首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vertebrate skeletal fast-twitch muscle myosin subfragment 1 is comprised of a heavy polypeptide chain of 95,000 daltons and one alkali light chain of either 21,000 daltons (A1) or 16,500 daltons (A2). In the present study, the heavy chain of subfragment 1 has been separated from the alkali light chain under nondenaturing conditions resembling those in vivo. The heavy chain exhibits the same ATPase activity as myosin subfragment 1, indicating that the heavy chain alone contains the catalytic site for ATP hydrolysis and that the alkali light chains are nonessential for activity. The free heavy chain associates readily at 4 degrees C or 37 degrees C with free A1 or A2 to form the subfragment 1 isozymes SF1(A1) or SF1(A2) respectively. Actin activates the MgATPase activity of the heavy chain in the same manner as occurs with the native isozyme, indicating that the heavy chain possesses the actin binding domain.  相似文献   

2.
Light chain exchange in 4.7 M NH4Cl was used to hybridize the essential light chain of cardiac myosin with the heavy chain of fast muscle myosin subfragment 1, S-1. The actin-activated ATPase properties of this hybrid were compared to those of the two fast S-1 isoenzymes, S-1(A1), fast muscle subfragment 1 which contains only the alkali-1 light chain, and S-1(A2), fast muscle myosin subfragment 1 which contains only the alkali-2 light chain. This hybrid S-1 behaved like S-1(A1)., At low ionic strength in the presence of actin, this hybrid had a maximal rate of ATP hydrolysis about the same as that of S-1(A1) and about one-half that of S-1(A2), while at higher ionic strengths the actin-activated ATPases of these three S-2 species were all similar. Light chain exchange in NH4Cl was also used to hybridize the essential light chains of fast muscle myosin with the heavy chains of cardiac myosin and to hybridize the essential light chains of cardiac myosin with the heavy chains of fast muscle myosin. In 60 and 100 mM KCl, the actin-activated ATPases of these two hybrid myosins were very different from those of the control myosins with the same essential light chains but were very similar to those of the control myosins with the same heavy chains, differing at most by one-third.  相似文献   

3.
Modification of the free alkali light chains of myosin by iodoacetylation results in a much lower extent of exchange into myosin subfragment 1 by the thermal hybridization procedure (Burke, M., and Sivaramakrishnan, M. (1981) Biochemistry 20, 5908-5913). As reported by others (Wagner, P. D., and Stone, D. B. (1983) J. Biol. Chem. 258, 8876-8882), free alkali light chains modified by iodoacetate at their single sulfhydryl residue exhibit minimal exchange into intact myosin. However, when unmodified alkali light chain is used to probe for exchange, close to the theoretical limit of exchange is observed for subfragment 1, and significant levels of exchange are found for myosin. It appears that modification of the free alkali light chain alters the structure of the protein, and this causes either a marked reduction in its affinity for the heavy chain or in its ability to enter the light chain binding site. This conclusion is supported by tryptic digestions done on the unmodified and modified free light chains where it is found that the latter is degraded at a much faster rate, indicating a more open structure for the modified protein. The observation that alkali light chain exchanges into myosin when unmodified alkali light chains are used indicates that the presence of the associated 5,5'-dithiobis-(2-nitrobenzoic acid) light chains does not preclude the reversible dissociation of this subunit from myosin under ionic and temperature conditions approaching the physiological state.  相似文献   

4.
Evidence is presented that, under conditions of 4.7 M NH4Cl and 10 mM Mg-ATP where no subunit dissociation can be detected by transport methods, a dynamic equilibrium exists in subfragment 1 between the associated and dissociated subunits. This is readily discerned by the formation of hybrid subfragment 1 species when a subfragment 1 isozyme is incubated with excess free light chains of the alternate isozyme. A similar process occurs with p-N,N'-phenylenedimaleimide (pPDM)-modified subfragment 1 containing [14C]Mg-ADP, but in this case, although extensive amounts of hybrid are formed, no loss of the trapped nucleotide is observed. Subunit scrambling without loss of the trapped nucleotide is apparent from incubating pPDM-SF1(A2)-[14C]Mg-ADP with unmodified SF1(A1) under similar conditions since the mixture subsequently contains SF1(A1), SF1(A2)h, pPDM-SF1(A1)h-[14C]Mg-ADP and pPDM-SF1(A2)-[14C]Mg-ADP. These data show that the nucleotide trapped in the presumptive active site does not escape during the dissociation-reassociation cycle, and suggest that the ATPase site resides solely on the heavy chain.  相似文献   

5.
The procedure of thermal ion-exchange chromatography has been used to examine the effect of prior tryptic cleavage on the stability of myosin subfragment 1 (SF1). Although it is found that digestion does destabilize the subunit interactions at physiological temperatures, the heavy-chain subunit can be isolated either as an equimolar complex comprised of 50K, 27K, and 21K fragments or as one comprised of 50K, 27K, and 18K peptides. Thus, the interactions within the heavy chain are considerably more stable than those between the two subunits. Both forms of the free severed heavy chain exhibit ATPase properties similar to those of the parent tryptic SF1. The Vmax for the actin-activated MgATPase of the free severed heavy chain is the same as that for both undigested and tryptic SF1 (A2). Since its Km for actin is similar to that of tryptic SF1(A2), it may be concluded that changes in the affinity of SF1 for actin induced by trypsin [Botts, J., Muhlrad, A., Takashi, R., & Morales, M. F. (1982) Biochemistry 21, 6903-6905] are not dependent on the presence of the associated alkali light chain. Furthermore, the communication between the SH1 site and the ATPase site is also shown to be independent of the associated alkali light chain, and it persists despite the cleavages present in the free heavy chain. Studies on the ability of these severed heavy chains to reassociate with free A1 and A2 chains indicate that the binding site is retained in the 21K-severed heavy chain but is lost in the 18K form.  相似文献   

6.
A streamlined method of subfragment one preparation from myosin   总被引:6,自引:0,他引:6  
A rapid procedure for isolating subfragment one (SF1) from myosin was found. SF1 can be isolated specifically from proteolytic digests of myosin in the presence of a millimolar concentration of magnesium chloride. Under such ionic conditions all of the rod portion and undigested myosin is selectively precipitated. A nucleotide trapping experiment indicated how important quick preparation of SF1 is for maintaining the active site structure. This method can also be utilized in the preparation of heavy meromyosin.  相似文献   

7.
Heavy meromyosin subfragment 1 was resolved by chromatography on DEAE-cellulose into two fractions characterized by the nature of the alkali light chains present. It was shown that even in an HMM-S1 preparation with an extensive fragmentation of the heavy chain a polyacrylamide gel electrophoresis analysis differentiates alkali light chains among the light fragmentation components. A non-fragmented HMM-S1 was obtained from a papain digest of myofibrils and the chromatographic analysis supplied further evidence of the separation of the two species of HMM-S1 present in rabbit white muscle myosin.  相似文献   

8.
Evidence is presented that under physiological conditions of ionic strength and temperature, where myosin Subfragment 1 is hydrolyzing MgATP, the interaction between its subunits is extremely labile. Incubation of [3H]N-ethylmaleimide-SF1(A1) with N-ethylmaleimide-SF1(A2) in the presence of 10 mM MgATP at 37 degrees C resulted in the exchange of subunits between these isozymes. This is readily discernible from the subunit composition and distribution of the 3H label after separation of the isozymes by ion exchange chromatography. Moreover, incubation of unmodified SF1(A1) or SF1(A2) with the free Alkali light chains A2 and A1, respectively, under the same conditions led to the formation of significant amounts of the hybrid species. These findings suggest that in vivo the Alkali light chain-heavy chain interaction of Subfragment 1 is in a state of dynamic equilibrium between associated and dissociated states.  相似文献   

9.
The stability of the interaction of A1 in myosin and subfragment 1 isolated from fast-twitch mammalian and avian muscles with respect to temperature and ionic strength has been examined. This was done by determining the extent of exchange of the endogenous free A1 light chain into these proteins from the two species. Whereas the extent of exchange at 37 degrees C into mammalian S1, occurring after 60 min, is about 80% of the theoretically expected amount at physiological ionic conditions, the level of exchange observed with the avian S1 is significantly lower. However, close to the theoretical limit is observed for the avian S1 when exchange is done at 43 degrees C which is close to average avian body temperature. A similar dependence with temperature is observed in the case of exchanges into avian myosin. In the case of mammalian myosin, 50% of the theoretical exchange is observed at 37 degrees C under physiological ionic strength, whereas the level of exchange observed under these conditions with the avian protein is much lower in agreement with recent observations (Waller, G. S., and Lowey, S. (1985) J. Biol. Chem. 260, 14368-14373; Pastra-Landis, S. C., and Lowey, S. (1986) J. Biol. Chem. 261, 14811-14816). If, however, the exchanges are done at 43 degrees C in physiological ionic strength, significant extents of exchange can be observed in avian myosin. These results suggest that at physiological ionic and temperature conditions relevant for the source of myosin and S1 being investigated, the alkali light chains are in dynamic equilibrium between free and heavy chain associated states. Therefore, the failure to observe alkali light chain exchange in avian myosin at 37 degrees C appears to be related to the higher temperature stability of its interaction with the heavy chain.  相似文献   

10.
The divalent metal ion binding sites of skeletal myosin were investigated by electron paramagnetic resonance (EPR) spectroscopy using the paramagnetic (Mn(II) ion as a probe. Myosin possesses two high affinity sites (K less than 1 muM) for Mn(II), which are located on the 5,5'-dithiobis(2-nitrobenzoate) (DTNB) light chains. Mn(II) bound to the isolated DTNB light chain gives rise to an EPR spectrum similar to that of Mn(II) bound to myosin and this indicates that the metal binding site comprises ligands from the DTNB light chain alone. Myosin preparations in which the DTNB light chain content is reduced by treatment with 5,5'-dithiobis(2-nitrobenzoate) show a corresponding reduction in the stoichiometry of Mn(II) binding, but the stoichiometry is recovered on reassociation of the DTNB light chain. Chymotryptic digestion of myosin filaments in the presence of ethylenediaminetetraacetic acid yields subfragment 1, but digestion in the presence of divalent metal ions produces heavy meromyosin. Myosin with a depleted DTNB light chain content gives rise to subfragment 1 on proteolysis, even in the presence of divalent metal ions. It is proposed that saturation of the DTNB light chain site with divalent ions protects this subunit against proteolysis, which, in turn, inhibits the cleavage of the subfragment 1-subfragment 2 link. Either the DTNB light chain is located near the region of the link and sterically blocks chymotryptic attack, or it is bound to the subfragment 1 moiety and affects the conformation of the link region. When the product heavy meromyosin was examined by sodium dodecyl sulfate gel electrophoresis, an apparent anomaly arose in that there was no trace of the 19 000-dalton band corresponding to the DTNB light chain. This was resolved by following the time course of chymotryptic digestion of the myosin heavy chain, the DTNB light chain, and the divalent metal binding site. The 19 000-dalton DTNB light chain is rapidly degraded to a 17 000-dalton fragment which comigrates with the alkali 2 light chain. The divalent metal site remains intact, despite this degradation, and the 17 000 fragment continues to protect the subfragment 1-subfragment 2 link. In the absence of divalent metal ions, the 17 000-dalton fragment is further degraded and attack of the subfragment 1 link ensues. Mn(II) bound to cardiac myosin gives an EPR spectrum basically similar to that of skeletal myosin, suggesting that their 19 000-dalton light chains are analogous with respect to their divalent metal binding sites, despite their chemical differences. The potential of EPR spectroscopy for characterizing the metal binding sites of myosin from different sources and of intact muscle fibers is discussed.  相似文献   

11.
To begin to understand the nature of myosin subunit assembly, we determined the region of a vertebrate sarcomeric myosin heavy chain required for binding of light chain 1. We coexpressed in Escherichia coli segments of the rat alpha cardiac myosin heavy chain which spanned the carboxyl terminus of subfragment 1 and the amino terminus of subfragment 2 with a full-length rat cardiac myosin light chain 1. A 16 amino acid region of the myosin heavy chain (residues 792-808) was shown to be required for myosin light chain 1 binding in an immunoprecipitation assay.  相似文献   

12.
The alkali 1-type isoforms of myosin essential light chains from vertebrate striated muscles have an additional 40 or so amino acids at their N terminus compared with the alkali 2-type. Consequently two light chain isoenzymes of myosin subfragment-1 can be isolated. Using synthesized peptide mimics of the N-terminal region of alkali 1-type essential light chains, we have found by 1H NMR that the major actin binding region occurred in the N-terminal four residues, APKK. These results were confirmed by mutating this region of the human atrial essential light chain, resulting in altered actin-activated MgATPase kinetics when the recombinant light chains were hybridized into rabbit skeletal subfragment 1. Substitution of either Lys3 or Lys4 with Ala resulted in increased Km and kcat and decreased actin binding (as judged by chemical cross-linking). Replacement of Lys4 with Asp reduced actin binding and increased Km and kcat still further. Alteration of Ala1 to Val did not alter the kinetic parameters of the hybrid subfragment 1 or the essential light chain's ability to bind actin. Furthermore, we found a significant correlation between the apparent Km for actin and the kcat for MgATP turnover for each mutant hybrid, strengthening our belief that the binding of actin by alkali 1-type essential light chains results directly in modulation of the myosin motor.  相似文献   

13.
M Crasnier 《FEBS letters》1987,211(1):31-34
Exchange of bound alkali light chains on myosin by free alkali light chains is described. It was found that the yield of hybrid obtained was dependent on the incubation time in 4.7 M NH4Cl at pH 9.5. 60% recovery of S1(A1) from S1(A2) was obtained using only a 2-fold molar excess of A1 over S1(A2).  相似文献   

14.
Myosin subunit interactions. Localization of the alkali light chains   总被引:3,自引:0,他引:3  
Myosin homodimers, molecules containing either the A1 or the A2 light chain, do not exchange their light chains under conditions approximating physiological temperature and ionic strength. Myosin heterodimers, molecules containing both A1 and A2 light chains, are therefore formed at the time of synthesis rather than by a labile subunit exchange. Antibodies specific for the amino-terminal region of the alkali light chains were used to localize these subunits in myosin by immunoelectron microscopy. The close proximity of the alkali light chain to the 5,5'-dithiobis-(2-nitrobenzoic acid) light chain in the "neck" region of the myosin head is consistent with the finding that the 5,5'-dithiobis-(2-nitrobenzoic acid) light chain influences subunit interactions between the alkali light chain and heavy chain in vertebrate skeletal muscle myosin.  相似文献   

15.
B E Mathern  M Burke 《Biochemistry》1986,25(4):884-889
The substructure and the thermal stability of the subunit interactions of bovine cardiac myosin subfragment 1 (SF1) have been examined. The results are in agreement with previous reports that the cardiac protein is cleaved in a very similar manner [Flink, I. L., & Morkin, E. (1982) Biophys. J. 37, 34; Korner, M., Thiem, N. V., Cardinaud, R., & Lacombe, G. (1983) Biochemistry 22, 5843-5847] but at a much faster rate [Applegate, D., Azarcon, A., & Reisler, E. (1984) Biochemistry 23, 6626-6630] than the skeletal protein. Additionally, it is found that the long-lived, steady-state intermediates formed by these proteins with MgATP at high ionic strength differ in their susceptibilities to tryptic attack especially at the 27K/50K junction of the associated heavy chains, suggesting a different conformation for these intermediates of the cardiac and skeletal SF1's. The thermal stability of the subunit interactions under conditions approaching the physiological state was examined by thermal ion-exchange chromatography of cardiac SF1 at 39.5 degrees C in the presence of MgATP. This results in the separation of part of the protein as the isolated heavy chain which is found to exhibit high levels of ATPase activity in the absence and presence of actin. Tryptic digestion of cardiac SF1 prior to thermal ion-exchange chromatography produces greater dissociation, with the heavy chain in this case being isolated as a complex of 27K, 50K, and 18-20K fragments.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
1. Presence of N-terminal peptide ("difference peptide") in alkali light chain 1 (A1) of fish fast skeletal myosin was examined by comparing two kinds of light chain-based myosin subfragment 1 (S1) isozymes from the yellowtail Seriola quinqueradiata. 2. On tryptic digestion, A1 was cleaved to a smaller fragment (mol. wt decrement by 2000) along with the cleavage of S1 heavy chain, while A2 was resistant to trypsin. Two-dimensional gel electrophoresis showed that A1 released a basic peptide by tryptic digestion. 3. Both S1 isozymes showed clear kinetic differences in actin-activated Mg-ATPase activity, suggesting a higher affinity of A1 for actin. Affinity of A2 for heavy chain was also estimated to be about 2-fold higher than that of A1, as judged by the model experiments in which rabbit S1 isozymes were hybridized with heterologous alkali light chains.  相似文献   

17.
Structural changes in subfragment 1 of skeletal muscle myosin were investigated by cross-linking trypsin-cleaved S1 with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide. In the absence of nucleotide the alkali light chains are cross-linked to the 27 kDa heavy chain fragment; the presence of MgATP reduces the efficiency of this reaction. On the other hand, MgATP promotes the cross-link formation between the N-terminal 27 kDa and C-terminal 20 kDa fragments of the heavy chain. The chemical cleavage of the cross-linked heavy chains fragments with N-chlorosuccinimide and hydroxylamine indicates that the cross-links are formed between the regions spanning residues 131-204 and 699-809. These results indicate that the two regions of the heavy chain that are relatively distant in nucleotide-free skeletal S1 [Rayment et al. (1993) Science 261, 50-58] can potentially interact upon addition of nucleotide.  相似文献   

18.
The interaction of a series of bifunctional reagents with skeletal muscle myosin has been studied. In the di-imido ester series dimethylmalonimidate failed to generate any cross-linked species, whereas the adipic and higher analogues gave dimers of myosin heavy chains. Analysis of free amino groups after reaction with these reagents and with the reducible species dimethyldithiobis(propionimidate) showed that no more than two to three cross-links per molecule were introduced. By contrast, the bifunctional reducible acylating agent, dithiobis(succinimidylpropionate), reacted with annihilation of about 10% of the amino groups under mild conditions that precluded the formation of intermolecularly linked species. Digestion of the intramolecularly cross-linked myosin with papain, followed by analysis of the fragments by gel electrophoresis, revealed extensive cross-linking between the globular heads of the myosin molecules. The subfragment 1 dimers regenerated subfragment 1 on reduction, as shown by the electrophoretic mobility and amino acid analysis. The extent of cross-linking, and therefore presumably the average relative orientation or freedom of the two heads, was unaffected by the addition of ADP and calcium ions. The internally cross-linked myosin retains practically its full calcium-activated adenosine triphosphatase activity, but in contrast to native myosin is soluble even at very low ionic strength. Circular dichroism measurements show that the alpha helical conformation is undisturbed in cross-linked myosin, but the sedimentation coefficient is considerably higher than that of the native protein, possibly due to freezing of the heads in a "closed" configuration. The light chaiins are not cross-linked to the heavy chains, except under extreme conditions that leads to intermolecular cross-linking and inactivation. The presence of calcium ions protects dithiobisnitrobenzoate light chains against degradation by papain.  相似文献   

19.
S Oda  C Oriol-Audit  E Reisler 《Biochemistry》1980,19(24):5614-5618
Experiments have been carried out to assess the involvement of the myosin light chains [obtained by treatment of myosin with 5,5'-dithiobis(2-nitrobenzoic acid) (Nbs2)] in the control of cross-bridge movement and actomyosin interactions. Chymotryptic digestions of myosin, actomyosin, and myofibrils do not detect any Ca2+-induced change in the subfragment 2 region of myosin. Actin, like Ca2+, protects the in situ Nbs2 light chains from proteolysis and causes a partial switch in the digestion product of myosin from subfragment 1 to heavy meromyosin. This effect is independent of the state of aggregation of myosin, and it persists in acto heavy meromyosin and in actinomyosin in 0.6 M NaCl. Digestions and sedimentation studies indicate that there is no direct acto light chain interaction. Proteolysis of myosin shows a gradual transition from production of heavy meromyosin to subfragment 1 with lowering of the salt level. In the presence of Ca2+ heavy meromyosin is generated both in digestions of polymeric and of monomeric myosin. These results are explained in terms of localized changes within the Nbs2 light chains and subfragment 1. Subunit interactions in the myosin head lead to a Ca2+-induced reduction in the affinity of heavy meromyosin for actin in the presence of MgATP. The resulting Ca2+ inhibition of the actin-activated ATPase of myosin can be detected at high salt concentrations(75 mM KCl).  相似文献   

20.
Conformational stability of the myosin rod   总被引:1,自引:0,他引:1  
Chymotryptic cleavage patterns of myosin rods from pig stomach, chicken gizzard, and rabbit skeletal muscle indicate that short (approximately 45 nm) heavy meromyosin subfragment 2 (SF2) is a consistent product of all three rods, whereas long (approximately 60 nm) SF2 is derived only from skeletal muscle myosin. Differential scanning calorimetry was used to follow the thermally induced melting transition of the rods and certain of their subfragments. In 0.12 M KCl, sodium phosphate buffer, pH 6.2-7.6, the light meromyosin (LMM) and SF2 domains of each rod had essentially identical conformational stabilities. Temperature midpoints for the melting transitions were 54-56 degrees C for the two smooth muscle myosin rods and 50-53 degrees C for the skeletal muscle myosin rod. In 0.6 M K Cl buffer, melting transitions for the smooth muscle myosin rods were essentially unchanged, but skeletal muscle myosin rods showed multiphase melting, with major transitions at 43 degrees C and 52 degrees C. The first of these was tentatively attributed to LMM, and the second to SF2. In 0.12 M K Cl buffer, the LMM transition was stabilised so that it superimposed on that of SF2. No melting was observed in any of the rods at physiological temperature. These results indicate that, excluding a possible but only narrow hinge region, the entire myosin rod has essentially uniform conformational stability at physiological pH and ionic strength, and thus that the contractile and elastic properties of the cross-bridge exist in the heavy meromyosin subfragment 1 (SF1) domains of the molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号