首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nicotinamide adenine dinucleotide (NAD) plays a crucial role as a cofactor in numerous essential redox biological reactions. NAD derives from quinolinic acid which is synthesized in Escherichia coli from L-aspartate and dihydroxyacetone phosphate (DHAP) as the result of the concerted action of two enzymes, L-aspartate oxidase (NadB) and quinolinate synthetase (NadA). We report here the characterization of NadA protein from E. coli. When anaerobically purified, the isolated soluble protein contains 3-3.5 iron and 3-3.5 sulfide/polypeptide chain. M?ssbauer spectra of the 57Fe-protein revealed that the majority of the iron is in the form of a (4Fe-4S)2+ cluster. An enzymatic assay for quinolinate synthetase activity was set up and allowed to demonstrate that the cluster is absolutely required for NadA activity. Exposure to air leads to degradation of the cluster and inactivate enzyme.  相似文献   

2.
Nicotinamide adenine dinucleotide (NAD) derives from quinolinic acid which is synthesized in Escherichia coli from l-aspartate and dihydroxyacetone phosphate through the concerted action of l-aspartate oxidase and the [4Fe-4S] quinolinate synthase (NadA). Here, we addressed the question of the identity of the cluster ligands. We performed in vivo complementation experiments as well as enzymatic, spectroscopic and structural in vitro studies using wild-type vs. Cys-to-Ala mutated NadA proteins. These studies reveal that only three cysteine residues, the conserved Cys113, Cys200 and Cys297, are ligands of the cluster. This result is in contrast to the previous proposal that pointed the three cysteines of the C(291)XXC(294)XXC(297) motif. Interestingly, we demonstrated that Cys291 and Cys294 form a disulfide bridge and are important for activity.  相似文献   

3.
Dihydroxy [3-14C]acetone phosphate was prepared enzymatically from [1-14C]glucose and use as a substrate in a partially purified quinolinate synthetase system prepared from Escherichia coli mutants. Carbon-by-carbon degradation of the resulting [14C]quinolinate showed that 96% of the 14C was located in carbon-4, indicating that carbon-3 of dihydroxyacetone phosphate condenses with carbon-3 of aspartate in quinolinate synthesis in E. coli.  相似文献   

4.
Two proteins (A and B) from Escherichia coli are required for the synthesis of the NAD precursor quinolinate from aspartate and dihydroxyacetone phosphate. Mammalian liver contains a FAD linked protein which replaces E. coli B protein for quinolinate synthesis. D-aspartic acid but not L-aspartic acid is a substrate for quinolinic acid synthesis in a system composed of the B protein replacing activity of mammalian liver and E. coli A protein. In contrast the E. coli B protein-E. coli A protein quinolinate synthetase system requires L-aspartic acid as substrate. The previous report that L-aspartate was a substrate in the liver-E. coli system was due to contamination of commercially available [14C]L-aspartate with [14C]D-aspartate. These and other observations suggest that liver B protein is D-aspartate oxidase and E. coli B protein is L-aspartate oxidase.  相似文献   

5.
Quinolinate synthase (NadA) catalyzes a unique condensation reaction between iminoaspartate and dihydroxyacetone phosphate, affording quinolinic acid, a central intermediate in the biosynthesis of nicotinamide adenine dinucleotide (NAD). Iminoaspartate is generated via the action of l-aspartate oxidase (NadB), which catalyzes the first step in the biosynthesis of NAD in most prokaryotes. NadA from Escherichia coli was hypothesized to contain an iron-sulfur cluster as early as 1991, because of its observed labile activity, especially in the presence of hyperbaric oxygen, and because its primary structure contained a CXXCXXC motif, which is commonly found in the [4Fe-4S] ferredoxin class of iron-sulfur (Fe/S) proteins. Indeed, using analytical methods in concert with Mossbauer and electron paramagnetic resonance spectroscopies, the protein was later shown to harbor a [4Fe-4S] cluster. Recently, the X-ray structure of NadA from Pyrococcus horikoshii was solved to 2.0 A resolution [Sakuraba, H., Tsuge, H.,Yoneda, K., Katunuma, N., and Ohshima, T. (2005) J. Biol. Chem. 280, 26645-26648]. This protein does not contain a CXXCXXC motif, and no Fe/S cluster was observed in the structure or even mentioned in the report. Moreover, rates of quinolinic acid production were reported to be 2.2 micromol min (-1) mg (-1), significantly greater than that of E. coli NadA containing an Fe/S cluster (0.10 micromol min (-1) mg (-1)), suggesting that the [4Fe-4S] cluster of E. coli NadA may not be necessary for catalysis. In the study described herein, nadA genes from both Mycobacterium tuberculosis and Pyrococcus horikoshii were cloned, and their protein products shown to contain [4Fe-4S] clusters that are absolutely required for activity despite the absence of a CXXCXXC motif in their primary structures. Moreover, E. coli NadA, which contains nine cysteine residues, is shown to require only three for turnover (C113, C200, and C297), of which only C297 resides in the CXXCXXC motif. These results are consistent with a bioinformatics analysis of NadA sequences, which indicates that three cysteines are strictly conserved across all species. This study concludes that all currently annotated quinolinate synthases harbor a [4Fe-4S] cluster, that the crystal structure reported by Sakuraba et al. does not accurately represent the active site of the protein, and that the "activity" reported does not correspond to quinolinate formation.  相似文献   

6.
Evidence for the formation of an unstable intermediate in the synthesis of quinolinate from aspartate and dihydroxyacetone phosphate by Escherichia coli was obtained using toluenized cells of nadA and nadB mutants of this organism and partially purified A and B proteins in dialysis and membrane cone experiments. The results of these experiments indicate that the nadB gene product forms an unstable compound from aspartate in the presence of flavine adenine dinucleotide, and that this compound is then condensed with dihydroxyacetone phosphate to form quinolinate in a reaction catalyzed by the nadA gene product.  相似文献   

7.
Saunders AH  Booker SJ 《Biochemistry》2008,47(33):8467-8469
Quinolinate synthase (NadA) catalyzes a unique condensation reaction between dihydroxyacetone phosphate and iminoaspartate, yielding inorganic phosphate, 2 mol of water, and quinolinic acid, a central intermediate in the biosynthesis of nicotinamide adenine dinucleotide and its derivatives. The enzyme from Escherichia coli contains a C (291)XXC (294)XXC (297) motif in its primary structure. Bioinformatics analysis indicates that only Cys297 serves as a ligand to a [4Fe-4S] cluster that is required for turnover. In this report, we show that the two remaining cysteines, Cys291 and Cys294, undergo reversible disulfide-bond formation, which regulates the activity of the enzyme. This mode of redox regulation of NadA appears physiologically relevant, since disulfide-bond formation and reduction are effected by oxidized and reduced forms of E. coli thioredoxin. A midpoint potential of -264 +/- 1.77 mV is approximated for the redox couple.  相似文献   

8.
Vertebrates possess two isozymes of adenylosuccinate synthetase. The acidic isozyme is similar to the synthetase from bacteria and plants, being involved in the de novo biosynthesis of AMP, whereas the basic isozyme participates in the purine nucleotide cycle. Reported here is the first instance of overexpression and crystal structure determination of a basic isozyme of adenylosuccinate synthetase. The recombinant mouse muscle enzyme purified to homogeneity in milligram quantities exhibits a specific activity comparable with that of the rat muscle enzyme isolated from tissue and K(m) parameters for GTP, IMP, and l-aspartate (12, 45, and 140 microm, respectively) similar to those of the enzyme from Escherichia coli. The mouse muscle and E. coli enzymes have similar polypeptide folds, differing primarily in the conformation of loops, involved in substrate recognition and stabilization of the transition state. Residues 65-68 of the muscle isozyme adopt a conformation not observed in any previous synthetase structure. In its new conformation, segment 65-68 forms intramolecular hydrogen bonds with residues essential for the recognition of IMP and, in fact, sterically excludes IMP from the active site. Observed differences in ligand recognition among adenylosuccinate synthetases may be due in part to conformational variations in the IMP pocket of the ligand-free enzymes.  相似文献   

9.
Mode of action of melinacidin, an inhibitor of nicotinic acid biosynthesis   总被引:3,自引:2,他引:1  
Melinacidin, a new antibacterial agent, blocked the synthesis of nicotinic acid and its amide in Bacillus subtilis cells. The inhibitory activity of the agent was reversed by nicotinic acid, its amide, or nicotinamide adenine dinucleotides, but not by l-kynurenine, l-3-hydroxykynurenine, l-hydroxyanthranilic acid, or quinolinic acid. These properties indicated that the antibiotic interferes with the conversion of quinolinic acid to nicotinate ribonucleotide by the enzyme quinolinate phosphoribosyl-transferase. However, the activity of a purified preparation of this enzyme derived from a Pseudomonas strain was not impaired by the antibiotic. This suggested that, in B. subtilis, melinacidin interferes with a reaction which occurs before the formation of quinolinic acid in the biosynthetic pathway leading to nicotinic acid. Failure of quinolinic acid to reverse melinacidin inhibition in B. subtilis cultures might be due to insufficient penetration of the cell membranes by quinolinate.  相似文献   

10.
Dihydroxy[3-14C]acetone phosphate was prepared enzymatically from [1-14C]glucose and used as a substrate in a partially purified quinolinate synthetase system prepared from Escherichia coli mutants. Carbon-by-carbon degradation of the resulting [14C]quinolinate showed that 96% of the 14C was located in carbon-4, indicating that carbon-3 of dihydroxyacetone phosphate condenses with carbon-3 of aspartate in quinolinate synthesis in E. coli.  相似文献   

11.
1. Methylglyoxal synthase was purified over 1500-fold from glycerol-grown Escherichia coli K 12 strain CA 244. The purified enzyme was inactivated by heat or proteolysis, had a molecular weight of approx. 67000, a pH optimum of 7.5 and was specific for dihydroxyacetone phosphate with K(m) 0.47mm. 2. The possibility that a Schiff-base intermediate was involved in the reaction mechanism was investigated but not confirmed. 3. The purified enzyme lost activity, especially at low temperature, but could be stabilized by P(i). Two binding sites for P(i) may be present on the enzyme. Of other compounds tested only the substrate, dihydroxyacetone phosphate, and bovine serum albumin showed any significant stabilizing effect. 4. Phosphoenolpyruvate, 3-phosphoglycerate, PP(i) and P(i) were potent inhibitors of the enzyme. Kinetic experiments showed that PP(i) was apparently a simple competitive inhibitor, but inhibition by the other compounds was more complex. In the presence of P(i) the enzyme behaved co-operatively, with at least three binding sites for dihydroxyacetone phosphate. 5. It is proposed that methylglyoxal synthase and glyceraldehyde 3-phosphate dehydrogenase play important roles in the catabolism of the triose phosphates in E. coli. Channelling of dihydroxyacetone phosphate via methylglyoxal would not be linked to ATP formation and could be involved in the uncoupling of catabolism and anabolism.  相似文献   

12.
The ability of niacin to relieve the growth-inhibiting effect of hyperoxia on Escherichia coli can be attributed to the dioxygen sensitivity of quinolinate synthetase. The activity of this enzyme within E. coli was diminished by exposure of the cells to 4.2 atm O2, while the activity in extracts was rapidly decreased by 0.2 atm O2. Neither catalase nor superoxide dismutase afforded detectable protection against the inactivating effect of O2, indicating that H2O2 and O2- were not significant intermediates in this process. Nevertheless, H2O2 at 1.0 mM did inactivate quinolinate synthetase, even under anaerobic conditions and in the absence of catalatic activity which might have generated O2. Addition of paraquat to aerobic cultures of E. coli caused an inactivation of quinolinate synthetase, which may be explained in terms of an increase in the production of H2O2. The O2-dependent inactivation of quinolinate synthetase in extracts was gradually reversed during anaerobic incubation and this reactivation was blocked by alpha, alpha'-dipyridyl or by 1,10-phenanthroline. The sequence of the quinolinate synthetase "A" protein contains a--cys-w-x-cys-y-z-cys--sequence, which is characteristic of (Fe-S)4-containing proteins. This sequence, together with the effect of the Fe(II)-chelating agents, suggests that the O2-sensitive site of quinolinate synthetase is an iron-sulfur cluster which is essential for the dehydration reaction catalyzed by the A protein.  相似文献   

13.
In order to explore the structure--function relationship of the Escherichia coli asparagine synthetase A it was necessary to devise a system for overexpression of the gene and purification of the gene product. The E. coli asparagine synthetase A structural gene was fused to the 3' end of the human carbonic anhydrase II structural gene and overexpressed in E. coli. The gene product, a 66 kDa fusion protein, which exhibited asparagine synthetase activity, was purified in a single step by affinity chromatography and used as the antigen for the production of monoclonal antibodies. The monoclonal antibodies were screened by ELISA. Colonies were chosen which were positive for purified fusion protein and negative for purified human carbonic anhydrase II. The E. coli asparagine synthetase A gene was then overexpressed and the gene product was used without purification for the final screen. The antibodies selected were used for immunoaffinity chromatography to purify the recombinant overexpressed E. coli asparagine synthetase A. Thus, a procedure is now available so that asparagine synthetase A can be purified to homogeneity in a single step.  相似文献   

14.
Human quinolinate phosphoribosyltransferase (EC 2.4.2.19) (hQPRTase) is a member of the type II phosphoribosyltransferase family involved in the catabolism of quinolinic acid (QA). It catalyses the formation of nicotinic acid mononucleotide from quinolinic acid, which involves a phosphoribosyl transfer reaction followed by decarboxylation. hQPRTase has been implicated in a number of neurological conditions and in order to study it further, we have carried out structural and kinetic studies on recombinant hQPRTase. The structure of the fully active enzyme overexpressed in Escherichia coli was solved using multiwavelength methods to a resolution of 2.0 A. hQPRTase has a alpha/beta barrel fold sharing a similar overall structure with the bacterial QPRTases. The active site of hQPRTase is located at an alpha/beta open sandwich structure that serves as a cup for the alpha/beta barrel of the adjacent subunit with a QA binding site consisting of three arginine residues (R102, R138 and R161) and two lysine residues (K139 and K171). Mutation of these residues affected substrate binding or abolished the enzymatic activity. The kinetics of the human enzyme are different to the bacterial enzymes studied, hQPRTase is inhibited competitively and non-competitively by one of its substrates, 5-phosphoribosylpyrophosphate (PRPP). The human enzyme adopts a hexameric arrangement, which places the active sites in close proximity to each other.  相似文献   

15.
After T4 bacteriophage infects Escherichia coli, a peptide tau, produced under the control of a phage gene, binds to the host valyl transfer ribonucleic acid synthetase (EC 6.1.1.9) and thereby changes several of its physicochemical properties. The interaction of tau with the host enzyme was investigated in vitro after extensively purifying the factor from T4-infected E. coli using a rapid purification procedure. The tau preparation migrated as a single, protein-staining band with a molecular weight of 11,000 during sodium dodecyl sulfate-gel electrophoresis. The purified peptide completely converted partially purified valyl-tRNA synthetase from uninfected E. coli into the form present in cell-free extracts prepared from virus-infected bacteria. The enzyme modified in vitro also exhibited the enhanced affinity for tRNA characteristic of the viral form of valyl-tRNA synthetase. The addition of bulk tRNA from E. coli B, tRNAVal, or tRNA1Val to enzyme modified in vitro increased its sedimentation rate to that of enzyme prepared from phage-infected cells. Amino acid analysis of the purified tau peptide revealed a relatively high concentration of the amino acids lysine and alanine, and a lack of detectable proline, tyrosine, phenylalanine, and methionine.  相似文献   

16.
Carbamoyl phosphate synthetase plays a key role in both pyrimidine and arginine biosynthesis by catalyzing the production of carbamoyl phosphate from one molecule of bicarbonate, two molecules of MgATP, and one molecule of glutamine. The enzyme from Escherichia coli consists of two polypeptide chains referred to as the small and large subunits, which contain a total of three separate active sites that are connected by an intramolecular tunnel. The small subunit harbors one of these active sites and is responsible for the hydrolysis of glutamine to glutamate and ammonia. The large subunit binds the two required molecules of MgATP and is involved in assembling the final product. Compounds such as L-ornithine, UMP, and IMP allosterically regulate the enzyme. Here, we report the three-dimensional structure of a site-directed mutant protein of carbamoyl phosphate synthetase from E. coli, where Cys 248 in the small subunit was changed to an aspartate. This residue was targeted for a structural investigation because previous studies demonstrated that the partial glutaminase activity of the C248D mutant protein was increased 40-fold relative to the wild-type enzyme, whereas the formation of carbamoyl phosphate using glutamine as a nitrogen source was completely abolished. Remarkably, although Cys 248 in the small subunit is located at approximately 100 A from the allosteric binding pocket in the large subunit, the electron density map clearly revealed the presence of UMP, although this ligand was never included in the purification or crystallization schemes. The manner in which UMP binds to carbamoyl phosphate synthetase is described.  相似文献   

17.
A gene encoding a quinolinate synthase has been identified in the hyperthermophilic archaeon Pyrococcus horikoshii via genome sequencing. The gene was overexpressed in Escherichia coli, and the crystal structure of the produced enzyme was determined to 2.0 A resolution in the presence of malate, a substrate analogue. The overall structure exhibits a unique triangular architecture composed of a 3-fold repeat of three-layer (alphabetaalpha) sandwich folding. Although some aspects of the fold homologous to the each domain have been observed previously, the overall structure of quinolinate synthase shows no similarity to any known protein structure. The three analogous domains are related to a pseudo-3-fold symmetry. The active site is located at the interface of the three domains and is centered on the pseudo-3-fold axis. The malate molecule is tightly held near the bottom of the active site cavity. The model of the catalytic state during the first condensation step of the quinolinate synthase reaction indicates that the elimination of inorganic phosphate from dihydroxyacetone phosphate may precede the condensation reaction.  相似文献   

18.
In the conversion of quinolinic acid to 6-hydroxypicolinic acid by whole cells of Alcaligenes sp. strain UK21, the enzyme reactions involved in the hydroxylation and decarboxylation of quinolinic acid were examined. Quinolinate dehydrogenase, which catalyzes the first step, the hydroxylation of quinolinic acid, was solubilized from a membrane fraction, partially purified, and characterized. The enzyme catalyzed the incorporation of oxygen atoms of H2O into the hydroxyl group. The dehydrogenase hydroxylated quinolinic acid and pyrazine-2,3-dicarboxylic acid to form 6-hydroxyquinolinic acid and 5-hydroxypyrazine-2,3-dicarboxylic acid, respectively. Phenazine methosulfate was the preferred electron acceptor for quinolinate dehydrogenase. 6-Hydroxyquinolinate decarboxylase, catalyzing the nonoxidative decarboxylation of 6-hydroxyquinolinic acid, was purified to homogeneity and characterized. The purified enzyme had a molecular mass of approximately 221 kDa and consisted of six identical subunits. The decarboxylase specifically catalyzed the decarboxylation of 6-hydroxyquinolinic acid to 6-hydroxypicolinic acid, without any co-factors. The N-terminal amino acid sequence was homologous with those of bacterial 4,5-dihydroxyphthalate decarboxylases.  相似文献   

19.
We have introduced the T4 thymidylate synthetase gene, resident in a 2.7-kilobase EcoRI restriction fragment, into an amplification plasmid, pKC30. By regulating expression of this gene from the phage lambda pL promoter within pKC30 in a thyA host containing a temperature-sensitive lambda repressor, the T4 synthetase could be amplified about 200-fold over that after T4 infection. At this stage, a 20-fold purification was required to obtain homogeneous enzyme, mainly by an affinity column procedure. The purified plasmid-amplified T4 synthetase appeared to be identical with the T2 phage synthetase purified from phage-infected Escherichia coli in molecular weight, amino end group analysis, and immunochemical reactivity. The individual nature of the phage and host proteins was revealed by the fact that neither the T2 nor the T4 enzyme reacted with antibody to the E. coli synthetase, nor did antibody to the phage enzymes react with the E. coli synthetase. These differences were corroborated by DNA hybridization experiments, which revealed the absence of apparent homology between the T4 and E. coli synthetase genes. The techniques and genetic constructions described support the feasibility of employing similar amplification methods to prepare highly purified thymidylate synthetases from other sources.  相似文献   

20.
M Birney  H D Um    C Klein 《Journal of bacteriology》1996,178(10):2883-2889
Low concentrations of ADP are shown to increase the rate of phosphoenzyme formation of E. coli succinyl-coenzyme A (CoA) synthetase (SCS) without altering the fraction of phosphorylated enzyme. This is true when either ATP or succinyl-CoA and Pi are used to phosphorylate the enzyme. The stimulatory effect of ADP is not altered by sample dilution, is retained upon partial purification of the enzyme, and reflects the binding of ADP to a site other than the catalytic site. GDP also alters the phosphorylation of the E. coli SCS but does so primarily by enhancing the level of the phosphoenzyme and only when ATP is used as the phosphate donor. GDP appears to function by neutralizing the action of a specific inhibitory protein. This inhibitor of SCS allows for interconversion of succinate and succinyl-CoA in a manner dissociated from changes in ATP-ADP metabolism. These previously unidentified and varied mechanisms by which SCS is regulated focus attention on this enzyme as an important control point in determining the cell's potential to meet its metabolic demands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号