首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A low-protein diet supplemented with ketoacids maintains nutritional status in patients with diabetic nephropathy. The activation of autophagy has been shown in the skeletal muscle of diabetic and uremic rats. This study aimed to determine whether a low-protein diet supplemented with ketoacids improves muscle atrophy and decreases the increased autophagy observed in rats with type 2 diabetic nephropathy. In this study, 24-week-old Goto-Kakizaki male rats were randomly divided into groups that received either a normal protein diet (NPD group), a low-protein diet (LPD group) or a low-protein diet supplemented with ketoacids (LPD+KA group) for 24 weeks. Age- and weight-matched Wistar rats served as control animals and received a normal protein diet (control group). We found that protein restriction attenuated proteinuria and decreased blood urea nitrogen and serum creatinine levels. Compared with the NPD and LPD groups, the LPD+KA group showed a delay in body weight loss, an attenuation in soleus muscle mass loss and a decrease of the mean cross-sectional area of soleus muscle fibers. The mRNA and protein expression of autophagy-related genes, such as Beclin-1, LC3B, Bnip3, p62 and Cathepsin L, were increased in the soleus muscle of GK rats fed with NPD compared to Wistar rats. Importantly, LPD resulted in a slight reduction in the expression of autophagy-related genes; however, these differences were not statistically significant. In addition, LPD+KA abolished the upregulation of autophagy-related gene expression. Furthermore, the activation of autophagy in the NPD and LPD groups was confirmed by the appearance of autophagosomes or autolysosomes using electron microscopy, when compared with the Control and LPD+KA groups. Our results showed that LPD+KA abolished the activation of autophagy in skeletal muscle and decreased muscle loss in rats with type 2 diabetic nephropathy.  相似文献   

2.
目的:研究2型糖尿病伴脂肪肝患者血浆成纤维细胞生长因子21(FGF21)水平与肥胖、脂代谢及胰岛素抵抗的相关性,为临床诊疗提供依据。方法:选取2013年5月到2015年11月我院收治的2型糖尿病伴脂肪肝患者100例为研究组,另选取同期单纯脂肪肝患者100例为脂肪肝组,健康体检者100例为对照组,比较各组入选次日清晨FGF21、谷丙转氨酶(ALT)、谷草转氨酶(AST)、胆固醇(TC)、甘油三酯(TG)、低密度脂蛋白胆固醇(LDL-C)、高密度脂蛋白胆固醇(HDL-C)、游离脂肪酸(FFA)、体重指数(BMI)、腰臀比(WHR)、空腹胰岛素(FINS)、空腹血糖(FBG)以及胰岛素抵抗指数(HOMA-IR)。结果:研究组TG、TC、AST、ALT、LDL-C、FFA、FBG、BMI、WHR、FINS、HOMA-IR以及FGF21均显著高于对照组,HDL-C显著低于对照组,比较差异具有统计学意义(P0.05);研究组FFA、TG、FINS、FBG、HOMA-IR以及FGF21显著高于脂肪肝组,BMI和WHR显著低于脂肪肝组,比较差异具有统计学意义(P0.05);相关性分析显示:FGF21与TG、FFA、BMI以及HOMA-IR呈正相关关系(P0.05)。结论:2型糖尿病合并脂肪肝患者FGF21水平会显著升高,且与脂肪代谢、肥胖以及胰岛素抵抗有关。  相似文献   

3.
The aim of the present study was to evaluate the metabolism of organic chromium and its effect on digestibility and intake of lambs. Four 4-month-old male lambs, each weighing 28 kg, were used. The animals were kept in metabolic cages for a period of 20 days (15 days of adaptation and 5 days of experimentation), in two experimental phases, with inverted treatments. Organic chromium was administered by intraruminal infusion of 1 mg of chromium-rich yeast (Saccharomyces cerevisiae) throughout the adaptive and experimental period. The dry material rates of the diet and feces of the animals were evaluated to estimate consumption, digestibility, and fecal production. During the experimental period, blood, feces, and urine were collected every 24 h to determine chromium levels. There was no significant difference in the excretion of chromium in the urine, and no mineral remnants were detected in the blood. Excretion was generally fecal. There was greater excretion of chromium in the feces of lambs in the treated group on day 0 and day 3, compared with the control group. The use of organic chromium promoted an increase in the consumption of dry material in the treated animals only at day 0 (P?<?0.05). The production of fecal dry matter was greater among the treated lambs than among the animals of the control group on day 1, day 2, day 3, and day 4 (P?<?0.05). The results obtained showed that organic chromium associated with live yeasts is not absorbed by the body and do not affect the intake time in the dose used.  相似文献   

4.
2型糖尿病大鼠模型的建立及其糖代谢特征分析   总被引:79,自引:8,他引:71  
目的 建立一种接近于人类普通型 2型糖尿病大鼠模型。方法  8周龄SD大鼠高热量饮食喂养 2个月后给予小剂量STZ建立 2型糖尿病模型 ,然后进行胰岛素 葡萄糖耐量试验、胰岛免疫组化及其图像分析 ,并与大、小剂量STZ、单纯高热量饮食等各组大鼠相应指标比较。结果 高热量饮食一段时间后给予小剂量STZ的大鼠模型外周胰岛素敏感性降低 ,胰岛素合成和分泌相对于单纯高热量饮食组大鼠降低 ,但仍高于正常对照组。结论 该模型大鼠具有外周胰岛素抵抗和胰岛功能仅轻微受损等特征 ,具有类似人类 2型糖尿病的临床表现 ,有助于该病及其慢性并发症发病机理的研究  相似文献   

5.
Objective: To assess the effect of taurine supplementation on respiratory gas exchange, which might reflect the improved metabolism of glucose and/or lipid in the type 2 diabetic Otsuka Long‐Evans Tokushima Fatty (OLETF) rats. Research Methods and Procedures: Male OLETF rats (16 weeks of age) were randomly divided into two groups: unsupplemented group and taurine‐supplemented (3% in drinking water) group. After 9 weeks of treatment, indirect calorimetry and insulin tolerance tests were conducted. The amounts of visceral fat pads, tissue glycogen, the blood concentrations of glucose, triacylglycerol, taurine, and electrolytes, and the level of hematocrit were compared between groups. A nondiabetic rat strain (Long‐Evans Tokushima Otsuka) was used as the age‐matched normal control. Results: The indirect calorimetry showed that the treatment of OLETF rats with taurine could reduce a part of postprandial glucose oxidation possibly responsible for the increase of triacylglycerol synthesis in the body. Taurine supplementation also improved hyperglycemia and insulin resistance and increased muscle glycogen content in the OLETF rats. Supplementation with taurine increased the blood concentration of taurine and electrolyte and fluid volume, all of which were considered to be related to the improvement of metabolic disturbance in OLETF rats. Discussion: Taurine supplementation may be an effective treatment for glucose intolerance and fat/lipid accumulation observed in type 2 diabetes associated with obesity. These metabolic changes might be ascribed, in part, to the alteration of circulating blood profiles, where the improved hyperglycemia and/or the blood accumulation of taurine itself would play roles.  相似文献   

6.
The aim of this study was to elucidate the effects of chromium (Cr) supplementation as inorganic Cr (CrCl3?·?6H2O) on energy balance, lipid peroxidation, and lactation performance in periparturient Murrah buffaloes. Twenty-four multiparous Murrah buffaloes according to lactation, parity, body mass, and expected calving date were divided equally. Experimental buffaloes were randomly assigned to four treatment diets: a control diet and three diets with an inorganic Cr supplementation at 0.5, 1.0, and 1.5 mg of Cr/kg dry matter (DM), respectively from 60 days before expected calving date until 60 days of lactation. Milk productions of buffaloes were recorded every day until 60 days in milk. Blood samples were collected at days ?60, ?45, ?30,?21, ?15, ?7, ?3, 0, 7, 15, 21, 30, 45, and 60 days relative to actual calving for determination of plasma glucose, nonesterified fatty acid (NEFA), thiobarbituric acid reactive substance (TBARS), total cholesterol, total protein, albumin, blood urea nitrogen (BUN), and minerals. Adding inorganic Cr to the diet of Murrah buffaloes increased milk yield. Percentage of fat and total solid yield increased significantly through the experiment in the Cr-supplemented group. At the day of calving, buffaloes showed a decrease in dry matter intake (DMI), plasma glucose, and zinc (Zn) and Cr concentrations. In contrast, plasma NEFA, TBARS, and copper (Cu) levels were found highest at the day of calving among all groups. Cr supplementation increased peripheral blood glucose concentration while decreased level of NEFA and TBARS was recorded in Cr-fed buffaloes. Supplemental Cr had no effect on plasma cholesterol, total protein, albumin, and BUN in periparturient period. Dietary Cr supplementation had positive effect on plasma Cr concentration, but the plasma concentration of Cu, Zn, and iron (Fe) was not affected by different dietary Cr level supplementation. The results suggest that dietary inorganic Cr supplementation improved milk yield by reducing negative energy balance and lipid peroxidation in buffaloes during periparturient period.  相似文献   

7.
目的观察马齿苋及其不同提取部位对改善2型糖尿病大鼠胰岛素抵抗糖脂代谢紊乱的影响。方法应用小剂量链脲佐菌素加高热量饲养的方法建立实验性2型糖尿病大鼠模型,随机分为模型组、马齿苋组、马齿苋MH部位组、马齿苋MS部位组及多烯康对照组,并设正常对照组,各组大鼠相应地给与灌胃治疗12周;检测各组糖代谢及脂代谢血生化指标。结果糖代谢方面,马齿苋组能明显改善实验性2型糖尿病大鼠糖耐量异常,FINS明显低于模型组,相应地ISI显著提高;马齿苋MH部位具有改善实验性2型糖尿病大鼠糖耐量异常的趋势,FINS水平有所下降,ISI有所增加,与模型组比较接近统计学意义;而马齿苋MS部位对2型糖尿病大鼠糖耐量异常影响不大,改善胰岛素作用不明显。脂代谢方面,马齿苋组与模型组比较,显著升高血清HDL-C水平,同时降低血清TC、TG和FFA水平。马齿苋MH部位与模型组比较,显著降低血清TG水平,同时降低血清TC和FFA水平,但升高血清HDL-C水平不明显。马齿苋MS部位与模型组比较,显著降低血清FFA水平,降低血清TG接近统计学意义,但对血清TC和HDL-C水平无明显影响。结论马齿苋能明显改善2型糖尿病大鼠胰岛素抵抗糖代谢异常。马齿苋MH部位具有改善糖代谢的趋势,而马齿苋MS部位对糖代谢的影响不明显。马齿苋及其马齿苋MH部位、马齿苋MS部位对2型糖尿病大鼠胰岛素抵抗脂代谢异常均有明显的改善作用,但其侧重点各有不同,可能与其作用环节和机制不同有关。  相似文献   

8.
9.
Conditions in which glucose metabolism is impaired due to insulin resistance are associated with memory impairment. It was hypothesized that supplemental chromium (Cr) may alleviate insulin resistance in type 2 diabetes and consequently improve memory acquisition, depending upon its source and level. In a complete randomized design experiment, male Wistar rats (n=60; weighing 200-220 g) were fed either normal (8%, normal diet (ND)) or high-fat (40%, high-fat diet (HFD)) diet and supplemented with Cr as either chromium-glycinate (CrGly) or chromium-acetate (CrAc) at doses of 0, 40, or 80 μg/kg body weight (BW) via drinking water from 8 to 20 weeks of age. Feeding HFD induced type 2 diabetes, as reflected by greater glucose/insulin ratio (2.98 vs. 2.74) comparing to feeding ND. Moreover, HFD rats had greater BW (314 vs. 279 g) and less serum (53 vs. 68 μg/L) and brain (14 vs. 24 ng/g) Cr concentrations than ND rats. High-fat diet caused a 32% reduction in expressions of glucose transporters 1 and 3 (GLUTs) in brain tissue and a 27% reduction in mean percentage time spent in the target quadrant and a 38% increase in spatial memory acquisition phase (SMAP) compared with ND. Compared with supplemental Cr as CrAc, CrGly was more effective to ameliorate response variables (i.e., restoration of tissue Cr concentration, enhancement of cerebral GLUTs expressions, and reduction of the glucose/insulin ratio and SMAP) in a dose-response manner, especially in rats fed HFD. Supplemental Cr as CrGly may have therapeutic potential to enhance insulin action and alleviate memory acquisition in a dose-dependent manner, through restoring tissue Cr reserve and enhancing cerebral GLUTs expressions.  相似文献   

10.
目的:研究镁补充对2型糖尿病大鼠糖脂代谢的影响。方法:将用高脂饮食联合链脲佐菌素(STZ)方法诱发的2型糖尿病大鼠随机分为四个组,糖尿病对照组喂饲高脂饲料,高、中、低剂量组在高脂饲料中分别加入2000、1000、200 mg/kg的镁(以镁离子计)。自由饮食喂养四周,处死动物。用放射免疫法测血清胰岛素(Ins)水平、用葡萄糖氧化酶法测空腹血浆葡萄糖(fasting plasmaglucose,FPG),并计算胰岛素敏感指数(insulin sensitivity index,ISI)。比色法检测糖化血红蛋白(glycosylated hemoglobin,HbA1c)。用全自动生化分析仪测高密度脂蛋白胆固醇(high-density lipoprotein cholesterol,HDLC)、甘油三酯(triglyceride,TG)、总胆固醇(total cholesterol,TC)。结果:高剂量组的空腹血糖、空腹血清、糖化血红蛋白、甘油三酯、总胆固醇水平均较糖尿病对照组显著性降低(P<0.05),而高密度脂蛋白胆固醇、胰岛素敏感指数较糖尿病对照组显著性升高(P<0.05)。结论:镁补充可以提高2型糖尿病大鼠胰岛素敏感性,改善糖尿病大鼠的糖脂代谢情况。  相似文献   

11.
The effect of cricket extract on high‐fat diet fed rat was observed. It was shown that cricket extract prevented the increment of body weight by high‐fat diet. The extract also decreased the value of AST in liver. The most significant effect of the extract was shown on lipid metabolism. The contents of total lipid and total cholesterol in liver and feces were reduced by the extract on dose‐dependent. These statistically significant results were clear in 3% extract treated group (HFD3) while were slight in 1% extract treated group (HFD1). The same result was also shown in body fat content.  相似文献   

12.
Lipotoxicity of the heart has been implicated as a leading cause of morbidity in Type 2 Diabetes Mellitus (T2DM). While numerous reports have demonstrated increased myocardial fatty acid (FA) utilization in obese T2DM animal models, this diabetic phenotype has yet to be demonstrated in non-obese animal models of T2DM. Therefore, the present study investigates functional, metabolic, and genomic differences in myocardial FA metabolism in non-obese type 2 diabetic rats. The study utilized Goto-Kakizaki (GK) rats at the age of 24 weeks. Each rat was imaged with small animal positron emission tomography (PET) to estimate myocardial blood flow (MBF) and myocardial FA metabolism. Echocardiograms (ECHOs) were performed to assess cardiac function. Levels of triglycerides (TG) and non-esterified fatty acids (NEFA) were measured in both plasma and cardiac tissues. Finally, expression profiles for 168 genes that have been implicated in diabetes and FA metabolism were measured using quantitative PCR (qPCR) arrays. GK rats exhibited increased NEFA and TG in both plasma and cardiac tissue. Quantitative PET imaging suggests that GK rats have increased FA metabolism. ECHO data indicates that GK rats have a significant increase in left ventricle mass index (LVMI) and decrease in peak early diastolic mitral annular velocity (E’) compared to Wistar rats, suggesting structural remodeling and impaired diastolic function. Of the 84 genes in each the diabetes and FA metabolism arrays, 17 genes in the diabetes array and 41 genes in the FA metabolism array were significantly up-regulated in GK rats. Our data suggest that GK rats’ exhibit increased genomic disposition to FA and TG metabolism independent of obesity.  相似文献   

13.
14.
The effects of dietary glutathione (GSH) on plasma and liver lipid concentrations were investigated with rats fed on a high cholesterol diet. When graded levels of GSH, 0.75 to 5.0%, were added to the 25% casein basal diet, the plasma total cholesterol level was significantly decreased and the HDL-cholesterol level was inversely increased in all addition levels without influence on the growth of animals except for the 5% addition level; the dietary addition of 5% GSH markedly depressed the growth and food consumption of rats and caused a slight diarrhea. Plasma triglyceride and phospholipid levels were decreased by the dietary addition of GSH. The contents of cholesterol and triglyceride in the liver were decreased as the dietary addition level of GSH was increased. The dietary addition of a mixture of glutamic acid, cysteine and glycine, or cysteine alone corresponding to 2.5% GSH resulted in a cholesterol-lowering effect which could not be distinguished from the effect of GSH in rats fed on the 25% casein diet. When 1.5% GSH was added to a low (10%) casein diet, the plasma cholesterol-lowering effect of GSH was also observed and the effect was comparable to that of cysteine. These results indicate that dietary-added GSH has a plasma and liver cholesterol-lowering efficacy and that this effect is largely attributable to the cysteine residue of GSH rather than to the tripeptide itself or the other amino acid residues.  相似文献   

15.
16.
A 56-day feeding experiment was conducted to investigate the effects of yeast chromium (Cr, 300 μg/kg diet) and/or l-carnitine (100 mg/kg diet) on lipid metabolism and their interaction in sheep. After a 14-day adaptation period, 32 3-month-old sheep were randomly divided into four groups of eight. All sheep were fed with basal diets according to the American feeding standard of the National Research Council. At the end of the experiment, yeast Cr and/or l-carnitine supplementation significantly decreased abdominal fat mass and abdominal fat percentage, suggesting an improved mutton quality. Compared with the control group, the ratio of glucose to insulin was significantly increased, due to unchanged glucose levels and reduced insulin levels in yeast Cr and/or l-carnitine supplement groups, indicating high insulin sensitivity and well-controlled serum glucose levels. In addition, yeast chromium and/or l-carnitine induced significant decreases in serum triglyceride levels and serum total cholesterol levels, while increasing serum free fatty acid levels and high-density lipoproteincholesterol levels. The findings show that adding a yeast Cr and/or l-carnitine supplement may give better control of glucose and lipid variables.  相似文献   

17.
Abstract: CBL/57 strain db/db mice exhibit type II (non-insulin-dependent) diabetes. The affected mice are markedly hyperinsulinemic, hyperglycemic, and hypercholesterolemic, and their serum K+ levels are decreased. The brains of the diabetic mice are significantly smaller than those of their lean, control littermates, but the protein concentration is normal. The low brain weight is accompanied by a loss of major fatty acid components within the whole brain, nerve endings, and mitochondrial membranes. Cholesterol levels are low in whole brain but are not significantly different from normal in the synaptosomal membranes. The phospholipid concentration is significantly decreased in whole brain homogenates, crude synaptosomal membranes, and crude mitochondrial membranes of the diabetic mice. In addition, the specific activities of membrane-bound synaptosomal acetylcholinesterase, Na+,K+-ATPase, and Mg2+-ATPase are decreased in crude synaptosomal membranes of the diabetic mice. The specific activities of carnitine palmitoyltransferase I and carnitine acetyltransferase are significantly increased in the crude mitochondrial fraction isolated from the brains of the type II diabetic mice, whereas the specific activity of pyruvate dehydrogenase complex is decreased. The specific activities of two other mitochondrial enzymes—monoamine oxidase B and citrate synthase—and a cytosolic enzyme—lactate dehydrogenase—are unaltered. The ability to synthesize cyclic AMP is markedly decreased in the brains of the diabetic mice. The concentrations of carnitine and of the amino acids, glutamate, aspartate, glutamine, and serine are unaltered, whereas glycine levels are significantly elevated in the brains of the db/db mice. The data suggest that in vivo the brains of the diabetic mice exhibit a decreased capacity for glucose oxidation and increased capacity for fatty acid oxidation. This hypothesis is supported by the finding that cerebral mitochondria isolated from the db/db mice oxidize [1-14C]palmitate to 14CO2 at a rate almost twice that of control mitochondria. The present findings emphasize the potentially serious alteration of brain metabolism in uncontrolled type II diabetes.  相似文献   

18.
Diabetes mellitus is associated to a reduction of antioxidant defenses that leads to oxidative stress and complications in diabetic individuals. The present study was undertaken to investigate the effect of selenium on blood biochemical parameters, antioxidant enzyme activities, and tissue zinc levels in alloxan-induced diabetic rats fed a zinc-deficient diet. The rats were divided into two groups; the first group was fed a zinc-sufficient diet, while the second group was fed a zinc-deficient diet. Half of each group was treated orally with 0.5 mg/kg sodium selenite. Tissue and blood samples were taken from all animals after 28 days of treatment. At the end of the experiment, the body weight gain and food intake of the zinc-deficient diabetic animals were lower than that of zinc-adequate diabetic animals. Inadequate dietary zinc intake increased glucose, lipids, triglycerides, urea, and liver lipid peroxidation levels. In contrast, serum protein, reduced glutathione, plasma zinc and tissue levels were decreased. A zinc-deficient diet led also to an increase in serum glutamate oxaloacetate transaminase, glutamate pyruvate transaminase, and liver glutathione-S-transferase and to a decrease in serum alkaline phosphatase activity and glutathione peroxidase. Selenium treatment ameliorated all the values approximately to their normal levels. In conclusion, selenium supplementation presumably acting as an antioxidant led to an improvement of insulin activity, significantly reducing the severity of zinc deficiency in diabetes.  相似文献   

19.
肝的脂肪代谢异常和胰岛素抵抗(insulin resistance,IR)对促进2型糖尿病(type 2 diabetes mellitus,T2DM)的发生与发展具有显著影响。但此过程复杂,参与调控基因目前尚未完全清楚。有研究表明,脂肪酸分解、氨基酸代谢、肝糖原合成等生物过程对糖尿病的形成具有促进作用。为了阐明这一调控机制,本文通过基因芯片技术研究GK(Goto-Kakizaki)大鼠和WKY(Wistar-Kyoto)大鼠肝差异基因对肝的脂肪代谢和胰岛素抵抗的影响,探讨可引起2型糖尿病发病的分子机制。从基因表达数据库(GEO)获取GSE13271基因表达谱,并对原始数据进行标准化处理。通过GO(Gene Ontology)、KEGG(Kyoto Encyclopedia of Genes and Genomes enrichment)、String和Cytoscape软件对差异表达基因进行功能分析。结果从GK和WKY大鼠中分别获得179和278个差异基因,同时从排名前10的路径中筛选出21个差异基因(Aldh1a1, Cyp2c22, bp2,Fabp7,Cyp4a3, Acot1, Acot2,Hsd17b2, Ech1, Hmgcl,Bdh1, Crot, Pex11a, Cpt1a, Hadhb, Gda, Elovl2, Prodh, Agpat3, Sardh, Pigu),将这些基因与前10个的GO term取交集。最终得到10个显著差异基因(Aldh1a1, Fabp2, Acot1, Acot2, Ech1, Hmgcl, Bdh1, Crot, Cpt1a, Hadhb),功能分析结果显示,肝组织相关基因通过一系列生物过程对肝的脂肪代谢和胰岛素抵抗产生调节作用,从而也为临床糖尿病的治疗以及新作用靶点的发现提供更多参考依据。  相似文献   

20.
目的:探讨利拉鲁肽联合二甲双胍对肥胖2型糖尿病(T2DM)患者糖脂代谢、血管内皮功能及微炎症状态的影响.方法:选取2016年7月~2019年4月期间我院收治的117例T2DM肥胖患者.根据随机数字表法分为对照组(n=58,二甲双胍治疗)和研究组(n=59,利拉鲁肽联合二甲双胍治疗),比较两组患者体质量指数(BMI)、糖...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号