首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Initiation of symbiotic nodules in legumes requires cytokinin signaling, but its mechanism of action is largely unknown. Here, we tested whether the failure to initiate nodules in the Medicago truncatula cytokinin perception mutant cre1 (cytokinin response1) is due to its altered ability to regulate auxin transport, auxin accumulation, and induction of flavonoids. We found that in the cre1 mutant, symbiotic rhizobia cannot locally alter acro- and basipetal auxin transport during nodule initiation and that these mutants show reduced auxin (indole-3-acetic acid) accumulation and auxin responses compared with the wild type. Quantification of flavonoids, which can act as endogenous auxin transport inhibitors, showed a deficiency in the induction of free naringenin, isoliquiritigenin, quercetin, and hesperetin in cre1 roots compared with wild-type roots 24 h after inoculation with rhizobia. Coinoculation of roots with rhizobia and the flavonoids naringenin, isoliquiritigenin, and kaempferol, or with the synthetic auxin transport inhibitor 2,3,5,-triiodobenzoic acid, rescued nodulation efficiency in cre1 mutants and allowed auxin transport control in response to rhizobia. Our results suggest that CRE1-dependent cytokinin signaling leads to nodule initiation through the regulation of flavonoid accumulation required for local alteration of polar auxin transport and subsequent auxin accumulation in cortical cells during the early stages of nodulation.  相似文献   

2.
We examined the timing and location of several early root responses to Rhizobium leguminosarum bv. trifolii infection, compared with a localized addition of cytokinin in white clover, to study the role of cytokinin in early signaling during nodule initiation. Induction of ENOD40 expression by either rhizobia or cytokinin was similar in timing and location and occurred in nodule progenitor cells in the inner cortex. Inoculation of rhizobia in the mature root failed to induce ENOD40 expression and cortical cell divisions (ccd). Nitrate addition at levels repressing nodule formation inhibited ENOD40 induction by rhizobia but not by cytokinin. ENOD40 expression was not induced by auxin, an auxin transport inhibitor, or an ethylene precursor. In contrast to rhizobia, cytokinin addition was not sufficient to induce a modulation of the auxin flow, the induction of specific chalcone synthase genes, and the accumulation of fluorescent compounds associated with nodule initiation. However, cytokinin addition was sufficient for the localized induction of auxin-induced GH3 gene expression and the initiation of ccd. Our results suggest that rhizobia induce cytokinin-mediated events in parallel to changes in auxin-related responses during nodule initiation and support a role of ENOD40 in regulating ccd. We propose a model for the interactions of cytokinin with auxin, ENOD40, flavonoids, and nitrate during nodulation.  相似文献   

3.
Long-distance auxin transport was examined in Medicago truncatula and in its supernodulating mutant sunn (super numeric nodules) to investigate the regulation of auxin transport during autoregulation of nodulation (AON). A method was developed to monitor the transport of auxin from the shoot to the root in whole seedlings. Subsequently, the transport was monitored after inoculation of roots with the nodulating symbiont Sinorhizobium meliloti. The sunn mutant showed an increased amount of auxin transported from the shoot to the root compared to the wild type. The auxin transport capacity of excised root segments was similar in wild type and sunn, suggesting that the difference in long-distance auxin transfer between them is due to loading in the shoot. After inoculation, wild-type seedlings showed decreased auxin loading from the shoot to the root; however, the sunn mutant failed to reduce the amount of auxin loaded. The time of reduced auxin loading correlated with the onset of AON. Quantification of endogenous auxin levels at the site of nodule initiation showed that sunn contained three times more auxin than wild type. Inoculation of sunn failed to reduce the level of auxin within 24 h, as was observed in the wild type. We propose a model for the role of auxin during AON of indeterminate legumes: 1) high levels of endogenous auxin are correlated with increased numbers of nodules, 2) inoculation of roots reduces auxin loading from the shoot to the root, and 3) subsequent reduction of auxin levels in the root inhibits further nodule initiation.  相似文献   

4.
We report the isolation and characterization of a new Medicago truncatula hyper-nodulation mutant, designated sunn (super numeric nodules). Similar to the previously described ethylene-insensitive mutant sickle, sunn exhibits a 10-fold increase in the number of nodules within the primary nodulation zone. Despite this general similarity, these two mutants are readily distinguished based on anatomical, genetic, physiological, and molecular criteria. In contrast to sickle, where insensitivity to ethylene is thought to be causal to the hyper-nodulation phenotype (R.V. Penmetsa, D.R. Cook [1997] Science 275: 527-530), nodulation in sunn is normally sensitive to ethylene. Nevertheless, sunn exhibits seedling root growth that is insensitive to ethylene, although other aspects of the ethylene triple response are normal; these observations suggest that hormonal responses might condition the sunn phenotype in a manner distinct from sickle. The two mutants also differ in the anatomy of the nodulation zone: Successful infection and nodule development in sunn occur predominantly opposite xylem poles, similar to wild type. In sickle, however, both infection and nodulation occur randomly throughout the circumference of the developing root. Genetic analysis indicates that sunn and sickle correspond to separate and unlinked loci, whereas the sunn/skl double mutant exhibits a novel and additive super-nodulation phenotype. Taken together, these results suggest a working hypothesis wherein sunn and sickle define distinct genetic pathways, with skl regulating the number and distribution of successful infection events, and sunn regulating nodule organogenesis.  相似文献   

5.
Jin J  Watt M  Mathesius U 《Plant physiology》2012,159(1):489-500
We tested whether a gene regulating nodule number in Medicago truncatula, Super Numeric Nodules (SUNN ), is involved in root architecture responses to carbon (C) and nitrogen (N) and whether this is mediated by changes in shoot-to-root auxin transport. Nodules and lateral roots are root organs that are under the control of nutrient supply, but how their architecture is regulated in response to nutrients is unclear. We treated wild-type and sunn-1 seedlings with four combinations of low or increased N (as nitrate) and C (as CO(2)) and determined responses in C/N partitioning, plant growth, root and nodule density, and changes in auxin transport. In both genotypes, nodule density was negatively correlated with tissue N concentration, while only the wild type showed significant correlations between N concentration and lateral root density. Shoot-to-root auxin transport was negatively correlated with shoot N concentration in the wild type but not in the sunn-1 mutant. In addition, the ability of rhizobia to alter auxin transport depended on N and C treatment as well as the SUNN gene. Nodule and lateral root densities were negatively correlated with auxin transport in the wild type but not in the sunn-1 mutant. Our results suggest that SUNN is required for the modulation of shoot-to-root auxin transport in response to altered N tissue concentrations in the absence of rhizobia and that this controls lateral root density in response to N. The control of nodule density in response to N is more likely to occur locally in the root.  相似文献   

6.
7.
Ethylene has been hypothesised to be a regulator of root nodule development in legumes, but its molecular mechanisms of action remain unclear. The skl mutant is an ethylene-insensitive legume mutant showing a hypernodulation phenotype when inoculated with its symbiont Sinorhizobium meliloti. We used the skl mutant to study the ethylene-mediated protein changes during nodule development in Medicago truncatula. We compared the root proteome of the skl mutant to its wild-type in response to the ethylene precursor aminocyclopropane carboxylic acid (ACC) to study ethylene-mediated protein expression in root tissues. We then compared the proteome of skl roots to its wild-type after Sinorhizobium inoculation to identify differentially displayed proteins during nodule development at 1 and 3 days post inoculation (dpi). Six proteins (pprg-2, Kunitz proteinase inhibitor, and ACC oxidase isoforms) were down-regulated in skl roots, while three protein spots were up-regulated (trypsin inhibitor, albumin 2, and CPRD49). ACC induced stress-related proteins in wild-type roots, such as pprg-2, ACC oxidase, proteinase inhibitor, ascorbate peroxidase, and heat-shock proteins. However, the expression of stress-related proteins such as pprg-2, Kunitz proteinase inhibitor, and ACC oxidase, was down-regulated in inoculated skl roots. We hypothesize that during early nodule development, the plant induces ethylene-mediated stress responses to limit nodule numbers. When a mutant defective in ethylene signaling, such as skl, is inoculated with rhizobia, the plant stress response is reduced, resulting in increased nodule numbers.  相似文献   

8.
To overcome nitrogen deficiency, legume roots establish symbiotic interactions with nitrogen-fixing rhizobia that are fostered in specialized organs (nodules). Similar to other organs, nodule formation is determined by a local maximum of the phytohormone auxin at the primordium site. However, how auxin regulates nodule development remains poorly understood. Here, we found that in soybean, (Glycine max), dynamic auxin transport driven by PIN-FORMED (PIN) transporter GmPIN1 is involved in nodule primordium formation. GmPIN1 was specifically expressed in nodule primordium cells and GmPIN1 was polarly localized in these cells. Two nodulation regulators, (iso)flavonoids trigger expanded distribution of GmPIN1b to root cortical cells, and cytokinin rearranges GmPIN1b polarity. Gmpin1abc triple mutants generated with CRISPR-Cas9 showed the impaired establishment of auxin maxima in nodule meristems and aberrant divisions in the nodule primordium cells. Moreover, overexpression of GmPIN1 suppressed nodule primordium initiation. GmPIN9d, an ortholog of Arabidopsis thaliana PIN2, acts together with GmPIN1 later in nodule development to acropetally transport auxin in vascular bundles, fine-tuning the auxin supply for nodule enlargement. Our findings reveal how PIN-dependent auxin transport modulates different aspects of soybean nodule development and suggest that the establishment of auxin gradient is a prerequisite for the proper interaction between legumes and rhizobia.

In soybean, nodule primordium formation involves GmPIN1-mediated polar auxin transport within primordium cells, and nodule enlargement involves the collaboration of GmPIN9d and GmPIN1-dependent auxin transport within nodule vasculature.  相似文献   

9.
We used proteome analysis to identify proteins induced during nodule initiation and in response to auxin in Medicago truncatula. From previous experiments, which found a positive correlation between auxin levels and nodule numbers in the M. truncatula supernodulation mutant sunn (supernumerary nodules), we hypothesized (1) that auxin mediates protein changes during nodulation and (2) that auxin responses might differ between the wild type and the supernodulating sunn mutant during nodule initiation. Increased expression of the auxin response gene GH3:beta-glucuronidase was found during nodule initiation in M. truncatula, similar to treatment of roots with auxin. We then used difference gel electrophoresis and tandem mass spectrometry to compare proteomes of wild-type and sunn mutant roots after 24 h of treatment with Sinorhizobium meliloti, auxin, or a control. We identified 131 of 270 proteins responding to treatment with S. meliloti and/or auxin, and 39 of 89 proteins differentially displayed between the wild type and sunn. The majority of proteins changed similarly in response to auxin and S. meliloti after 24 h in both genotypes, supporting hypothesis 1. Proteins differentially accumulated between untreated wild-type and sunn roots also showed changes in auxin response, consistent with altered auxin levels in sunn. However, differences between the genotypes after S. meliloti inoculation were largely not due to differential auxin responses. The role of the identified candidate proteins in nodule initiation and the requirement for their induction by auxin could be tested in future functional studies.  相似文献   

10.
Ferguson BJ  Ross JJ  Reid JB 《Plant physiology》2005,138(4):2396-2405
The initiation and development of legume nodules induced by compatible Rhizobium species requires a complex signal exchange involving both plant and bacterial compounds. Phytohormones have been implicated in this process, although in many cases direct evidence is lacking. Here, we characterize the root and nodulation phenotypes of various mutant lines of pea (Pisum sativum) that display alterations in their phytohormone levels and/or perception. Mutants possessing root systems deficient in gibberellins (GAs) or brassinosteroids (BRs) exhibited a reduction in nodule organogenesis. The question of whether these reductions represent direct or indirect effects of the hormone deficiency is addressed. For example, the application of GA to the roots of a GA-deficient mutant completely restored its number of nodules to that of the wild type. Grafting studies revealed that a wild-type shoot or root also restored the nodule number of a GA-deficient mutant. These findings suggest that GAs are required for nodulation. In contrast, the shoot controlled the number of nodules that formed in graft combinations of a BR-deficient mutant and its wild type. The root levels of auxin and GA were similar among these latter graft combinations. These results suggest that BRs influence a shoot mechanism that controls nodulation and that the root levels of auxin and GA are not part of this process. Interestingly, a strong correlation between nodule and lateral root numbers was observed in all lines assessed, consistent with a possible overlap in the early developmental pathways of the two organs.  相似文献   

11.
The enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase converts ACC, a precursor of the plant hormone ethylene, into ammonia and ??-ketobutyrate. ACC deaminase is widespread among the rhizobia in which it might play a crucial role in protecting rhizobia against inhibitory effects of ethylene synthesized by the host plant in response to the nodulation process. The beneficial action of this enzyme was demonstrated in several rhizobia such as Mesorhizobium loti and Rhizobium leguminosarum where knock-out mutants of the ACC deaminase gene showed nodulation defects. The genome of the slow-growing rhizobial species Bradyrhizobium japonicum also carries an annotated gene for a putative ACC deaminase (blr0241). Here, we tested the possible importance of this enzyme in B. japonicum by constructing an insertion mutant of blr0241 and studying its phenotype. First, the activity of ACC deaminase itself was measured. Unlike the B. japonicum wild type, the blr0241 mutant did not show any enzymatic activity. By contrast, the mutant was not impaired in its ability to nodulate soybean, cowpea, siratro, and mungbean. Likewise, symbiotic nitrogen fixation activity remained unaffected. Furthermore, a co-inoculation assay with the B. japonicum wild type and the blr0241 mutant for soybean and siratro nodulation revealed that the mutant was not affected in its competitiveness for nodulation and nodule occupation. The results show that the role previously ascribed to ACC deaminase in the rhizobia cannot be generalized, and species-specific differences may exist.  相似文献   

12.
13.
Leaf explants of Medicago truncatula were used to investigate the origins of auxin-induced root formation. On the application of auxin there is some callus formation (not the massive amount that occurs in response to auxin plus cytokinin) and roots appear shortly after the first visible callus. Histological examination reveals morphologically distinctive sheets of callus cells that emanate from the veins of the leaf explants and, within this cell type, root primordia are produced as well as some vascular tissue cells. What is suggested is that the vein-derived cells (VDCs) are procambial-like and function as pluripotent stem cells with a propensity to form root meristems or vascular tissues in response to added auxin. The development of root primordia from these pluripotent cells was clearly up-regulated by the use of the sickle (skl) mutant, which is a mutant impaired in ethylene signal transduction while the wild type and the sunn mutant, defective in auxin polar transport, produced similar numbers of roots. The skl mutant in generating many more roots concomitantly formed fewer vascular tissues. The root meristems differentiate similarly to normal roots producing a central cylinder of vascular tissue, which connects with the leaf explant veins. The VDCs appear to be derived from the cells of or near the phloem. The leaf observations suggest that a pool of stem cells exist in vascular tissue that, in combination with auxin and perhaps other factors, drive a diversity of plant development outcomes that is species specific. The way auxin interacts with other hormones is a key factor in determining the stem cell fate. The histological data in this study also assist in the interpretation of the molecular analysis of auxin-induced root formation in cultured leaves of M. truncatula.  相似文献   

14.
The mechanism of host-symbiont recognition in the soybean-Rhizobium symbiosis was investigated utilizing mutants of R. japonicum defective in nodulation. Soybeans were grown in clear plastic growth pouches allowing the identification of the area on the root most susceptible to Rhizobium nodulation; the area between the root tip (RT) and smallest emergent root hair (SERH). The location of nodules in relation to this developing zone is an indication of the rate of nodule initiation. Nodules were scored as to the distance from the RT mark made at the time of inoculation. Seventy-eight per cent of the plants nodulate above the RT mark when inoculated with the wild type R. japonicum strain 3I1b110 with the average distance of the uppermost nodule being approximately 2 millimeters above the RT mark. These data indicate that the wild type strain initiates nodulation rapidly within the RT-SERH zone following inoculation. However, inoculation with the slow-to-nodulate mutant strain HS111 resulted in 100% of the plants nodulating only below the RT mark with the average distance of the uppermost nodule being approximately 56 millimeters below the RT mark. Thus, mutant strain HS111 is defective in the ability to rapidly initiate infection leading to nodulation within the RT-SERH zone. The location of the nodules suggest that stain HS111 must `adapt' to the root environment before nodulation can occur. To test this, strain HS111 was incubated in soybean root exudate prior to inoculation. In this case, 68% of the plants nodulated above the RT mark with the average distance of the uppermost nodule being approximately 1 millimeter below the RT mark. Experiments indicated that the change in nodule initiation by strain HS111 brought about by incubation in soybean root exudate was due to a phenotypic, rather than a genotypic change. The half-time of root exudate incubation for strain HS111 necessary for optimal nodulation enhancement was less than 6 hours. Heat sensitivity and trypsin sensitivity of the nodulation enhancement factor(s) in soybean root exudate indicate a protein was involved in the reversal of the delay in nodulation by mutant strain HS111.  相似文献   

15.
A. Schikora  W. Schmidt 《Protoplasma》2001,218(1-2):67-75
Summary Root hair formation and the development of transfer cells in the rhizodermis was investigated in various existing auxinrelated mutants ofArabidopsis thaliana and in the tomato mutantdiageotropica. Wild-type Arabidopsis plants showed increased formation of root hairs when the seedlings were cultivated in Fe- or P-free medium. These extranumerary hairs were located in normal positions and in positions normally occupied by nonhair cells, e.g., over periclinal walls of underlying cortical cells. Defects in auxin transport or reduced auxin sensitivity inhibited the formation of root hairs in response to Fe deficiency completely but did only partly affect initiation and elongation of hairs in P-deficient roots. Application of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid or the auxin analog 2,4-dichlorophenoxyacetic acid did not rescue the phenotype of the auxin-resistantaxr2 mutant under control and Fe-deficient conditions, indicating that functionalAXR2 product is required for translating the Fe deficiency signal into the formation of extra hairs. The development of extra hairs inaxr2 roots under P-replete conditions was not affected by auxin antagonists, suggesting that this process is independent of auxin signaling. In roots of tomato, growth under Fe-deficient conditions induced the formation of transfer cells in the root epidermis. Transfer cell frequency was enhanced by application of 2,4-dichlorophenoxyacetic acid but was not inhibited by the auxin transport inhibitor N-1-naphthylphthalamic acid. In thediageotropica mutant, which displays reduced sensitivity to auxin, transfer cells appeared to develop in both Fe-sufficient and Fe-deficient roots. Similar to the wild type, no reduction in transfer cell frequency was observed after application of the above auxin transport inhibitor. These data suggest that auxin has no primary function in inducing transfer cell development; the formation of transfer cells, however, appears to be affected by the hormonal balance of the plants.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - TIBA triiodobenzoic acid - NPA N-1-naphthylphthalamic acid - STS silver thiosulfate  相似文献   

16.
We isolated a recessive symbiotic mutant of Lotus japonicus that defines a genetic locus, LOT1 (for low nodulation and trichome distortion). The nodule number per plant of the mutant was about one-fifth of that of the wild type. The lot1 mutant showed a moderate dwarf phenotype and distorted trichomes, but its root hairs showed no apparent differences to those of the wild type. Infection thread formation after inoculation of Mesorhizobium loti was repressed in lot1 compared to that in the wild type. The nodule primordia of lot1 did not result in any aborted nodule-like structure, all nodules becoming mature and exhibiting high nitrogen fixation activity. The mutant was normally colonized by mycorrhizal fungi. lot1 also showed higher sensitivity to nitrate than the wild type. The grown-up seedlings of lot1 were insensitive to any ethylene treatments with regard to nodulation, although the mutant showed normal triple response on germination. It is conceivable that a nodulation-specific ethylene signaling pathway is constitutively activated in the mutant. Grafting experiments with lot1 and wild-type seedlings suggested that the root genotype mainly determines the low nodulation phenotype of the mutant, while the trichome distortion is regulated by the shoot genotype. Grafting of har1-4 shoots to lot1 roots resulted in an intermediate nodule number, i.e. more than that of lot1 and less than that of har1-4. Putative double mutants of lot1 and har1 also showed intermediate nodulation. Thus, it was indicated that LOT1 is involved in a distinct signal transduction pathway independent of HAR1.  相似文献   

17.

Background and Aims

Transgenics are used to demonstrate a causal relationship between ethylene insensitivity of a seedling legume plant, the level of ethylene receptor gene expression, lateral root growth and Mesorhizobium loti-induced nodule initiation.

Methods

Lotus japonicus plants expressing the dominant etr1-1 allele of the Arabidopsis thaliana gene encoding a well-characterized mutated ethylene receptor were created by stable Agrobacterium tumefaciens transformation. Single insertion, homozygous lines were characterized for symbiotic properties.

Key Results

Transgenic plants were ethylene insensitive as judged by the lack of the ‘Triple Response’, and their continued ability to grow and nodulate in the presence of inhibitory concentrations of ACC (1-aminocyclopropane-1-carboxylic acid; an ethylene precursor). Transgenic plants with high insensitivity to ACC had significantly fewer lateral roots and exhibited increased nodulation while showing no altered nitrate sensitivity or lack of systemic autoregulation. Whereas ACC-insensitive shoot growth and nodulation were observed in transformants, root growth was inhibited similarly to the wild type. Increased nodulation was caused by increased infection and a seven-fold increase in nodules developing between xylem poles. Bacteroid numbers per symbiosome increased about 1·7-fold in ethylene-insensitive plants.

Conclusions

The study further demonstrates multiple roles for ethylene in nodule initiation by influencing root cell infections and radial positioning, independent of autoregulation and nitrate inhibition of nodulation.Key words: Ethylene insensitivity, Lotus japonicus, symbiosis, phytohormone, nodulation, signal transduction  相似文献   

18.
Although mineral nitrogen generally has negative effects on nodulation in legume–rhizobia symbioses, low concentrations of ammonium stimulate nodulation in some legumes. In this study, the effects of ammonium and nitrate on growth, nodulation and expression of 2 nitrogen transport and 12 putative nodulation-related genes of the model symbiosis of Medicago truncatula – Sinorhizobium meliloti are investigated. After 3 weeks of hydroponic growth, whole-plant nodulation was enhanced in all the ammonium treatments and up to three-fold in the 0.5 m M treatment compared with the zero-nitrogen control. Specific nodulation (nodules g−1 root dry weight) was greatly stimulated in the 0.1 and 0.5 m M     treatments, to a lower extent in the 0.1 m M     treatment, and inhibited in all other treatments. Expression of the 14 selected genes was observed at 0, 6, 12 and 24 h after exposure to rhizobia and nitrogen. Expression of nitrogen transporter genes increased significantly, but responses of the three genes putatively associated with symbiosis signaling/nodule initiation were mixed. There were infrequent responses of genes coding for an ABA-activated protein kinase or a gibberellin-regulated protein, but an ethylene-responsive element-binding factor showed increased expression in various treatments and sampling times. Three auxin-responsive genes and three cytokinin-responsive genes showed varied responses to ammonium and nitrate. This study indicates that low concentrations of ammonium stimulate nodulation in M. truncatula , but the data were inconclusive in verifying the hypothesis that a relatively high ratio of cytokinin to auxin in roots may be an underlying mechanism in this stimulation of nodulation.  相似文献   

19.
20.
In this study we investigated the role of ethylene in the formation of lateral and adventitious roots in tomato ( Solanum lycopersicum ) using mutants isolated for altered ethylene signaling and fruit ripening. Mutations that block ethylene responses and delay ripening – Nr ( Never ripe ), gr ( green ripe ), nor ( non ripening ), and rin ( ripening inhibitor ) – have enhanced lateral root formation. In contrast, the epi ( epinastic ) mutant, which has elevated ethylene and constitutive ethylene signaling in some tissues, or treatment with the ethylene precursor 1-aminocyclopropane carboxylic acid (ACC), reduces lateral root formation. Treatment with ACC inhibits the initiation and elongation of lateral roots, except in the Nr genotype. Root basipetal and acropetal indole-3-acetic acid (IAA) transport increase with ACC treatments or in the epi mutant, while in the Nr mutant there is less auxin transport than in the wild type and transport is insensitive to ACC. In contrast, the process of adventitious root formation shows the opposite response to ethylene, with ACC treatment and the epi mutation increasing adventitious root formation and the Nr mutation reducing the number of adventitious roots. In hypocotyls, ACC treatment negatively regulated IAA transport while the Nr mutant showed increased IAA transport in hypocotyls. Ethylene significantly reduces free IAA content in roots, but only subtly changes free IAA content in tomato hypocotyls. These results indicate a negative role for ethylene in lateral root formation and a positive role in adventitious root formation with modulation of auxin transport as a central point of ethylene–auxin crosstalk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号