首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. The aim of this study was to compare the effects of acute amphetamine (AMPH) treatment and restraint stress on plasma level of prolactin (PRL) and PRL mRNA expression in the adenohypophysis in Sprague–Dawley and Lewis male rats, the latter known to have a deficient hypothalamo–pituitary-adrenal (HPA) axis.2. Both restraint stress and AMPH treatment (i.p. in a dose of 8 mg/kg of b.w.) were applied 15 or 30 min before termination of the experiment. Plasma PRL and corticosterone (CORT) were determined by radioimmunoassay. PRL mRNA expression was estimated by a dot-blot hybridization.3. Restraint stress and AMPH treatment induced a significant increase in theCORT plasma level, as an indicator of stress response. Compared to Sprague–Dawley rats, the magnitude of CORT increase after both stimuli was significantly lower in Lewis rats.4. Although restraint stress significantly increased the PRL plasma levels in both rat strains, AMPH treatment reduced the PRL levels in both rat strains. However, the changes of PRL plasma levels had another pattern in Lewis rats than in Sprague–Dawley rats. Control plasma PRL levels were significantly higher in Lewis rats, and in this rat strain AMPH treatment for 30 min increased the PRL levels as compared to the values obtained after AMPH treatment for 15 min.5. Expression of PRL mRNA in adenohypophysis by restraint stress and AMPH treatment had a similar pattern. After a 15-min lasting restraint stress, the expression of PRL mRNA was decreased insignificantly in both rat strains. AMPH treatment induced in Sprague–Dawley rats a significant decrease of PRL mRNA after a 15-min interval while after 30 min there was a significant increase. However, in Lewis rats AMPH failed to significantly change PRL mRNA.6. The results from the present study indicate that the mechanisms mediatingthe effects of acute restraint stress and acute AMPH treatment differ in PRL response in Sprague–Dawley and Lewis male rat strains. Differences in the observed responses in Lewis rats could be related to the deficient activity of HPA axis in this rat strain.  相似文献   

2.
In the present study, we used closed colony-Wistar-Imamichi (WI), inbred WI and Long Evans (LE) adult male rats to examine the secretion of ACTH and corticosterone in response to restraint stress. Blood (0.3 ml) was withdrawn through a jugular cannula at 0, 15, 30, 60 and 120 min after the onset of restraint stress. Plasma concentrations of ACTH and corticosterone increased after stress in all groups, but the responses of ACTH and corticosterone secretion were higher in LE rats than in WI rats. Present data suggest that the LE rat might be a good model as a high-response strain and the closed colony or the inbred WI rat might be a good model as a low-response strain in restraint stress experiments.  相似文献   

3.
The purpose of this study was to evaluate the action of two types of stressors in Sprague-Dawley (S-D) and Lewis (LEW) rats differing in their hypothalamic-pituitary-adrenal axis activity on locomotion and rearing in an open space. Exposure to restraint immobilization alone (IMO) or this immobilization combined with cold water (22 degrees C) immersion (IMO+C) lasted for 1 h and started 2 or 5 h before the test. To evaluate the acute and persisting effects of both stressors, four trials were performed in one-week intervals; rats were exposed to the stressors in trial 1 and 3. While in LEW rats both acute stressors produced reduction of locomotion and rearing in all stressed groups, S-D rats responded with a decrease of both parameters only after IMO+C presented 2 h before testing. Neither strain displayed a changed performance one week after the first stress exposure. One week after the second stress exposure rats of both strains exhibited a tendency to an increase of both parameters reaching the significance in several experimental groups. The findings indicate: a) the IMO+C produced stronger behavioral alteration than IMO alone; b) the behavioral responses to stressors were more pronounced in LEW compared to S-D strain; c) change from the reduction of activity to its increase may be interpreted as bi-directional manifestation of long-term effects of immobilization stress.  相似文献   

4.
Corticotropin releasing factor (CRF) infused bilaterally into the lateral ventricles of awake, chronically cannulated, male Sprague-Dawley rats produced a dose-dependent increase in the in vitro activity of cortical and midbrain tryptophan hydroxylase after 60 min. The maximal increase in enzyme activity of 60% over that of vehicle-treated controls was reached 45 min after an infusion of 3 micrograms CRF. The increase in enzyme activity after a single dose of CRF resembled that seen after exposure of rats to an acute sound stress: it was reversed by preincubation of the enzyme preparation with alkaline phosphatase and was nonadditive with the increase in activity obtained in the presence of phosphorylating conditions. The response to intracerebroventricularly administered CRF was abolished by bilateral adrenalectomy, but restored by repeated daily systemic administration of the synthetic glucocorticoid, dexamethasone (500 micrograms/day, i.p. for 3 days), to the adrenalectomized rats. Intracerebroventricular administration of the glucocorticoid antagonist, RU 38486 (200 micrograms/day for 4 days), also blocked the acute increase in tryptophan hydroxylase activity in response to CRF. Finally, bilateral lesions to the central nucleus of the amygdala, a region involved in mediating behavioral, endocrine and autonomic responses to stressful stimuli, abolished the increase in enzyme activity in response to intraventricular CRF. The glucocorticoid sensitivity of the response to CRF, as well as the involvement of the central nucleus of the amygdala support the view that CRF may have a role in mediating the enhancement of tryptophan hydroxylase activity by acute sound stress.  相似文献   

5.
应激对同型半胱氨酸代谢的负性调节   总被引:8,自引:0,他引:8  
Wu SQ  Qian LJ 《生理学报》2004,56(4):521-524
基于应激对高同型半胱氨酸血症具有诱导作用,本文探索了应激致同型半胱氨酸(homocysteine,HCY)代谢变化的关键环节,并初步揭示了该作用的意义。以束缚应激法建立大鼠应激模型,采用高压液相-荧光检测法测定血浆HCY水平,用放射性酶学法检测不同组织中胱硫醚β合成酶(cystathionine beta-synthase,CBS)活性的变化,以及RT-PCR法和Northern blot法检测CBS mRNA水平的变化。结果可见,束缚应激可导致大鼠高同型半胱氨酸血症的发生;CBS在肝脏具有最强的代谢活性,肾脏其次,而心脏和血液中活性极低;应激大鼠肝脏CBS活性和mRNA水平均显著降低(P<0.05),应激3周时分别为对照组的70.6%±5.9%和55.9%±4.3%。以上研究结果表明,应激对HCY转硫代谢途径存在负性调节作用,其对肝脏CBS基因转录水平的调控是应激所致高同型半胱氨酸血症发生的重要诱因;肝脏是应激对HCY代谢调节的主要场所。  相似文献   

6.
Sands SA  Reisman SA  Enna SJ 《Life sciences》2003,72(9):1085-1092
Modification in gamma-aminobutyric acid-B (GABA(B)) receptors may contribute to the symptoms of some neurological and psychiatric disorders and to the clinical response to psychotherapeutics. The present study was undertaken to determine whether chronic administration of tranylcypromine (TCP), an antidepressant, and chronic stress influence GABA(B) receptor function in rat brain. The results indicate that TCP treatment, but not stress, increases GABA(B) receptor activity in the cerebral cortex, as measured by baclofen-stimulated GTPgammaS binding. In addition, chronic administration of TCP enhances significantly the locomotor response to a single dose of amphetamine, an effect that is abolished by restraint stress. These results indicate that although TCP administration modifies brain GABA(B) receptor activity, which may contribute to the antidepressant response to this agent, this effect is unrelated to the interaction of stress and TCP treatment on the locomotor response to amphetamine.  相似文献   

7.
The mechanism by which restraint stress induces suppression of food intake and the influence of intracerebroventricular (icv) administration of somatostatin on the anorexia induced by restraint stress were examined in the rat. Ninety minutes of restraint stress reduced food intake of rats to approximately 60% that of control. Anorexia induced by 90 min restraint stress was partially reversed by icv administration of alpha-helical CRF (9-41), a corticotropin-releasing factor (CRF) antagonist, and completely reversed by anti-CRF gamma-globulin. These results provide further evidence in support of the theory that CRF is involved in the inhibitory mechanism of food intake in restraint stress. ICV administration of somatostatin 14 and SMS 201-995, an analog of somatostatin, also reversed restraint stress-induced anorexia. It is, therefore, suggested that somatostatin may counteract the suppressive action of CRF on food intake in stress.  相似文献   

8.
The purpose of the present study was to assess whether, and to what extent prior handling, restraint or social crowding stress during 3-10 days affects the hypothalamic-pituitary-adrenocortical (HPA) response to an acute short-lasting restraint stress. Also the effect of a feedback inhibitory mechanism of corticosterone in the impairment of HPA axis by these stressors was investigated. Male Wistar rats were pretreated with handling 1 min/day for 3-10 days, restraint 2 times daily for 3-7 days and crowding stress for 7 days before exposure to acute restraint stress in metal tubes for 10 min. Some group of rats received exogenous s.c. corticosterone either once 25 mg/kg or 2 times daily 10 mg/kg for 3-10 days before restraint stress. After the last restraint the rats were decapitated and their trunk blood was collected for the measurement of plasma ACTH and serum corticosterone levels. Handling for 3-7 days, restraint for 3-7 days, and crowding for 7 days and a single pretreatment with corticosterone--all significantly and to a similar extent inhibited the restraint stress-induced increase in ACTH and corticosterone secretion. Chronic pretreatment with corticosterone blunted the restraint stress-induced increase in HPA axis activity. These results indicate that repeated short-lasting stress induced by handling, restraint, or crowding potently attenuates the acute restraint stress-induced stimulatory action of the HPA axis. They also indicate adaptive action of moderate stress on the HPA axis response to acute stress. The results also suggest that a short-lasting hypersecretion of corticosterone during psychological stress may induce a prolonged feedback inhibition of the HPA axis activity. The attenuation of HPA axis response by prior handling has also obvious methodological implications.  相似文献   

9.
Cyclic GMP-selective phosphodiesterase type 5 (PDE5) has been traditionally thought to play a little role in cardiac myocytes, yet recent studies using selective inhibitors such as sildenafil suggest it can potently modulate acute and chronic cardiac stress responses. To date, evidence for myocyte PDE5 expression and regulation has relied on small-molecule inhibitors and anti-sera, leaving open concerns regarding non-specific immune-reactivity, and off-target drug effects. To directly address both issues, we engineered a robust PDE5-gene silencing shRNA (inserted into miRNA-155 cassette) and DsRed–PDE5 fusion protein, both coupled to a CMV promoter and incorporated into adenoviral vectors. PDE5 mRNA and protein knock-down eliminated anti-sera positivity on immunoblots and fluorescent immuno-histochemistry in neonatal and adult cardiomyocytes, and suppressed PDE5 enzyme activity. Stimulation of myocyte hypertrophy by phenylephrine was blunted by PDE5 gene silencing in a protein kinase G dependent manner, and this effect was similar to that from sildenafil with no additive response by both combined. DsRed–PDE5 fusion protein expression showed normal z-band localization in adult myocytes but was diffused in eNOS−/− myocytes; echoing reported findings with anti-sera. PDE5 overexpression increased enzyme activity and amplified natriuretic peptide gene expression from phenylephrine stimulation. These data confirm PDE5 expression, activity, and targeted inhibition by sildenafil in cardiomyocytes, as well as the role of this PDE in cardiomyocyte hypertrophy modulation.  相似文献   

10.
Ghrelin, an endogenous ligand for growth hormone secretagogue receptor, was identified in the rat stomach. This peptide acts through nitric oxide (NO) by expressing endothelial nitric oxide synthase (eNOS) and down regulating inducible nitric oxide synthase (iNOS) at its gastroproprotective effect against restraint stress induced damage. Recently the ghrelin receptor has also been detected in peripheral systems including immune tissue. We have investigated the possible effect of ghrelin on phagocytic activity of peritoneal macrophages in acute cold-restraint stress (ACRS) exposed rats. The rats were divided into control, stress and ghrelin groups. In ghrelin groups, single dose and three days consecutive dose of ghrelin (20 microg/kg. i.p.) were applied to rats that were exposed to ACRS for 4 h. 1 ml of saline was injected i.p. after ACRS for 3 consecutive days to the rats of the stress groups. Ghrelin administration reduced the increased phagocytic activity induced by ACRS. We conclude that ghrelin exerts an important role at macrophage phagocytic activity in ACRS exposed rats.  相似文献   

11.
Phosphodiesterase-4 (PDE4) is one of the main enzymes that specifically terminate the action of cAMP, thereby contributing to intracellular signaling following stimulation of various G protein-coupled receptors. PDE4 expression and activity are modulated by agents affecting cAMP levels. The selective PDE4 inhibitor (R)-rolipram labeled with C-11 was tested in vivo in rats to analyze changes in PDE4 levels following drug treatments that increase synaptic noradrenaline (NA), serotonin (5HT), histamine (HA) and dopamine (DA) levels. We hypothesized that increasing synaptic neurotransmitter levels and subsequent cAMP-mediated signaling would significantly enhance (R)-[(11)C]rolipram retention and specific binding to PDE4 in vivo. Pre-treatments were performed 3 h prior to tracer injection, and rats were sacrificed 45 min later. Biodistribution studies revealed a dose-dependent increase in (R)-[(11)C]rolipram uptake following administration of the monoamine oxidase (MAO) inhibitor tranylcypromine, NA and 5HT reuptake inhibitors (desipramine [DMI], maprotiline; and fluoxetine, sertraline, respectively), and the HA H(3) receptor antagonist (thioperamide), but not with DA transporter blockers GBR 12909, cocaine or DA D(1) agonist SKF81297. Significant increases in rat brain and heart reflect changes in PDE4 specific binding (total-non-specific binding [coinjection with saturating dose of (R)-rolipram]). These results demonstrate that acute treatments elevating synaptic NA, 5HT and HA, but not DA levels, significantly enhance (R)-[(11)C]rolipram binding. Use of (R)-[(11)C]rolipram and positron emission tomography as an index of PDE4 activity could provide insight into understanding disease states with altered NA, 5HT and HA concentrations.  相似文献   

12.
AimsPhosphodiesterases (PDEs) are key enzymes controlling cAMP and cGMP levels and spatial distribution within cardiomyocytes. Despite the clinical importance of several classes of PDE inhibitor there has not been a complete characterization of the PDE profile within the human cardiomyocyte, and no attempt to assess which species might best be used to model this for drug evaluation in heart disease.Main methodsVentricular cardiomyocytes were isolated from failing human hearts of patients with various etiologies of disease, and from rat and guinea pig hearts. Expression of PDE isoforms was determined using RT-PCR. cAMP- and cGMP-PDE hydrolytic activity was determined by scintillation proximity assay, before and after treatment with PDE inhibitors for PDEs 1, 2, 3, 4, 5 and 7. Functional effects of cAMP PDEi were determined on the contraction of single human, rat and guinea pig cardiomyocytes.Key findingsThe presence and activity of PDE5 were confirmed in ventricular cardiomyocytes from failing and hypertrophied human heart, as well as PDE3, with ventricle-specific results for PDE4 and a surprisingly large contribution from PDE1 for hydrolysis of both cAMP and cGMP. The total PDE activity of human cardiomyocytes, and the profile of inhibition by PDE1, 3, 4, and 5 inhibitors, was modelled well in guinea pig but not rat cardiomyocytes.SignificanceOur results provide the first full characterisation of human cardiomyocyte PDE isoforms, and suggest that guinea pig myocytes provide a better model than rat for PDE levels and activity.  相似文献   

13.
Acute psychological stress raises plasma ghrelin in the rat   总被引:3,自引:0,他引:3  
Ghrelin is produced by the A-like cells of the stomach and mobilized by food deprivation. It was reported recently that acute psychological stress increases ghrelin gene expression in rat oxyntic mucosa. The aim of this study was to examine the effect of such stress on circulating ghrelin levels. To this end, we measured plasma ghrelin in Wistar Kyoto (WKY) rats (a high-anxiety strain) and Sprague-Dawley (SPD) rats (a low-anxiety strain), exposed to water avoidance stress for 60 min. Blood was collected before and after the stress. Acute stress increased the plasma ACTH concentration approximately 5-fold (p<0.01) in both strains of rats, while plasma ghrelin increased by 85% (p<0.01) in the SPD rats and by 40% (p<0.001) in the WKY rats. Ghrelin levels after acute stress were higher (p<0.05) in the SPD rats than in the WKY rats. Sham stress did not affect plasma ghrelin. We conclude that acute psychological stress mobilizes ghrelin and that the SPD rats respond with a higher plasma ghrelin concentration than the WKY rats.  相似文献   

14.
Functional activity of hypothalamic-pituitary-adrenocortical axis has been studied under control and restraint stress conditions in rats with inherited stress-sensitive arterial hypertension (ISIAH strain) and in normotensive WAG (Wistar Albino Glaxo) strain. The levels of hypothalamic CRH-mRNA (in control and 2 hrs stress), pituitary and plasma ACTH and plasma corticosterone (in control and after 5, 15 or 30 min of restraint stress), were evaluated. Hypothalamic CRH-mRNA level was found to be approximately the same in the control rats of both strains. In control conditions, the pituitary and plasma ACTH content in ISIAH rats was significantly lower whereas the corticosterone level in the plasma differed from each other in both strain. The restraint stress resulted in a statistically significant increase of the CRH-mRNA in ISIAH rats and not in the WAG rats. Moreover, in spite of the lower ACTH level in stressed ISIAH rats, the corticosterone blood plasma concentration in hypetensive rats was significantly higher. The data obtained confirm the idea that the stress-dependent hypertension might be related to an enhanced sensitivity of the main endocrine links involved in the stress response organization.  相似文献   

15.
Stress in rats causes acute release of hypothalamic somatostatin (SS) in median eminence (ME) that induces a marked and prolonged suppression of growth hormone (GH) secretion. This was evidenced by immunocytochemistry (ICC) and radioimmunoassay (RIA) in the present study. Adult female rats were decapitated under nonstress or for 30, 60, 120 and 180 min after 15 min leg restraint stress. The rabbit anti-SS was used to detect SS-14 and SS-28 containing cell bodies with ICC in preoptic-anterior hypothalamus (PO-AH). At 30, 60, 120 min after stress, there was marked decrease in the number and size of subsets of SS cell bodies. RIA demonstrated striking increase in SS in ME and significant decrease in GH of the portal blood. The most reproducible changes in cell bodies involved subsets of PeV neurons. Interestingly, these changes were largely reversed by 180 min. The results of the study demonstrate that stress cause acute changes in PO-AH, SS system and it appears that stress affects both SS synthesis and the secretion.  相似文献   

16.
We previously reported that treatment of streptozotocin-induced diabetic rats with zinc plus cyclo (his-pro) (CHP) decreased fed blood glucose levels and water intake. The present study was conducted to examine the dose-dependent, acute, and chronic treatment effects of CHP on oral glucose tolerance (OGT), fed blood glucose levels, water intake, and plasma insulin levels in young and aged Sprague-Dawley (S-D) rats, nondiabetic Wistar rats, and genetically diabetic Goto-Kakizaki (G-K) rats. Acute gastric gavage of 10 mg zinc plus 1.0 mg CHP/kg body weight significantly improved OGT in 4- and 13-month-old nondiabetic S-D rats and in 2-month-old diabetic G-K rats. Young S-D and G-K rats returned to pretreatment OGT values 1 week after acute gavage of zinc plus CHP (ZC), but improved OGT values persisted for at least 1 week after gavage in aged S-D rats. OGT values and fed blood glucose decreased to the greatest extent among other treatments when G-K rats were given free access to drinking water containing 1.0 to 1.5 mg CHP/L plus 10 mg zinc/L for 2 weeks. Although food and water intake showed a tendency to decrease, no statistically significant differences were observed in young G-K rats. Plasma insulin levels and blood glucose levels in both normal and diabetic G-K rats decreased with 2-week treatment with ZC. To test the direct effects of ZC on muscle tissue, we observed the effect of various doses of ZC on normal and G-K rat muscle slices. The optimal level of CHP alone for maximal muscle glucose uptake in muscle slices from normal rats was 10 microg/mL and 5.0 microg/mL in G-K rats, and ZC stimulated glucose uptake. However, no statistically significant difference was demonstrated between normal and G-K rat tissues in this study. These results indicate that oral intake of an optimal dose of ZC stimulates blood glucose metabolism, probably by stimulating muscle glucose utilization.  相似文献   

17.
Studies in animal models of myocardial ischemia-reperfusion revealed that the administration of insulin-like growth factor (IGF-1) can provide substantial cardioprotective effect. However, the mechanisms by which IGF-1 prevents myocardial ischemia-reperfusion injury are not fully understood. This study addresses whether mitochondrial bioenergetic pathways are involved in the cardioprotective effects of IGF-1. Single cardiomyocytes from adult rats were incubated in the absence or presence of IGF-1 for 60 min and subjected to 60 min hypoxia followed by 30 min reoxygenation at 37°C. Mitochondrial function was evaluated by assessment of enzyme activities of oxidative phosphorylation and Krebs cycle pathways. Hypoxia/reoxygenation (HR) caused significant inhibition of mitochondrial respiratory complex IV and V activities and of the Krebs cycle enzyme citrate synthase, whereas pretreatment with IGF-1 maintained enzyme activities in myocytes at or near control levels. Mitochondrial membrane potential, evaluated with JC-1 staining, was significantly higher in IGF-1 + HR- treated myocytes than in HR alone, with levels similar to those found in normal control cardiomyocytes. In addition, IGF-1 reduced both HR-induced lactate dehydrogenase (LDH) release and malondialdehyde production (an indicator of lipid peroxidation) in cardiomyocytes. These results suggest that IGF-1 protects cardiomyocytes from HR injury via stabilizing mitochondria and reducing reactive oxidative species (ROS) damage.  相似文献   

18.
Vasopressin-containing, Long-Evans (LE) rats and vasopressin-deficient, Brattleboro (DI) rats were monitored for activity and core body temperature via telemetry. Rats were exposed to a 12-12 light-dark cycle and allowed to habituate with ad lib access to food and water. The habituation period was followed by an experimental period of 23 h of food-restriction stress in which a 1-h feeding period was provided during the light cycle. Although both strains of animals showed nocturnal activity and temperature rhythms during the habituation period, DI rats were more active than LE rats. The DI rats also had a lower body temperature in the dark. During the experimental period, both strains exhibited a phase shift of activity and body temperature correlating with the presentation of food. The DI rats developed a diurnal shift more rapidly than LE rats. The DI animals showed a dramatic increase in activity during the light phase and a marked decrease in body temperature during the dark phase. The LE animals showed a significant attenuation of activity, but maintained both nocturnal and diurnal temperature peaks throughout the food-restricted condition.  相似文献   

19.
Capsaicin, reported to elevate hormone sensitive lipase (HSL), is also found to inhibit the Ca++ and calmodulin-dependent cAMP phosphodiesterase (PDE) activity in adipose tissue of rats, fed high fat diet. The dependence of the enzyme activity on Ca++ and calmodulin in vitro, in control rats, is shown by its substantial lowering in the presence of EGTA and inhibition by trifluoperazine (TFP) (IC50 between 10-20 microM). This enzyme activity is also inhibited by both red pepper extract (80% inhibition with 50 microliter) and capsaicin (IC50 between 0.3-1 microM) in a dose dependent manner. Capsaicin has been found to inhibit Ca++-dependent PDE activity by 60% in the test rats. Enzyme inhibition in vivo, due to capsaicin, was overcome by addition of calmodulin to the assay system. Inclusion of fluphenazine or capsaicin in assay inhibited not only the calmodulin-restored enzyme activity from test rats but also that of control rats. These results suggest a possible mechanism for the stimulation of lipolytic activity by capsaicin in vivo.  相似文献   

20.
Restraint-induced stress in rats was found to enhance steady state concentrations of whole brain and hypothalamic serotonin, at 1,2 and 4 h after immobilization. The increase was maximal at 1 h and tended to decline thereafter. The rate of accumulation of rat brain serotonin, in pargyline pretreated animals, was significantly enhanced after restraint stress. Bilateral adrenalectomy and metyrapone, an endogenous corticoid synthesis inhibitor, failed to affect restraint stress (1h)-induced increase in rat brain serotonin levels. Thus restraint stress-induced autoanalgesia and potentiation of the pharmacological actions of several centrally acting drugs, in rats, are serotonin-mediated responses. The results also indicate that restraint stress-induced effects on rat brain serotonin are not dependent on endogenous corticoid activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号