel-filtration chromatography. Antibodies to mitochondrial short-chain isomerase and peroxisomal trifunctional enzyme did not recognize this novel mitochondrial isoenzyme. The immunological non-cross-reactivity can be interpreted as suggesting that the different isomerases are not closely related at the level of the primary structure of the polypeptide chain. The present data demonstrate that, similar to many other enzymes of beta-oxidation, delta 3,delta 2-enoyl-CoA isomerase has at least three isoenzymes in rat liver: mitochondrial short- and long-chain isomerases and an additional peroxisomal isoenzyme, which in this case is a part of a multifunctional protein.  相似文献   

9.
The multienzyme complex for fatty acid oxidation was purified from Pseudomonas fragi, which was grown on oleic acid as the sole carbon source. This complex exhibited enoyl-CoA hydratase [EC 4.2.1.17], 3-hydroxyacyl-CoA dehydrogenase [EC 1.1.1.35], 3-oxoacyl-CoA thiolase [EC 2.3.1.16], cis-3,trans-2-enoyl-CoA isomerase [EC 5.3.3.3], and 3-hydroxyacyl-CoA epimerase [EC 5.1.2.3] activities. The molecular weight of the native complex was estimated to be 240,000. Two types of subunits, with molecular weights of 73,000 and 42,000, were identified. The complex was composed of two copies each of the 73,000- and 42,000-Da subunits. The beta-oxidation system was reconstituted in vitro using the multienzyme complex, acyl-CoA synthetase and acyl-CoA oxidase. This reconstituted system completely oxidized saturated fatty acids with acyl chains of from 4 to 18 carbon atoms as well as unsaturated fatty acids having cis double bonds extending from odd-numbered carbon atoms. However, unsaturated fatty acids having cis double bonds extending from even-numbered carbon atoms were not completely oxidized to acetyl-CoA: about 5 mol of acetyl-CoA was produced from 1 mol of linoleic or alpha-linolenic acid, and about 2 mol of acetyl-CoA from 1 mol of gamma-linolenic acid. These results suggested that the 3-hydroxyacyl-CoA epimerase in the complex was not operative. When the epimerase was by-passed by the addition of 2,4-dienoyl-CoA reductase to the reconstituted system, unsaturated fatty acids with cis double bonds extending from even-numbered carbon atoms were also completely degraded to acetyl-CoA.  相似文献   

10.
Peroxisomal delta 3, delta 2-enoyl-CoA isomerase (EC 5.3.3.8) was studied in the liver of rats treated with clofibrate. The mitochondrial and peroxisomal isoenzymes were separated chromatographically and the peroxisomal isomerase purified to apparent homogeneity. In addition to the isomerization of 3-enoyl-CoA esters, the purified protein also catalyzed hydration of trans-2-enoyl-CoA and oxidation of L-3-hydroxyacyl-CoA. Incubation of the purified protein with trans-3-decenoyl-CoA, NAD+, and Mg2+ resulted in an increase in absorbance at 303 nm, indicating the formation of 3-ketoacyl-CoA. The protein purified was monomeric, with an estimated molecular weight of 78,000. In immunoblotting it was recognized by the antibody to peroxisomal bifunctional protein from rat liver. Comparison of the amino acid sequences of cyanogen bromide cleaved isomerase with the known sequence of the peroxisomal bifunctional protein from the rat identified them as the same molecule. In control experiments, the peroxisomal bifunctional protein purified according to published methods also catalyzed delta 3, delta 2-enoyl-CoA isomerization. This means that the bifunctional protein of rat liver is in fact a trifunctional enzyme possessing delta 3, delta 2-enoyl-CoA isomerase, 2-enoyl-CoA hydratase (EC 4.2.1.17), and L-3-hydroxyacyl-CoA dehydrogenase (EC 1.1.1.35) activities in the same polypeptide.  相似文献   

11.
Fatty acid beta-oxidation is a key process in mammalian lipid catabolism. Disturbance of this process results in severe clinical symptoms, including dysfunction of the liver, a major beta-oxidizing tissue. For a thorough understanding of this process, a comprehensive analysis of involved fatty acid and acyl-carnitine intermediates is desired, but capable methods are lacking. Here, we introduce oxaalkyne and alkyne fatty acids as novel tracers to study the beta-oxidation of long- and medium-chain fatty acids in liver lysates and primary hepatocytes. Combining these new tracer tools with highly sensitive chromatography and mass spectrometry analyses, this study confirms differences in metabolic handling of fatty acids of different chain length. Unlike longer chains, we found that medium-chain fatty acids that were activated inside or outside of mitochondria by different acyl-CoA synthetases could enter mitochondria in the form of free fatty acids or as carnitine esters. Upon mitochondrial beta-oxidation, shortened acyl-carnitine metabolites were then produced and released from mitochondria. In addition, we show that hepatocytes ultimately also secreted these shortened acyl chains into their surroundings. Furthermore, when mitochondrial beta-oxidation was hindered, we show that peroxisomal beta-oxidation likely acts as a salvage pathway, thereby maintaining the levels of shortened fatty acid secretion. Taken together, we conclude that this new method based on oxaalkyne and alkyne fatty acids allows for metabolic tracing of the beta-oxidation pathway in tissue lysate and in living cells with unique coverage of metabolic intermediates and at unprecedented detail.  相似文献   

12.
1. Rat liver peroxisomal fractions were isolated in iso-osmotic Percoll gradients by using vertical-rotor centrifugation. The fractions obtained with rats given various dietary treatments were characterized. 2. The effect on peroxisomal beta-oxidation of feeding 15% by wt. of dietary fat for 3 weeks was investigated. High-fat diets caused induction of peroxisomal beta-oxidation, but diets rich in very-long-chain mono-unsaturated fatty acids produced a more marked induction. 3. Peroxisomal beta-oxidation induced by diets rich in very-long-chain mono-unsaturated fatty acids can oxidize such acids. Trans-isomers of mono-unsaturated fatty acids are oxidized at rates that are faster than, or similar to, those obtained with corresponding cis-isomers. 4. Rates of oxidation of [14-14C]erucic acid by isolated rat hepatocytes isolated from rats fed on high-fat diets increased with the time on those diets in a fashion very similar to that previously reported for peroxisomal beta-oxidation [see Neat, Thomassen & Osmundsen (1980) Biochem, J. 186, 369-371]. 5. Total liver capacities for peroxisomal beta-oxidation (expressed as acetyl groups produced per min) were estimated to range from 10 to 30% of mitochondrial capacities, depending on dietary treatment and fatty acid substrate. A role is proposed for peroxisomal beta-oxidation in relation to the metabolism of fatty acids that are poorly oxidized by mitochondrial beta-oxidation, and, in general, as regards oxidation of fatty acids during periods of sustained high hepatic influx of fatty acids.  相似文献   

13.
Dicarboxylic acids are excreted in urine when fatty acid oxidation is increased (ketosis) or inhibited (defects in beta-oxidation) and in Reye's syndrome. omega-Hydroxylation and omega-oxidation of C6-C12 fatty acids were measured by mass spectrometry in rat liver microsomes and homogenates, and beta-oxidation of the dicarboxylic acids in liver homogenates and isolated mitochondria and peroxisomes. Medium-chain fatty acids formed large amounts of medium-chain dicarboxylic acids, which were easily beta-oxidized both in vitro and in vivo, in contrast to the long-chain C16-dicarboxylic acid, which was toxic to starved rats. Increment of fatty acid oxidation in rats by starvation or diabetes increased C6:C10 dicarboxylic acid ratio in rats fed medium-chain triacylglycerols, and increased short-chain dicarboxylic acid excretion in urine in rats fed medium-chain dicarboxylic acids. Valproate, which inhibits fatty acid oxidation and may induce Reye like syndromes, caused the pattern of C6-C10-dicarboxylic aciduria seen in beta-oxidation defects, but only in starved rats. It is suggested, that the origin of urinary short-chain dicarboxylic acids is omega-oxidized medium-chain fatty acids, which after peroxisomal beta-oxidation accumulate as C6-C8-dicarboxylic acids. C10-C12-dicarboxylic acids were also metabolized in the mitochondria, but did not accumulate as C6-C8-dicarboxylic acids, indicating that beta-oxidation was completed beyond the level of adipyl CoA.  相似文献   

14.
1. beta-Oxidation of gamma-linolenoylcarnitine, arachidonoylcarnitine and docosahexaenoylcarnitine by isolated rat liver mitochondria is inhibited by uncoupling conditions. Partial re-activation is obtained with added ATP. With mitochondria from clofibrate-treated rats ATP-stimulated rates of beta-oxidation of docosahexaenoylcarnitine are higher than ADP-stimulated rates. This is not observed with the beta-oxidation of oleoylcarnitine. 2. beta-Oxidation of docosahexaenoylcarnitine, in the presence of rotenone, is inhibited by added oxaloacetate, analogous to previous findings with pent-4-enoylcarnitine [see Osmundsen (1978) FEBS Lett. 88, 219-222]. In the absence of rotenone added oxaloacetate stimulates the beta-oxidation of docosahexaenoylcarnitine, but has the opposite effect on the beta-oxidation of palmitoylcarnitine. 3. beta-Oxidation of polyunsaturated acylcarnitines by isolated rat liver mitochondria is selectively increased after treatment of the animals with a low dietary dose (0.2%, w/w) of clofibrate. Treatment with a higher dose of clofibrate (0.5%, w/w) resulted in a general stimulation of beta-oxidation. 4. The results presented suggest that long-chain fatty acids possessing a delta 4-double bond are not readily beta-oxidized unless the 2,4-enoyl-CoA reductase (EC 1.3.1.-) is operating.  相似文献   

15.
A novel cascade of 3-hydroxy fatty acids was discovered in the yeast Saccharomycopsis synnaedendra. The cascade, probably derived from incomplete beta-oxidation, comprises both even and uneven carbon numbered as well as saturated and unsaturated 3-hydroxy oxylipins. This yeast may now be used as model to further study the metabolism of these compounds as well as their biotechnological production.  相似文献   

16.
The effects of clofibrate feeding on the metabolism of polyunsaturated fatty acids were studied in isolated rat hepatocytes. Administration of clofibrate stimulated the oxidation and particularly the peroxisomal beta-oxidation of all the fatty acids used. The increase in oxidation products was markedly higher when n-3 fatty acids were used as substrate, indicating that peroxisomes contribute more to the oxidation of n-3 than n-6 fatty acids. The whole increase in oxidation could be accounted for by a corresponding decrease in acylation in triacylglycerol while the esterification in phospholipids remained unchanged. A marked stimulation of the amounts of newly synthesized C16 and C18 fatty acids recovered, was observed when 18:2(n-6), 20:3(n-6), 18:3 (n-3) and 20:5(n-3), but not when 20:4(n-6) and 22:4(n-6) were used as substrate. This agrees with the view that extra-mitochondrial acetyl-CoA produced from peroxisomal beta-oxidation is more easily used for fatty acid new synthesis than acetyl-CoA from mitochondrial beta-oxidation. The delta 6 and delta 5 desaturase activities were distinctly higher in cells from clofibrate fed rats indicating a stimulating effect.  相似文献   

17.
1. Pent-4-enoyl-CoA and its metabolites penta-2,4-dienoyl-CoA and acryloyl-CoA, as well as n-pentanoyl-CoA, cyclopropanecarbonyl-CoA and cyclobutanecarbonyl-CoA, were examined as substrates or inhibitors of purified enzymes of beta-oxidation in an investigation to locate the site of inhibition of fatty acid oxidation by pent-4-enoate. 2. The reactions of various acyl-CoA derivatives with l-carnitine and of various acyl-l-carnitine derivatives with CoA, catalysed by carnitine acetyltransferase, were investigated and V(max.) and K(m) values were determined. Pent-4-enoyl-CoA and n-pentanoyl-CoA were good substrates, whereas cyclobutanecarbonyl-CoA, cyclopropanecarbonyl-CoA and acryloyl-CoA reacted more slowly. A very slow rate with penta-2,4-dienoyl-CoA was detected. Pent-4-enoyl-l-carnitine, n-pentanoyl-l-carnitine and cyclobutanecarbonyl-l-carnitine were good substrates and cyclopropanecarbonyl-l-carnitine reacted more slowly. 3. Pent-4-enoyl-CoA and n-pentanoyl-CoA were substrates for butyryl-CoA dehydrogenase and for octanoyl-CoA dehydrogenase, and both compounds were equally effective competitive inhibitors of these enzymes with butyryl-CoA or palmitoyl-CoA respectively as substrates. V(max.), K(m) and K(i) values were determined. 4. None of the acyl-CoA derivatives inhibited enoyl-CoA hydratase or 3-hydroxybutyryl-CoA dehydrogenase. Penta-2,4-dienoyl-CoA was a substrate for enoyl-CoA hydratase when the reaction was coupled to that catalysed by 3-hydroxybutyryl-CoA dehydrogenase. 5. In a reconstituted sequence with purified enzymes crotonoyl-CoA was largely converted into acetyl-CoA, and pent-2-enoyl-CoA into acetyl-CoA and propionyl-CoA. Penta-2,4-dienoyl-CoA was slowly converted into acetyl-CoA and acryloyl-CoA. 6. Penta-2,4-dienoyl-CoA, a unique metabolite of pent-4-enoate, was the only compound that specifically inhibited an enzyme of the beta-oxidation sequence, 3-oxoacyl-CoA thiolase. The formation of penta-2,4-dienoyl-CoA could explain the strong inhibition of fatty acid oxidation in intact mitochondria by pent-4-enoate.  相似文献   

18.
Cellular energy metabolism is largely sustained by mitochondrial beta-oxidation of saturated and unsaturated fatty acids. To study the role of unsaturated fatty acids in cellular lipid and energy metabolism we generated a null allelic mouse, deficient in 3,2-trans-enoyl-CoA isomerase (ECI) (eci(-/-) mouse). ECI is the link in mitochondrial beta-oxidation of unsaturated and saturated fatty acids and essential for the complete degradation and for maximal energy yield. Mitochondrial beta-oxidation of unsaturated fatty acids is interrupted in eci(-/-)mice at the level of their respective 3-cis- or 3-trans-enoyl-CoA intermediates. Fasting eci(-/-) mice accumulate unsaturated fatty acyl groups in ester lipids and deposit large amounts of triglycerides in hepatocytes (steatosis). Gene expression studies revealed the induction of peroxisome proliferator-activated receptor activation in eci(-/-) mice together with peroxisomal beta- and microsomal omega-oxidation enzymes. Combined peroxisomal beta- and microsomal omega-oxidation of the 3-enoyl-CoA intermediates leads to a specific pattern of medium chain unsaturated dicarboxylic acids excreted in the urine in high concentration (dicarboxylic aciduria). The urinary dicarboxylate pattern is a reliable diagnostic marker of the ECI genetic defect. The eci(-/-) mouse might be a model of a yet undefined inborn mitochondrial beta-oxidation disorder lacking the enzyme link that channels the intermediates of unsaturated fatty acids into the beta-oxidation spiral of saturated fatty acids.  相似文献   

19.
The degradation of fatty acids having cis- or trans-unsaturated bond at an even carbon was analyzed in Saccharomyces cerevisiae by monitoring polyhydroxyalkanoate production in the peroxisome. Polyhydroxyalkanaote is synthesized by the polymerization of the beta-oxidation intermediates 3-hydroxy-acyl-CoAs via a bacterial polyhydroxyalkanoate synthase targeted to the peroxisome. The synthesis of polyhydroxyalkanoate in cells grown in media containing 10-cis-heptadecenoic acid was dependent on the presence of 2,4-dienoyl-CoA reductase activity as well as on Delta3,Delta2-enoyl-CoA isomerase activity. The synthesis of polyhydroxyalkanoate from 10-trans-heptadecenoic acid in mutants devoid of 2,4-dienoyl-CoA reductase revealed degradation of the trans fatty acid directly via the enoyl-CoA hydratase II activity of the multifunctional enzyme (MFE), although the level of polyhydroxyalkanoate was 10-25% to that of wild type cells. Polyhydroxyalkanoate produced from 10-trans-heptadecenoic acid in wild type cells showed substantial carbon flux through both a reductase-dependent and a direct MFE-dependent pathway. Flux through beta-oxidation was more severely reduced in mutants devoid of Delta3,Delta2-enoyl-CoA isomerase compared to mutants devoid of 2,4-dienoyl-CoA reductase. It is concluded that the intermediate 2-trans,4-trans-dienoyl-CoA is metabolized in vivo in yeast by both the enoyl-CoA hydratase II activity of the multifunctional protein and the 2,4-dienoyl-CoA reductase, and that the synthesis of the intermediate 3-trans-enoyl-CoA in the absence of the Delta3,Delta2-enoyl-CoA isomerase leads to the blockage of the direct MFE-dependent pathway in vivo.  相似文献   

20.
Cis-5 double bond in a fatty acid or when encountered through the beta-oxidation of an odd-numbered double-bond unsaturated fatty acid presents as a metabolic block to the further beta-oxidation. Cis-5-fatty acyl-CoA cannot be beta-oxidized to cis-3-enoyl-CoA as suggested by the conventional pathway. Instead, this metabolic block can only be removed through an NADPH-dependent reduction of 5-enoyl-CoA, possibly mediated by a 5-enoyl-CoA reductase. In the case of oleic acid two cycles of beta-oxidation yield cis-5-tetradecenoyl-CoA. This intermediate is then reduced to tetradecanoyl-CoA, which is metabolized further via normal beta-oxidation cycles. The conventional pathway through cis-3-dodecenoyl-CoA does not operate in rat liver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号