首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protein aggregation underlies a wide range of human disorders. The polypeptides involved in these pathologies might be intrinsically unstructured or display a defined 3D-structure. Little is known about how globular proteins aggregate into toxic assemblies under physiological conditions, where they display an initially folded conformation. Protein aggregation is, however, always initiated by the establishment of anomalous protein-protein interactions. Therefore, in the present work, we have explored the extent to which protein interaction surfaces and aggregation-prone regions overlap in globular proteins associated with conformational diseases. Computational analysis of the native complexes formed by these proteins shows that aggregation-prone regions do frequently overlap with protein interfaces. The spatial coincidence of interaction sites and aggregating regions suggests that the formation of functional complexes and the aggregation of their individual subunits might compete in the cell. Accordingly, single mutations affecting complex interface or stability usually result in the formation of toxic aggregates. It is suggested that the stabilization of existing interfaces in multimeric proteins or the formation of new complexes in monomeric polypeptides might become effective strategies to prevent disease-linked aggregation of globular proteins.  相似文献   

2.
3.
The death-effector domain (DED) is a critical protein interaction domain that recruits caspases into complexes with members of the TNF-receptor superfamily. Apoptosis can also be induced by expressing certain DED-containing proteins without surface receptor cross-linking. Using Green Fluorescent Protein to examine DED-containing proteins in living cells, we show that these proteins cause apoptosis by forming novel cytoplasmic filaments that recruit and activate pro-caspase zymogens. Formation of these filaments, which we term death-effector filaments, was blocked by coexpression of viral antiapoptotic DED-containing proteins, but not by bcl-2 family proteins. Thus, formation of death-effector filaments allows a regulated intracellular assembly of apoptosis-signaling complexes that can initiate or amplify apoptotic stimuli independently of receptors at the plasma membrane.  相似文献   

4.
5.
6.
Solid-state nmr spectroscopy provides a robust method for investigating polypeptides that have been prepared by chemical synthesis and that are immobilized by strong interactions with solid surfaces or large macroscopic complexes. Solid-state nmr spectroscopy has been widely used to investigate membrane polypeptides or peptide aggregates such as amyloid fibrils. Whereas magic angle spinning solid-state nmr spectroscopy allows one to measure distances and dihedral angles with high accuracy, static membrane samples that are aligned with respect to the magnetic field direction allow one to determine the secondary structure of bound polypeptides and their orientation with respect to the bilayer normal. Peptide dynamics and the effect of polypeptides on the macroscopic phase preference of phospholipid membranes have been investigated in nonoriented samples. Investigations of the structure and topology of membrane channels, peptide antibiotics, signal sequences as well as model systems that allow one to dissect the interaction contributions in phospholipid membranes will be presented in greater detail.  相似文献   

7.
8.
To catalog polypeptides that were specific to developing hearts, we separated 35S-methionine-labeled 9.5 day mouse embryos into cardiac and noncardiac (carcass) components. Two-dimensional gels were then used to analyze the polypeptides synthesized in these two fractions. As a result, we were able to distinguish polypeptides that were specific to or increased in the heart as well as those polypeptides that were specific to or increased in the embryo minus the dissected heart. Using this analysis, there were two polypeptides that were cardiac-specific and 17 that were expressed at increased levels by at least twofold in the heart. The cardiac-specific polypeptides may be used in further studies to identify early cardiac tissue. Conversely, there were 26 polypeptides unique to noncardiac structures and an additional 15 that were increased in the carcass more than twofold relative to the heart. The noncardiac-specific polypeptides may be used to define contamination of putative cardiac tissue with noncardiac material. Two of the polypeptides expressed more abundantly in the carcass appeared to correspond to known proteins in the mouse fibroblast database, cyclin and tropomyosin 4. Thus the heart at 9.5 days of murine development can be distinguished readily from the remainder of the embryonic mouse both macroscopically and on two-dimensional gels.  相似文献   

9.
Fe-S proteins acquire Fe-S clusters by an unknown post-translational mechanism. To study the in vivo synthesis of the Fe-S clusters, we constructed an experimental system to monitor the expressed ferredoxin (Fd) as a reporter of protein-bound Fe-S clusters assembled in Escherichia coli. Overexpression of five Fds in a T7 polymerase-based system led to the formation of soluble apoFds and mature holoFds, indicating that assembly of the Fe-S cluster into apoFd polypeptides is a rate-limiting step. We examined the coexpression of the E. coli ORF1-ORF2-iscS-iscU-iscA-hscB-hsc A-fdx-ORF3 gene cluster, which has recently been suggested to be involved in the formation or repair of Fe-S protein [Zheng, L., Cash, V.L., Flint, D.H., and Dean, D.R. (1998) J. Biol. Chem. 273, 13264-13272], with reporter Fds using compatible plasmids. The production of all five reporter holoFds examined was dramatically increased by the coexpression of the gene cluster, and apparent specificity to the polypeptides or to the type of Fe-S clusters was not observed. The increase in holoFd production was observed under the coexpression conditions in all culture media examined, with either 2 x YT medium or Terrific broth, and with or without supplemental cysteine or iron. These results indicate that the proteins encoded by the gene cluster are involved in the assembly of the Fe-S clusters in a wide variety of Fe-S proteins.  相似文献   

10.
11.
The interaction of the antibiotic netropsin with calf thymus DNA, T4 DNA and poly(dA-dT) . poly(dA-dT) in complexes with sequential polypeptides containing repetitive lysine sequences and histone H1 was investigated using circular dichroism spectroscopy and equilibrium dialysis. Both soluble DNA-polypeptide complexes and insoluble complexes showed binding of netropsin. The possibility of displacement of polypeptides from DNA binding sites by competition with netropsin molecules was eliminated by experiments using 14C-labelled polypeptides. From the analysis of CD titration behavior as well as from the results of equilibrium dialysis studies it follows that netropsin does not compete with polypeptides for DNA binding sites, which suggests that these two ligands occupy different sites. Various explanations for minor differences in the CD behavior of the bound netropsin in the saturation region are also discussed.  相似文献   

12.
Ubiquitin ligases direct the transfer of ubiquitin onto substrate proteins and thus target the substrate for proteasome-dependent degradation. SCF complexes are a family of ubiquitin ligases composed of a common core of components and a variable component called an F-box protein that defines substrate specificity. Distinct SCF complexes, defined by a particular F-box protein, target different substrate proteins for degradation. Although a few have been identified to be involved in important biological pathways, such as the cell division cycle and coordinating cellular responses to changes in environmental conditions, the role of the overwhelming majority of F-box proteins is not clear. Creating inhibitors that will block the in vivo activities of specific SCF ubiquitin ligases may provide identification of substrates of these uncharacterized F-box proteins. Using Saccharomyces cerevisiae as a model system, we demonstrate that overproduction of polypeptides corresponding to the amino terminus of the F-box proteins Cdc4p and Met30p results in specific inhibition of their SCF complexes. Analyses of mutant amino-terminal alleles demonstrate that the interaction of these polypeptides with their full-length counterparts is an important step in the inhibitory process. These results suggest a common means to inhibit specific SCF complexes in vivo.  相似文献   

13.
The gene coexpression study has emerged as a novel holistic approach for microarray data analysis. Different indices have been used in exploring coexpression relationship, but each is associated with certain pitfalls. The Pearson's correlation coefficient, for example, is not capable of uncovering nonlinear pattern and directionality of coexpression. Mutual information can detect nonlinearity but fails to show directionality. The coefficient of determination (CoD) is unique in exploring different patterns of gene coexpression, but so far only applied to discrete data and the conversion of continuous microarray data to the discrete format could lead to information loss. Here, we proposed an effective algorithm, CoexPro, for gene coexpression analysis. The new algorithm is based on B-spline approximation of coexpression between a pair of genes, followed by CoD estimation. The algorithm was justified by simulation studies and by functional semantic similarity analysis. The proposed algorithm is capable of uncovering both linear and a specific class of nonlinear relationships from continuous microarray data. It can also provide suggestions for possible directionality of coexpression to the researchers. The new algorithm presents a novel model for gene coexpression and will be a valuable tool for a variety of gene expression and network studies. The application of the algorithm was demonstrated by an analysis on ligand-receptor coexpression in cancerous and noncancerous cells. The software implementing the algorithm is available upon request to the authors.  相似文献   

14.
Loo TW  Clarke DM 《Biochemistry》1999,38(16):5124-5129
Multiple topologies have been detected for the COOH-terminal half of the human multidrug resistance P-glycoprotein (P-gp). In one topology, the predicted third cytoplasmic loop (CL3) is on the cytoplasmic side (P-gp-CL3-cyt) of the membrane. In an alternate topology, CL3 is on the extracellular side of the membrane (P-gp-CL3-ext). It is not known if both forms of P-gp are active because it is difficult to distinguish either topology in the full-length molecule. When the halves of P-gp are expressed as separate polypeptides, the two topologies of the C-Half are readily distinguished on SDS-PAGE, because only the C-Half (CL3-ext) is glycosylated. To test whether both topologies can fold into an active enzyme, we assayed for interaction between the N- and C-Halves of P-gp since functional P-gp requires interaction between both halves. In a mutant P-gp (E875C) that gave about equal amounts of both topologies, only the C-Half (CL3-cyt) could be recovered by nickel chromatography after coexpression with the histidine-tagged N-Half P-gp. The isolated N-Half and E875C C-Half (CL3-cyt) polypeptides, when expressed together, exhibited verapamil- and vinblastine-stimulated ATPase activities that were similar to the wild-type enzyme. We also found that biosynthesis of mutant E875C C-Half in the presence of the N-Half P-gp resulted in enhanced expression of C-Half (CL3-cyt). By contrast, interaction of C-Half (CL3-ext) with N-Half P-gp was not detected. These results show that the topology of the C-Half portion of P-gp greatly influences its interactions with the amino-terminal half of the molecule.  相似文献   

15.
Pre-alpha-inhibitor is a serum protein consisting of two polypeptides, the heavy chain and bikunin, covalently linked through an ester bond between the chondroitin sulfate chain of bikunin and the alpha-carboxyl group of the carboxyl-terminal residue of the heavy chain. The heavy chain is synthesized with a carboxyl-terminal extension, which is cleaved off just before the link to bikunin is formed. Our earlier studies indicate that this extension mediates the cleavage, and we have now found that a short segment on the amino-terminal side of the cleavage site is also required for the reaction. Furthermore, we previously showed that coexpression of the heavy chain precursor and bikunin in COS-1 cells leads to linkage, and we have now used this system to identify a His residue in the carboxyl-terminal extension that is specifically required for the intracellular coupling of the two proteins. In addition, we have shown that another chondroitin sulfate-containing protein, decorin, will also form a complex with the heavy chain, as will free chondroitin sulfate chains. These results suggest that in vivo there might be other, as yet unknown, chondroitin sulfate-containing polypeptides linked to the heavy chain.  相似文献   

16.
Geometric interpretation of gene coexpression network analysis   总被引:1,自引:0,他引:1  
THE MERGING OF NETWORK THEORY AND MICROARRAY DATA ANALYSIS TECHNIQUES HAS SPAWNED A NEW FIELD: gene coexpression network analysis. While network methods are increasingly used in biology, the network vocabulary of computational biologists tends to be far more limited than that of, say, social network theorists. Here we review and propose several potentially useful network concepts. We take advantage of the relationship between network theory and the field of microarray data analysis to clarify the meaning of and the relationship among network concepts in gene coexpression networks. Network theory offers a wealth of intuitive concepts for describing the pairwise relationships among genes, which are depicted in cluster trees and heat maps. Conversely, microarray data analysis techniques (singular value decomposition, tests of differential expression) can also be used to address difficult problems in network theory. We describe conditions when a close relationship exists between network analysis and microarray data analysis techniques, and provide a rough dictionary for translating between the two fields. Using the angular interpretation of correlations, we provide a geometric interpretation of network theoretic concepts and derive unexpected relationships among them. We use the singular value decomposition of module expression data to characterize approximately factorizable gene coexpression networks, i.e., adjacency matrices that factor into node specific contributions. High and low level views of coexpression networks allow us to study the relationships among modules and among module genes, respectively. We characterize coexpression networks where hub genes are significant with respect to a microarray sample trait and show that the network concept of intramodular connectivity can be interpreted as a fuzzy measure of module membership. We illustrate our results using human, mouse, and yeast microarray gene expression data. The unification of coexpression network methods with traditional data mining methods can inform the application and development of systems biologic methods.  相似文献   

17.
In a research environment dominated by reductionist approaches to brain disease mechanisms, gene network analysis provides a complementary framework in which to tackle the complex dysregulations that occur in neuropsychiatric and other neurological disorders. Gene–gene expression correlations are a common source of molecular networks because they can be extracted from high‐dimensional disease data and encapsulate the activity of multiple regulatory systems. However, the analysis of gene coexpression patterns is often treated as a mechanistic black box, in which looming ‘hub genes’ direct cellular networks, and where other features are obscured. By examining the biophysical bases of coexpression and gene regulatory changes that occur in disease, recent studies suggest it is possible to use coexpression networks as a multi‐omic screening procedure to generate novel hypotheses for disease mechanisms. Because technical processing steps can affect the outcome and interpretation of coexpression networks, we examine the assumptions and alternatives to common patterns of coexpression analysis and discuss additional topics such as acceptable datasets for coexpression analysis, the robust identification of modules, disease‐related prioritization of genes and molecular systems and network meta‐analysis. To accelerate coexpression research beyond modules and hubs, we highlight some emerging directions for coexpression network research that are especially relevant to complex brain disease, including the centrality–lethality relationship, integration with machine learning approaches and network pharmacology .  相似文献   

18.
Irradiation of chicken muscle cells with ultraviolet light (254 nm) to cross-link RNA and protein moieties was used to examine the polypeptide complements of cytoplasmic mRNA-protein complexes (mRNP). The polypeptides of translationally active mRNP complexes released from polysomes were compared to the repressed nonpolysomal cytoplasmic (free) mRNP complexes. In general, all of the polypeptides present in free mRNPs were also found in the polysomal mRNPs. In contrast to polysomal mRNPS, polypeptides of Mr 28 000, 32 000, 46 000, 65 000 and 150 000 were either absent or present in relatively smaller quantities in free mRNP complexes. On the other hand, the relative proportion of polypeptides of Mr 130 000 and 43 000 was higher in free mRNPs than in polysomal mRNP complexes. To examine the role of cytoplasmic mRNP complexes in protein synthesis or mRNA metabolism, the changes in these complexes were studied following (a) inhibition of mRNA synthesis and (b) heat-shock treatment to alter the pattern of protein synthesis. Actinomycin D was used to inhibit mRNA synthesis in chick myotubes. The possibility of newly synthesized polypeptides of cytoplasmic mRNP complexes being assembled into these complexes in the absence of mRNA synthesis was examined. These studies showed that the polypeptides of both free and polysomal mRNP complexes can bind to pre-existing mRNAs, therefore suggesting that polypeptides of mRNP complexes can be exchanged with a pool of RNA-binding proteins. In free mRNP complexes, this exchange of polypeptides is significantly slower than in the polysomal mRNP complexes. Heat-shock treatment of chicken myotubes induces the synthesis of three polypeptides of Mr = 81 000, 65 000 and 25 000 (heat-shock polypeptides). Whether this altered pattern of protein synthesis following heat-shock treatment could affect the polypeptide composition of translationally active polysomal mRNPs was examined. The results of these studies show that, compared to normal cells, more newly synthesized polypeptides were assembled into polysomal mRNPs following heat-shock treatment. A [35S]methionine-labeled polypeptide of Mr = 80 000 was detected in mRNPs of heat-shocked cells, but not of normal cells. This polypeptide was, however, detected by AgNO3 staining of the unlabeled polypeptide of mRNP complexes of normal cells. These results, therefore, suggest that the assembly of newly synthesized 80 000-Mr polypeptide to polysomal mRNPs was enhanced following induction of new heat-shock mRNAs. The results of these studies reported here have been discussed in relation to the concept that free mRNP complexes are inefficiently translated in vivo.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
20.
Sodium dodecyl sulfate (NaDodSO4)--polyacrylamide gel electrophoresis and gel filtration chromatography of protein--NaDodSO4 complexes are frequently used to characterize collagen-like polypeptide components in mixtures obtained from extracts of basement membranes. However, electrophoresis yields anomalously high apparent molecular weights for collagenous polypeptides when typical globular proteins are used as molecular weight standards, and the use of gel filtration chromatography for this purpose was suspect because Nozaki et al. [Nozaki, Y., Schechter, N. M., Reynolds, J. A., & Tanford, C. (1976) Biochemistry 15, 3884--3890] found that asymmetric particles, including NaDodSO4--protein complexes, coeluted with native globular proteins of lower Stokes radius, when Sepharose 4B was used. To understand these effects and to improve the characterization of collagenous polypeptides, we investigated the secondary structure of NaDodSO4--collagen complexes with the use of circular dichroism, measured the NaDodSO4 content, studied the dependence of electrophoretic mobility on gel concentration, and extended work on gel filtration by use of a more porous gel, Sepharose CL-4B. We found that the anomalous behavior of collagen chains on NaDodSO4--polyacrylamide gel electrophoresis is due in large part to treatment of data and that the method can be used to determine rather accurate values for the number of residues per polypeptide chain. Our gel filtration results indicated that reliable molecular weights can be obtained when Sepharose CL-4B is used. These methods can be applied equally well to collagenous and noncollagenous polypeptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号