首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effects of estrogen on neuronal growth and differentiation   总被引:2,自引:0,他引:2  
Previous work from our laboratory has shown that in cultures of hypothalamic neurons obtained from male fetuses at embryonic day 16 the axogenic response to estradiol (E2) is contingent upon culture with medium conditioned by astroglia from a target region for hypothalamic axons. E2 also induced increased levels of TrkB that were necessary for the axonal growth to occur. This convergence between estrogenic and neurotrophic signals prompted investigation of the mitogen activated protein kinase (MAPK) cascade. Analysis of the temporal course of MAPK activation showed increased levels of phosphorylated ERK up to 60 min after E2 exposure, with a maximal response at 5–15 min. UO126 (specific inhibitor of MEK 1/2) blocked E2 induced axonal elongation and ERK phosphorylation, confirming the involvement of ERK in the neuritogenic effect of E2. The membrane impermeable construct E2–BSA proved as effective as free E2 to induce axon elongation, suggesting that E2 exerted its effect through a membrane-associated receptor. This possibility received additional support from experiments showing that E2–BSA also increased ERK phosphorylation with the same time course than E2. These results indicate that ERK signaling is necessary for E2 to induce axon growth and this activation is mediated by a membrane bound estrogen receptor.  相似文献   

2.
3.
The neurotransmitter serotonin (5HT) possesses developmental functions in vertebrates and invertebrates. Rodent embryos express 5HT receptors even before neural development, but the role of this neurochemical seems to be particularly important during axonal morphogenesis and differentiation and in neural crest cell migration. Moreover, 5HT inhibitors are teratogenic in mammals, inducing brain and heart abnormalities. The aim of this study was to investigate the effects of nonphysiological concentrations of 5HT (5HT excess as well as deprivation) on developing rat neural cells using the micromass method. This simple and rapid micromass method allows the culture of mesencephalic cells capable of achieving and maintaining a significant degree of differentiation. Mesencephalic cells from 13 d post coitum (pc) rat were cultured and exposed to exogenous 5HT (1, 10, 50, or 100 microM) or to the specific 5HT2 receptor inhibitor mianserin (0.5, 5, 25, or 50 microM) during the whole culture period (5 d). The micromass morphology, the cytoskeletal organization, the pathological apoptosis, and the differentiative capability of cultured mesencephalic cells have been analyzed. The results show that 10-100 microM 5HT and 0.5-50 microM mianserin are able to disrupt the normal micromass morphology; 5HT and mianserin are unable to interfere with the cytoskeletal structures; mianserin (but not 5HT) induces pathological apoptosis on micromass cells at concentration levels of 0.5-50 microM; 5HT (but not mianserin) alters the neural differentiation at concentration levels of 10-100 microM. In conclusion, our results demonstrate that an excess of 5HT inhibits the capability of mesencephalic neurons to differentiate as shown by the alterations of the expression of the neuronal differentiative proteins glial-derived neurotrophic factor and Neu-N; on the other hand, the blocking of 5HT2 receptors induces apoptosis in differentiating neurons.  相似文献   

4.
With so many neutrophins and receptors now known, how is our picture of neurotrophism changing? Recent studies on knockout mice have confirmed our expectations of neurotrophin action in neuronal development. A notable exception is the activation of TrkB, on motor neurons, by an unknown ligand. It is also clear that some neurotrophins have diverse activities and influence early developmental stages. There are interesting new data concerning the role of p75, the low affinity neurotrophin receptor, as a modulator of neurotrophin activity. Even more exciting are new studies on glia-derived neurotrophic factor (GDNF) which demonstrate that this growth factor acts as a potential protector of motor neurons and striatal dopaminergic neurons.  相似文献   

5.
Gangliosides are implicated in neuronal development processes. The regulation of ganglioside levels is closely related to the induction of neuronal cell differentiation. In this study, the relationship between ganglioside expression and neuronal cell development was investigated using an in vitro model of neural differentiation from mouse embryonic stem (mES) cells. Daunorubicin (DNR) was applied to induce the expression of gangliosides in embryoid body (EB) (4+). We observed an increase in expression of gangliosides in all stages of EBs by treatment of DNR (2microM). High-performance thin-layer chromatography (HPTLC) showed that gangliosides GD3, GD1a, GT1b, and GQ1b increased in DNR-treated 7-day-old EB (4+) [EB (4+):7]. DNR treatment significantly increased the expression of gangliosides, especially GT1b and GQ1b in comparison to control cells. Interestingly, GQ1b co-localized with microtubule-associated protein 2 (MAP-2) expressing cells in DNR-treated EB (4+):7. The co-localization of GQ1b and MAP-2 was found in neurite-bearing cells in DNR-treated 15-day-old EB (4+) [EB (4+):15], whereas no significant expression of GQ1b and less neurite formation were observed in untreated control. Also, the expression of synaptophysin and NF200, both neuronal markers associated with neruites, was increased by DNR treatment. These results demonstrate that DNR increases expression of gangliosides, especially GQ1b, in differentiating neuronal cells. Further, neurite-bearing neuronal cell differentiation can be facilitated by DNR, possibly through the induction of gangliosides. Thus, the present data suggest that DNR is beneficial for facilitating neuronal differentiation from ES cells and among the gangliosides analyzed in the present study, GQ1b is mainly involved in neurite formation.  相似文献   

6.
Summary During mouse brain maturation cellular transglutaminase specific activity increases 2.5 fold from day 3 to adulthood. A more pronounced increase is seen during morphological differentiation of mouse neuroblastoma cells, where serum withdrawal induces neurite outgrowth concomitant with a 10 fold increase in transglutaminase specific activity. In contrast, non-dividing neuroblastoma cells lacking neurites show only a 1.5 fold increase in enzyme specific activity. Transglutaminase activity does not reach maximal levels until extensive neurite formation has occurred. More than 80% of the transglutaminase activity is found in the soluble component of brain and neuroblastoma homogenates. Using [3H]-putrescine as the acyl acceptor, endogenous acyl donor substrates in the neuroblastoma cells included proteins that comigrated on SDS-PAGE with tubulin and actin; however, very high molecular weight crosslinked material is the major reaction product in vitro. When purified brain tubulin, microtubule associated proteins and microtubules were compared as exogenous substrates, only the polymeric microtubules were a good acyl donor substrate. Furthermore, preincubation of purified tubulin with transglutaminase and putrescine stimulated both the rate and extent of microtubule assembly. These findings suggest that transglutaminase may mediate covalent cross-linking of microtubules to other cellular components, or the post-translational modification of tubulin by the formation of -glutamylamines.  相似文献   

7.
During embryonic growth, tissue interactions between dissimilar cells are the driving forces of morphogenesis. Although their importance has been well known for over the past 50 years, the molecular background of these interactions has remained unelucidated. The unrecognized heterogeneity of those mesenchymal cells that are involved in the epithelio-mesenchymal tissue interactions may be one reason for this. For example, studies of kidney differentiation show that the metanephric organ rudiment contains more cell-lines than previously thought. Identification of both neural crest- and mesoderm-derived cells in the nephrogenic mesenchyme helps in re-evaluating the biology of the tubule induction. The neural crest-derived cells of the nephric rudiment differentiate into neuronal cells, and later during differentiation some of them are found in the stroma. There is also experimental evidence for the role of these neuronal cells in the morphogenetic tissue interaction.  相似文献   

8.
Using the GD3-specific mAb R24 we demonstrate by immunohistochemistry that the first embryonic cells of chicken expressing GD3 represent heavily proliferating cells of mesodermal origin (mesenchymal stem and endothelial cells). At this developmental stage (E1-1.5) neuroectodermal cells of the forming neural tube are not stained by R24 or any other available anti-ganglioside antibodies. These cells of the neural tube start to express GD3 at around E1.5 in parallel with increasing proliferative activity. Likewise proliferating and migrating neuronal crest derivates as well as undifferentiated retinal cells, the forming lens and otic placodes increasingly express GD3 in an organ-specific pattern following the spatiotemporal increase in mitotic activity. Immunostaining of GD1b (mAb D21b) or c-pathway polysialogangliosides (mAb Q211) is not obtained before E2.5, is nervous tissue specific and restricted to "new-born" neurons, which start to migrate and form first neurites. This striking change in ganglioside synthesis and expression also occurs in primary cell cultures (after or without previous Q211-mediated complement kill of neurons) during differentiation of mitotic progenitor cells to neurons (neurogenesis). In cell culture, the fluorescence staining is evenly distributed over the whole neuronal surface including filopodia at the growth cones. Monensin (10(-8) M) prevents expression of GD1b and c-polysialogangliosides and simultaneously differentiation of neuronal morphology (neurogenesis). The presence of exogenous gangliosides from bovine brain leads to a decrease of the monensin effect or even abolishes it.  相似文献   

9.
10.
11.
12.
Neuronal differentiation is characterized by neuritogenesis and neurite outgrowth, processes, which are critically dependent on membrane biosynthesis, and therefore, on the expression and regulation of enzymes involved in phospholipid biosynthesis. During the last decade a great effort was made to clarify where membrane lipids are synthesized, how the newly synthesized membrane components reach the membrane and are inserted during neuritogenesis and to elucidate the mechanism by which the supply of new membrane components is coordinated with the demand for growth. Phosphatidylcholine is the principal and essential component for mammalian membranes. This review updates the mechanism by which phosphatidylcholine biosynthesis takes place and how it is coordinately regulated during neuronal differentiation.  相似文献   

13.
Chitosan is now being widely used biomaterial in the tissue engineering field, and has great potential as a candidate material for preparing nerve guidance conduits due to its various favorable properties, especially that of good nerve cell affinity. Chitosan can be degraded in vivo into chitooligosaccharide. We have investigated the in vitro effects of chitooligosaccharide on neuronal differentiation of PC-12 cells to see what effects chitooligosaccharide have on certain functions in the regenerating neurons. The morphologic observation and assessment using the specific reagent of tetrazolium salt WST-8 indicated that neurite outgrowths from PC-12 cells and the viability of PC-12 cells were enhanced by treatment of chitooligosaccharide. The real-time quantitative RT-PCR and Western blot analysis revealed showed that chitooligosaccharide could upregulate the expression of neurofilament-H mRNA or protein and N-cadherin protein in PC-12 cells. The maximum effect of 0.1 mg/ml chitooligosaccharide was obtained after 2 week culture. All the data suggest that chitooligosaccharide possesses good nerve cell affinity by supporting nerve cell adhesion and promoting neuronal differentiation and neurite outgrowth.  相似文献   

14.
15.
Lovastatin blocks N-ras oncogene-induced neuronal differentiation   总被引:1,自引:0,他引:1  
ras p21 must be posttranslationally processed in order to be localized to the inner plasma membrane. The first obligatory processing step is the farnesylation of ras p21. Lovastatin, a competitive inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase, may prevent the farnesylation of de novo synthesized ras p21. We demonstrate that N-ras oncogene-induced neuronal differentiation of UR61J rat pheochromocytoma cells is blocked by lovastatin. Our data show that this effect is due to the inhibition of ras p21 farnesylation. The results suggest that ras oncogene-induced phenotype in mammalian cells may be eliminated by preventing the proper processing of ras p21.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号