首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
In degraded tropical pastures, active restoration strategies have the potential to facilitate forest regrowth at rates that are faster than natural recovery, enhancing litterfall, and nutrient inputs to the forest floor. We evaluated litterfall and nutrient dynamics under four treatments: plantation (entire area planted), tree islands (planting in six patches of three sizes), control (same age natural regeneration), and young secondary forest (7–9‐yr‐old natural regeneration). Treatments were established in plots of 50 × 50 m at six replicate sites in southern Costa Rica and the annual litterfall production was measured 5 yr after treatment establishment. Planted species included two native timber‐producing hardwoods (Terminalia amazonia and Vochysia guatemalensis) interplanted with two N‐fixing species (Inga edulis and Erythrina poeppigiana). Litter production was highest in secondary forests (7.3 Mg/ha/yr) and plantations (6.3), intermediate in islands (3.5), and lowest in controls (1.4). Secondary forests had higher input of all nutrients except N when compared with the plantation plots. Inga contributed 70 percent of leaffall in the plantations, demonstrating the influence that one species can have on litter quantity and quality. Although tree islands had lower litterfall rates, they were similar to plantations in inputs of Mg, K, P, Zn, and Mn. Tree islands increased litter production and nutrient inputs more quickly than natural regeneration. In addition to being less resource intensive than conventional plantations, this planting design promotes a more rapid increase in litter diversity and more spatial heterogeneity, which can accelerate the rate of nutrient cycling and facilitate forest recovery.  相似文献   

2.
We investigated if tropical rainforest trees produced more-lignified leaves in less productive environments using forests on Mount Kinabalu, Borneo. Our investigation was based on two earlier suggestions that slower litter decomposition occurs under less productive forests and that trees under resource limitation invest a large amount of carbon as lignin as a defense substance to minimize the loss from herbivores. When nine forests at different altitudes (700–3100 m) and soil conditions (derived from sedimentary or ultrabasic rocks) but with the same gentle relief position were compared, the concentrations of leaf-litter lignin were positively correlated with litterfall rates and leaf-litter nitrogen concentrations. These patterns would be reinforced in intact leaves if the effects of resorption at the time of leaf shedding were taken into account, because greater magnitude of resorption of mobile elements but not of lignin would occur in less productive environments (i.e. dilution of lignin in intact leaves). These results did not support earlier suggestions to explain the variation of leaf-litter lignin. Instead, we suggest that lower lignin contents are adaptive to recycle minerals without retarding decomposition in less productive environments.  相似文献   

3.
Recent studies suggest that tropical tree species exhibit low inbreeding and high gene dispersal levels despite the typically low density of conspecifics in tropical forests. To examine this, we undertook a study of pollen gene dispersal and mating system of two Amazonian tree species. We analyzed 341 seeds from 33 trees at four microsatellite loci in a Carapa guianensis population from Brazil, and 212 seeds from 22 trees at four microsatellite loci in a Sextonia rubra population from French Guiana. Differentiation of allele frequencies among the pollen pool of individual trees was ΦFT= 0.053 (95% CI: 0.027–0.074) for C. guianensis and ΦFT= 0.064 (95% CI: 0.017–0.088) for S. rubra. The mean pollen dispersal distances were estimated at 69–355 m for C. guianensis , and 86–303 m for S. rubra , depending on the pollen dispersal model and the estimate of reproductive tree density used. The multi-locus outcrossing rate was estimated at 0.918 and 0.945, and the correlation of paternity at 0.089 and 0.096, for C. guianensis and S. rubra , respectively, while no significant levels of biparental inbreeding were detected. Comparing trees with high and low local density of conspecifics, we found no evidence for differences in inbreeding levels. The results are discussed within the framework of the emerging picture of the reproductive biology of tropical forest trees.  相似文献   

4.
土壤湿度对东北3种主要树种凋落物分解的影响   总被引:1,自引:0,他引:1  
结合丰林国家自然保护区原始阔叶红松林1998-2017年表层(0~10 cm)土壤湿度监测数据,评估了全球变化背景下土壤湿度变化对东北主要森林树种红松、臭冷杉和白桦凋落物分解的影响.结果表明: 在同一土壤湿度水平下,凋落物分解速率随着凋落物质量的增加而增大,即表现为白桦>臭冷杉>红松.凋落物的分解速率随着土壤湿度的降低而减小.白桦、臭冷杉和红松3种凋落物的土壤湿度敏感性指数(M10)分别为0.782、0.789和0.827,土壤湿度水平每降低10%,初始分解速率分别减小21.8%、21.1%和17.3%.高质量凋落物(高氮含量、低碳氮比、低木质素含量)的分解速率对土壤湿度变化的响应更敏感.凋落物分解速率在不同凋落物类型间的差异随着土壤湿度的降低而缩小.近20年间,原始阔叶红松林土壤湿度呈显著减少趋势,对凋落物分解表现为抑制作用.在全球变化背景下,随着气温的升高,土壤湿度将继续降低,对凋落物的抑制作用会进一步增强,并将部分抵消因温度升高所带来的凋落物分解速率增大的压力.  相似文献   

5.
Amazonian forest fragments and second-growth forests often differ substantially from undisturbed forests in their microclimate, plant-species composition, and soil fauna. To determine if these changes could affect litter decomposition, we quantified the mass loss of two contrasting leaf-litter mixtures, in the presence or absence of soil macroinvertebrates, and in three forest habitats. Leaf-litter decomposition rates in second-growth forests (>10 years old) and in fragment edges (<100 m from the edge) did not differ from that in the forest interior (>250 m from the edges of primary forests). In all three habitats, experimental exclusion of soil invertebrates resulted in slower decomposition rates. Faunal-exclosure effects were stronger for litter of the primary forest, composed mostly of leaves of old-growth trees, than for litter of second-growth forests, which was dominated by leaves of successional species. The latter had a significantly lower initial concentration of N, higher C:N and lignin:N ratios, and decomposed at a slower rate than did litter from forest interiors. Our results indicate that land-cover changes in Amazonia affect decomposition mainly through changes in plant species composition, which in turn affect litter quality. Similar effects may occur on fragment edges, particularly on very disturbed edges, where successional trees become dominant. The drier microclimatic conditions in fragment edges and second-growth forests (>10 years old) did not appear to inhibit decomposition. Finally, although soil invertebrates play a key role in leaf-litter decomposition, we found no evidence that differences in the abundance, species richness, or species composition of invertebrates between disturbed and undisturbed forests significantly altered decomposition rates.  相似文献   

6.
Niche diversification is prominent among the mechanisms proposed to explain tropical rain forest tree diversity, with many studies focusing on trade‐offs among shade tolerance and growth. Less obvious is the impact of occasional, ephemeral and often minor disturbances on tree seedling survival. We propose that differential tolerances to soil waterlogging can contribute to the distribution of tree seedling communities along microtopographical gradients. We test this hypothesis experimentally by evaluating survival and performance of planted seedlings across microtopographical gradients in a periodically inundated tropical rain forest environment. Survival and relative growth rates were assessed for six Shorea (Dipterocarpaceae) species in Sepilok Forest Reserve (Sabah, Malaysia) over a 2‐yr period, during which seedlings were subjected to two brief flooding events. The species were selected on the basis of soil habitat affinities, with two species being primarily associated with low‐lying alluvial flats subject to inundation, two being associated with non‐flooded mudstone hills, and two species occurring in both habitats. Seedling performance was related to microtopographic elevation within and among plots and to soil moisture among plots. The faster growing species, Shorea argentifolia, Shorea leprosula and Shorea parvifolia, tended to be more vulnerable to high soil moisture in terms of mortality than the three species with lower growth rates. Within plots, soil moisture was inversely correlated with microelevation, and seedlings located at higher microelevations had an increased probability of survival. Microtopographical differences in seedling position could therefore contribute to species assembly processes through differential mortality, particularly in areas subject to minor and ephemeral flooding events.  相似文献   

7.
Few studies have examined the invasion of understory species into closed-canopy forests and, despite inter-specific differences in litter quality and quantity between understory and dominant canopy trees, the influence of understory invasions on soil nitrogen (N) cycling remains unknown. This paper examines litter quality and decomposition of kahili ginger (Hedychium gardnerianum), an invasive understory herb, to determine the influence of this species on N cycling in a Hawaiian montane rainforest. To examine the potential feedback between increased soil N availability and litter decomposition, litter from the invasive ginger, a native tree, and native tree fern was collected from unfertilized and fertilized plots and decomposed in a reciprocal transplant design. Hedychium litter decomposed faster than litter from the two native species. Across species, decomposition rates were negatively correlated with litter lignin content. Despite rapid decomposition rates of Hedychium litter, soil nitrogen availability and rates of net mineralization in the soil were similar in invaded and uninvaded plots. Nitrogen cycling at this site may be more strongly influenced by native species, which contribute the most to overall stand biomass. A negative effect of fertilization on the decomposition of Hedychium litter suggests that a negative feedback between litter quality and soil N availability may exist over longer timescales.  相似文献   

8.
Despite research demonstrating that water and nutrient availability exert strong effects on multiple ecosystem processes in tropical forests, little is known about the effect of these factors on the demography and population dynamics of tropical trees. Over the course of 5 years, we monitored two common Amazonian secondary forest species—Lacistema pubescens and Myrcia sylvatica—in dry-season irrigation, litter-removal and control plots. We then evaluated the effects of altered water and nutrient availability on population demography and dynamics using matrix models and life table response experiments. Our results show that despite prolonged experimental manipulation of water and nutrient availability, there were nearly no consistent and unidirectional treatment effects on the demography of either species. The patterns and significance of observed treatment effects were largely dependent on cross-year variability not related to rainfall patterns, and disappeared once we pooled data across years. Furthermore, most of these transient treatment effects had little effect on population growth rates. Our results suggest that despite major experimental manipulations of water and nutrient availability—factors considered critical to the ecology of tropical pioneer tree species—autogenic light limitation appears to be the primary regulator of tree demography at early/mid successional stages. Indeed, the effects of light availability may completely override those of other factors thought to influence the successional development of Amazonian secondary forests.  相似文献   

9.
This work tested the hypothesis that ectomycorrhizas (EM) of Dicymbe corymbosa alter leaf-litter decomposition and residual litter quality in tropical forests of Guyana. Mass loss of leaf litter in litter bags was determined on three occasions, in two experiments, during a 12-month period. Paired root-exclusion plots were located randomly within a D. corymbosa forest. Both D. corymbosa and mixed-species leaf litters were reciprocally transplanted into their respective forest types. Elemental analysis was performed on the residual D. corymbosa leaf litter after 1 yr. Leaf litter mass loss in the D. corymbosa forest was not influenced by EM, despite high EM colonization. Elemental analysis of D. corymbosa leaf litter residues demonstrated reduced calcium levels in the presence of EM, which were negatively correlated with EM rootlet-colonizing mass. The lack of EM effect on the litter decomposition rate, coupled with high EM colonization, suggests an important but indirect role in mineral nutrient acquisition. Lowered Ca concentration in leaf litter exposed to EM may suggest a high Ca demand by the ectotroph system.  相似文献   

10.
The niche theory predicts that environmental heterogeneity and species diversity are positively correlated in tropical forests, whereas the neutral theory suggests that stochastic processes are more important in determining species diversity. This study sought to investigate the effects of soil nutrient (nitrogen and phosphorus) heterogeneity on tree species diversity in the Xishuangbanna tropical seasonal rainforest in southwestern China. Thirty‐nine plots of 400 m2 (20 × 20 m) were randomly located in the Xishuangbanna tropical seasonal rainforest. Within each plot, soil nutrient (nitrogen and phosphorus) availability and heterogeneity, tree species diversity, and community phylogenetic structure were measured. Soil phosphorus heterogeneity and tree species diversity in each plot were positively correlated, while phosphorus availability and tree species diversity were not. The trees in plots with low soil phosphorus heterogeneity were phylogenetically overdispersed, while the phylogenetic structure of trees within the plots became clustered as heterogeneity increased. Neither nitrogen availability nor its heterogeneity was correlated to tree species diversity or the phylogenetic structure of trees within the plots. The interspecific competition in the forest plots with low soil phosphorus heterogeneity could lead to an overdispersed community. However, as heterogeneity increase, more closely related species may be able to coexist together and lead to a clustered community. Our results indicate that soil phosphorus heterogeneity significantly affects tree diversity in the Xishuangbanna tropical seasonal rainforest, suggesting that deterministic processes are dominant in this tropical forest assembly.  相似文献   

11.
The rain forest canopy hosts a large percentage of the world's plant biodiversity, which is maintained, in large part, by internal nutrient cycling. This is the first study to examine the effects of site (canopy, forest floor) and tree species (Dipteryx panamensis, Lecythis ampla, Hyeronima alchorneoides) on decay rates of a common substrate and in situ leaf litter in a tropical forest in Costa Rica. Decay rates were slower for both substrates within the canopy than on the forest floor. The slower rate of mass loss of the common substrate in the canopy was due to differences in microclimate between sites. Canopy litter decay rates were negatively correlated with litter lignin:P ratios, while forest floor decay rates were negatively correlated with lignin concentrations, indicating that the control of litter decay rates in the canopy is P availability while that of the forest floor is carbon quality. The slower cycling rates within the canopy are consistent with lower foliar nutrient concentrations of epiphytes compared with forest floor-rooted plants. Litter decay rates, but not common substrate decay rates, varied among tree species. The lack of variation in common substrate decay among tree species eliminated microclimatic variation as a possible cause for differences in litter decay and points to variation in litter quality, nutrient availability and decomposer community of tree species as the causal factors. The host tree contribution to canopy nutrient cycling via litter quality and inputs may influence the quality and quantity of canopy soil resources.  相似文献   

12.
亚热带不同树种凋落叶分解对氮添加的响应   总被引:1,自引:0,他引:1       下载免费PDF全文
为探究不同质量凋落物对氮(N)沉降的响应, 该研究采用尼龙网袋分解法, 在亚热带福建三明格氏栲(Castanopsis kawakamii)自然保护区的米槠(Castanopsis carlesii)天然林, 选取4种本区常见的具有不同初始化学性质的树种凋落叶进行模拟N沉降(N添加)分解实验(施N水平为对照0和50 kg·hm -2·a -1)。研究结果表明: 在2年的分解期内, 对照处理的各树种凋落叶的分解速率依次为观光木(Michelia odora, 0.557 a -1)、米槠(0.440 a -1)、台湾相思(Acacia confusa, 0.357 a -1)、杉木(Cunninghamia lanceolata, 0.354 a -1); N添加处理凋落叶分解速率依次为观光木(0.447 a -1)、米槠(0.354 a -1)、杉木(0.291 a -1)、台湾相思(0.230 a -1), 除杉木凋落叶外, N添加显著降低了其他3种凋落叶分解速率。N添加不仅使4种树木凋落叶分解过程中的N释放减慢, 同时还抑制凋落叶化学组成中木质素和纤维素的降解; N添加在凋落叶分解过程中总体上提高β-葡萄糖苷酶(βG)和酸性磷酸酶活性, 对纤维素水解酶的活性影响不一致, 而降低β-N-乙酰氨基葡萄糖苷酶活性和酚氧化酶活性。凋落叶分解速率与凋落叶中的碳获取酶(βG)活性以及其化学组分中的可萃取物含量极显著正相关, 与初始碳浓度、纤维素和木质素含量极显著负相关, 与初始N含量没有显著相关性。凋落物类型和N添加的交互作用虽未影响干质量损失速率, 但对木质素和纤维素的降解具有显著效应。综上所述, 化学组分比初始N含量能更好地预测凋落叶分解速率, 而N添加主要通过抑制分解木质素的氧化酶(如PHO)来降低凋落叶分解速率。  相似文献   

13.
We studied the decomposition of Cyrilla racemiflora logs over a 13‐yr period in tropical dry and wet forests in Puerto Rico. The mean mass loss, ratio of soft to hard wood, nutrient concentrations, and the diversity of wood‐inhabiting organisms were greater in logs decomposing in the dry forest than in the wet forest. Termites were also more abundant in the logs collected from the tropical dry forest than the tropical wet forest. High moisture content and a low animal diversity on the logs in the wet forest seem to retard wood decay in this habitat. Wood decay rates in the tropical dry forest can be related to the high diversity of species and functional groups of wood‐inhabiting organisms.  相似文献   

14.
In two consecutive years, we analysed the effect of litter quality, quantity and decomposability on soil N at three characteristic sites of the Patagonian Monte. We assessed (i) concentrations of N, C, lignin and total phenolics and the C/N ratio in senesced leaves as indicators of litter quality of three species of each dominant plant life form (evergreen shrubs and perennial grasses), and (ii) N, and organic-C concentrations, potential N-mineralisation and microbial-N flush in the soil beneath each species. Rate constants of potential decomposition of senesced leaves and N content in decaying leaves during the incubation period were assessed in composite samples of the three sites as indicators of litter decomposability. Further, we estimated for each species leaf-litter production, leaf-litter on soil, and the mass of standing senesced leaves during the senescence period. Senesced leaves of evergreen shrubs showed higher decomposability than those of perennial grasses. Leaf-litter production, leaf-litter on soil, and the mass of standing senesced leaves differed significantly among species. The largest variations in leaf-litter production and leaf-litter on soil were observed in evergreen shrubs. The mass of standing senesced leaves was larger in perennial grasses than in evergreen shrubs. Nitrogen, organic C and potential N-mineralisation in soil were higher underneath evergreen shrubs than beneath perennial grasses, while no significant differences were found in microbial-N flush among life forms. The initial concentrations of C, N and total phenolics of senesced leaves explained together 78% of the total variance observed in the dry mass loss of decaying leaves. Litter decomposition rates explained 98%, 98%, 73%, and 67% of the total variance of soil N, organic C, net-N mineralisation, and microbial-N flush, respectively. We concluded that leaf-litter decomposition rates along with leaf-litter production are meaningful indicators of plant local effects on soil N dynamics in shrublands of the Patagonian Monte, and probably in other similar ecosystem of the world dominated by slow growing species that accumulate a wide variety of secondary metabolites including phenolics. Indicators such as C/N or lignin concentration usually used to predict litter decomposability or local plant effects may not be adequate in the case of slow growing species that accumulate a wide range of secondary metabolites or have long leaf lifespan and low leaf-litter production.  相似文献   

15.
Fertilization experiments in tropical forests have shown that litterfall increases in response to the addition of one or more soil nutrients. However, the relationship between soil nutrient availability and litterfall is poorly defined along natural soil fertility gradients, especially in tropical montane forests. Here, we measured litterfall for two years in five lower montane 1‐ha plots spanning a soil fertility and precipitation gradient in lower montane forest at Fortuna, Panama. Litterfall was also measured in a concurrent nitrogen fertilization experiment at one site. Repeated‐measures ANOVA was used to test for site (or treatment), year, and season effects on vegetative, reproductive and total litterfall. We predicted that total litterfall, and the ratio of reproductive to leaf litterfall, would increase with nutrient availability along the fertility gradient, and in response to nitrogen addition. We found that total annual litterfall varied substantially among 1‐ha plots (4.78 Mg/ha/yr to 7.96 Mg/ha/yr), and all but the most aseasonal plot showed significant seasonality in litterfall. However, litterfall accumulation did not track soil nutrient availability; instead forest growing on relatively infertile soil, but dominated by an ectomycorrhizal tree species, had the highest total litterfall accumulation. In the fertilization plots, significantly more total litter fell in nitrogen addition relative to control plots, but this increase in response to nitrogen (13%) was small compared to variation observed among 1‐ha plots. These results suggest that while litterfall at Fortuna is nutrient‐limited, compositional and functional turnover along the fertility gradient obscure any direct relationship between soil resource availability and canopy productivity.  相似文献   

16.
We report data on leaf litter production and decomposition from a manipulative biodiversity experiment with trees in tropical Panama, which has been designed to explore the relationship between tree diversity and ecosystem functioning. A total of 24 plots (2025 m2) were established in 2001 using six native tree species, with 1‐, 3‐, and 6‐species mixtures. We estimated litter production during the dry season 2005 with litter traps; decomposition was assessed with a litter bag approach during the following wet season. Litter production during the course of the dry season was highly variable among the tree species. Tree diversity significantly affected litter production, and the majority of the intermediate diverse mixtures had higher litter yields than expected based on yields in monoculture. In contrast, high diverse mixtures did not show such overyielding in litter production. Litter decomposition rates were also highly species‐specific, and were related to various measures of litter quality (C/N, lignin/N, fibre content). We found no overall effect of litter diversity if the entire litter mixtures were analyzed, i.e. mixing species resulted in pure additive effects and observed decomposition rates were not different from expected rates. However, the individual species changed their decomposition pattern depending on the diversity of the litter mixture, i.e. there were species‐specific responses to mixing litter. The analysis of temporal C and N dynamics within litter mixtures gave only limited evidence for nutrient transfer among litters of different quality. At this early stage of our tree diversity experiment, there are no coherent and general effects of tree species richness on both litter production and decomposition. Within the scope of the biodiversity‐ecosystem functioning relationship, our results therefore highlight the process‐specific effects diversity may have. Additionally, species‐specific effects on ecosystem processes and their temporal dynamics are important, but such effects may change along the gradient of tree diversity.  相似文献   

17.
We studied litter decomposition and nutrient release in a tropical seasonal rain forest of Xishuangbanna, Southwest China. The monthly decay rates (k) of leaf litter ranged from 0.02 to 0.21/mo, and correlated with rainfall and soil moisture. Annual k values for leaf litter (1.79/yr) averaged 4.2 times of those for coarse wood (2.5–3.5 cm in diameter). The turnover coefficients of forest floor mass (annual litterfall input/mean floor mass) were: 4.11/yr for flowers and fruits, 2.07/yr for leaves, and 1.17/yr for fine wood (≤2 cm in diameter), with resident time decreasing from fine woods (0.85 yr) to leaves (0.48 yr) and to flower and fruits (0.24 yr). Nutrient residence times in the forest floor mass were ranked as: Ca (1.0 yr) > P (0.92 yr) > Mg (0.64 yr) > N (0.36 yr) > K (0.31 yr). Our data suggest that rates of litter decomposition and nutrient release in the seasonal rain forest of Xishuangbanna are slower than those in typical lowland rain forests, but similar to those in tropical semideciduous forests.  相似文献   

18.
Raphael K. Didham 《Oecologia》1998,116(3):397-406
The effects of forest fragmentation on leaf-litter decomposition rates were investigated for the first time in an experimentally fragmented tropical forest landscape in Central Amazonia. Leaf-litter decomposition rates were measured at seven distances (0–420 m) along forest edge-to-interior transects in two 100-ha fragments, two continuous forest edges, and at an identical series of distances along two deep continuous forest transects, as well as at the centers of two 1-ha and two 10-ha fragments. Decomposition rates increased significantly towards the edge of 100-ha forest fragments. Litter turnover times were 3–4 times faster within 50 m of the edge of 100-ha fragments than normally found in deep continuous forest. In contrast, there was no significant change in the rate of leaf-litter decomposition from the interior to the edge of continuous forest. It is difficult to account for these very different edge responses. Decomposition rates were not correlated with air temperature differentials, evaporative drying rates, litter depth, biomass or moisture content, or with total invertebrate densities, either within individual edge transects or across all sites. The difference in edge response may be due to chance, particularly the patchy removal of vast quantities of litter by litter-feeding termites, or may be a real, area-dependent phenomenon. Clearly, however, forest fragmentation increases the variability and unpredictability of litter decomposition rates near forest edges. In addition to edge effects, decomposition rates were strongly affected by decreasing fragment area. While sites at the centers of 10-ha and 100-ha forest fragments and continuous forest had equivalent decomposition rates, rates were markedly lower at the centers of 1-ha fragments. Litter turnover times were 2–3 times slower in 1-ha fragments than in continuous forest, and up to 13 times slower than at 100-ha edges. Litter structure and nutrient cycling dynamics are inevitably altered by forest fragmentation. Received: 16 October 1997 / Accepted: 14 April 1998  相似文献   

19.
In the tropics of South China, climate change induced more rainfall events in the wet season in the last decades. Moreover, there will be more frequently spring drought in the future. However, knowledge on how litter decomposition rate would respond to these seasonal precipitation changes is still limited. In the present study, we conducted a precipitation manipulation experiment in a tropical forest. First, we applied a 60% rainfall exclusion in April and May to defer the onset of wet season and added the same amount of water in October and November to mimic a deferred wet season (DW); second, we increased as much as 25% mean annual precipitation into plots in July and August to simulate a wetter wet season (WW). Five single‐species litters, with their carbon to nitrogen ratio ranged from 27 to 49, and a mixed litter were used to explore how the precipitation change treatments would affect litter decomposition rate. The interaction between precipitation changes and litter species was not significant. The DW treatment marginally accelerated litter decomposition across six litter types. Detailed analysis showed that DW increased litter decomposition rate in the periods of January to March and October to December, when soil moisture was increased by the water addition in the dry season. In contrast, WW did not significantly affect litter decomposition rate, which was consistent with the unchanged soil moisture pattern. In conclusion, the study indicated that regardless of litter types or litter quality, the projected deferred wet season would increase litter decomposition rate, whereas the wetter wet season would not affect litter decomposition rate in the tropical forests. This study improves our knowledge of how tropical forest carbon cycling in response to precipitation change.  相似文献   

20.
Kammesheidt  Ludwig 《Plant Ecology》1998,139(2):155-165
The contribution of tree sprouts to the recovery of tropical moist forest in Eastern Paraguay after swidden agriculture was examined in 2–15 yr old forest fallows and compared with sprouting in mature forest. The proportion of stems of sprout origin, as individuals arising from stumps or lower parts of live stems ( 1 m), in the stem density declined from 59.5% (stems 1–4.9 cm DBH) and 21.0% (stems 5 cm DBH) in the young regrowth stands (2–5 yr old) to 32.9% and 19.6%, respectively in the older regrowth stands (10 and 15 yr old). Sprouts were absent in the mature forest. Out of 58 species sampled in the regrowth stands, 28 occured both as resprouts and seed regeneration, 7 were only found as resprouts, and 23 were only present as seed-established individuals. No significant relationship was found between the successional status or the growth form of species and apparent resprouting capacity. Seed-established individuals of Trema micrantha were predominant in the two and three-year old regrowth stands. In the more advanced successional stages, T. micrantha was replaced by Cecropia pachystachia and other secondary species. Species richness increased during succession. Species-abundance distribution in the successional stands followed a log series pattern, whereas the mature forest showed a log normal distribution. Floristic similarity to the mature forest, calculated with the qualitative Soerensen index, increased from 0.45 (1–4.9 cm DBH) in the young regrowth stands to 0.52 in the older regrowth stands. In the tree stratum ( 5 cm DBH), however, floristic composition approached only 0.28 in the younger regrowth stands and 0.44 in the older regrowth stands, respectively that of the mature forest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号