首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BackgroundApolipoprotein L1 gene (APOL1) G1 and G2 renal-risk variants, common in populations with recent African ancestry, are strongly associated with non-diabetic nephropathy, end-stage kidney disease, and shorter allograft survival in deceased-donor kidneys (autosomal recessive inheritance). Circulating APOL1 protein is synthesized primarily in the liver and hydrodynamic gene delivery of APOL1 G1 and G2 risk variants has caused hepatic necrosis in a murine model.MethodsTo evaluate the impact of these variants in liver transplantation, this multicenter study investigated the association of APOL1 G1 and G2 alleles in deceased African American liver donors with allograft survival. Transplant recipients were followed for liver allograft survival using data from the Scientific Registry of Transplant Recipients.ResultsOf the 639 liver donors evaluated, 247 had no APOL1 risk allele, 300 had 1 risk allele, and 92 had 2 risk alleles. Graft failure assessed at 15 days, 6 months, 1 year and total was not significantly associated with donor APOL1 genotype (p-values = 0.25, 0.19, 0.67 and 0.89, respectively).ConclusionsIn contrast to kidney transplantation, deceased-donor APOL1 G1 and G2 risk variants do not significantly impact outcomes in liver transplantation.  相似文献   

2.
Two APOL1 gene variants, which likely evolved to protect individuals from African sleeping sickness, are strongly associated with nondiabetic kidney disease in individuals with recent African ancestry. Consistent with its role in trypanosome killing, the pro-death APOL1 protein is toxic to most cells, but its mechanism of cell death is poorly understood and little is known regarding its intracellular trafficking and secretion. Because the liver appears to be the main source of circulating APOL1, we examined its secretory behavior and mechanism of toxicity in hepatoma cells and primary human hepatocytes. APOL1 is poorly secreted in vitro, even in the presence of chemical chaper­ones; however, it is efficiently secreted in wild-type transgenic mice, suggesting that APOL1 secretion has specialized requirements that cultured cells fail to support. In hepatoma cells, inducible expression of APOL1 and its risk variants promoted cell death, with the G1 variant displaying the highest degree of toxicity. To explore the basis for APOL1-mediated cell toxicity, endoplasmic reticulum stress, pyroptosis, autophagy, and apoptosis were examined. Our results suggest that autophagy represents the predominant mechanism of APOL1-mediated cell death. Overall, these results increase our understanding of the basic biology and trafficking behavior of circulating APOL1 from the liver.  相似文献   

3.
Disease susceptibility can arise as a consequence of adaptation to infectious disease. Recent findings have suggested that higher rates of chronic kidney disease (CKD) in individuals with recent African ancestry might be attributed to two risk alleles (G1 and G2) at the serum-resistance-associated (SRA)-interacting-domain-encoding region of APOL1. These two alleles appear to have arisen adaptively, possibly as a result of their protective effects against human African trypanosomiasis (HAT), or African sleeping sickness. In order to explore the distribution of potential functional variation at APOL1, we studied nucleotide variation in 187 individuals across ten geographically and genetically diverse African ethnic groups with exposure to two Trypanosoma brucei subspecies that cause HAT. We observed unusually high levels of nonsynonymous polymorphism in the regions encoding the functional domains that are required for lysing parasites. Whereas allele frequencies of G2 were similar across all populations (3%–8%), the G1 allele was only common in the Yoruba (39%). Additionally, we identified a haplotype (termed G3) that contains a nonsynonymous change at the membrane-addressing-domain-encoding region of APOL1 and is present in all populations except for the Yoruba. Analyses of long-range patterns of linkage disequilibrium indicate evidence of recent selection acting on the G3 haplotype in Fulani from Cameroon. Our results indicate that the G1 and G2 variants in APOL1 are geographically restricted and that there might be other functional variants that could play a role in HAT resistance and CKD risk in African populations.  相似文献   

4.
The incidence of chronic kidney disease varies by ethnic group in the USA, with African Americans displaying a two-fold higher rate than European Americans. One of the two defining variables underlying staging of chronic kidney disease is the glomerular filtration rate. Meta-analysis in individuals of European ancestry has identified 23 genetic loci associated with the estimated glomerular filtration rate (eGFR). We conducted a follow-up study of these 23 genetic loci using a population-based sample of 1,018 unrelated admixed African Americans. We included in our follow-up study two variants in APOL1 associated with end-stage kidney disease discovered by admixture mapping in admixed African Americans. To address confounding due to admixture, we estimated local ancestry at each marker and global ancestry. We performed regression analysis stratified by local ancestry and combined the resulting regression estimates across ancestry strata using an inverse variance-weighted fixed effects model. We found that 11 of the 24 loci were significantly associated with eGFR in our sample. The effect size estimates were not significantly different between the subgroups of individuals with two copies of African ancestry vs. two copies of European ancestry for any of the 11 loci. In contrast, allele frequencies were significantly different at 10 of the 11 loci. Collectively, the 11 loci, including four secondary signals revealed by conditional analyses, explained 14.2% of the phenotypic variance in eGFR, in contrast to the 1.4% explained by the 24 loci in individuals of European ancestry. Our findings provide insight into the genetic basis of variation in renal function among admixed African Americans.  相似文献   

5.
MYH9 has been proposed as a major genetic risk locus for a spectrum of nondiabetic end stage kidney disease (ESKD). We use recently released sequences from the 1000 Genomes Project to identify two western African-specific missense mutations (S342G and I384M) in the neighboring APOL1 gene, and demonstrate that these are more strongly associated with ESKD than previously reported MYH9 variants. The APOL1 gene product, apolipoprotein L-1, has been studied for its roles in trypanosomal lysis, autophagic cell death, lipid metabolism, as well as vascular and other biological activities. We also show that the distribution of these newly identified APOL1 risk variants in African populations is consistent with the pattern of African ancestry ESKD risk previously attributed to MYH9. Mapping by admixture linkage disequilibrium (MALD) localized an interval on chromosome 22, in a region that includes the MYH9 gene, which was shown to contain African ancestry risk variants associated with certain forms of ESKD (Kao et al. 2008; Kopp et al. 2008). MYH9 encodes nonmuscle myosin heavy chain IIa, a major cytoskeletal nanomotor protein expressed in many cell types, including podocyte cells of the renal glomerulus. Moreover, 39 different coding region mutations in MYH9 have been identified in patients with a group of rare syndromes, collectively termed the Giant Platelet Syndromes, with clear autosomal dominant inheritance, and various clinical manifestations, sometimes also including glomerular pathology and chronic kidney disease (Kopp 2010; Sekine et al. 2010). Accordingly, MYH9 was further explored in these studies as the leading candidate gene responsible for the MALD signal. Dense mapping of MYH9 identified individual single nucleotide polymorphisms (SNPs) and sets of such SNPs grouped as haplotypes that were found to be highly associated with a large and important group of ESKD risk phenotypes, which as a consequence were designated as MYH9-associated nephropathies (Bostrom and Freedman 2010). These included HIV-associated nephropathy (HIVAN), primary nonmonogenic forms of focal segmental glomerulosclerosis, and hypertension affiliated chronic kidney disease not attributed to other etiologies (Bostrom and Freedman 2010). The MYH9 SNP and haplotype associations observed with these forms of ESKD yielded the largest odds ratios (OR) reported to date for the association of common variants with common disease risk (Winkler et al. 2010). Two specific MYH9 variants (rs5750250 of S-haplotype and rs11912763 of F-haplotype) were designated as most strongly predictive on the basis of Receiver Operating Characteristic analysis (Nelson et al. 2010). These MYH9 association studies were then also extended to earlier stage and related kidney disease phenotypes and to population groups with varying degrees of recent African ancestry admixture (Behar et al. 2010; Freedman et al. 2009a, b; Nelson et al. 2010), and led to the expectation of finding a functional African ancestry causative variant within MYH9. However, despite intensive efforts including re-sequencing of the MYH9 gene no suggested functional mutation has been identified (Nelson et al. 2010; Winkler et al. 2010). This led us to re-examine the interval surrounding MYH9 and to the detection of novel missense mutations with predicted functional effects in the neighboring APOL1 gene, which are significantly more associated with ESKD than all previously reported SNPs in MYH9.  相似文献   

6.
Apolipoprotein L-I (APOL1) is a channel-forming effector of innate immunity. The common human APOL1 variant G0 provides protection against infection with certain Trypanosoma and Leishmania parasite species, but it cannot protect against the trypanosomes responsible for human African trypanosomiasis. Human APOL1 variants G1 and G2 protect against human-infective trypanosomes but also confer a higher risk of developing chronic kidney disease. Trypanosome-killing activity is dependent on the ability of APOL1 to insert into membranes at acidic pH and form pH-gated cation channels. We previously mapped the channel’s pore-lining region to the C-terminal domain (residues 332–398) and identified a membrane-insertion domain (MID, residues 177–228) that facilitates acidic pH-dependent membrane insertion. In this article, we further investigate structural determinants of cation channel formation by APOL1. Using a combination of site-directed mutagenesis and targeted chemical modification, our data indicate that the C-terminal heptad-repeat sequence (residues 368–395) is a bona fide leucine zipper domain (ZIP) that is required for cation channel formation as well as lysis of trypanosomes and mammalian cells. Using protein-wide cysteine-scanning mutagenesis, coupled with the substituted cysteine accessibility method, we determined that, in the open channel state, both the N-terminal domain and the C-terminal ZIP domain are exposed on the intralumenal/extracellular side of the membrane and provide evidence that each APOL1 monomer contributes four transmembrane domains to the open cation channel conformation. Based on these data, we propose an oligomeric topology model in which the open APOL1 cation channel is assembled from the coiled-coil association of C-terminal ZIP domains.  相似文献   

7.
8.
The extent of contribution from common gene copy number (CN) variants in human disease is currently unresolved. Part of the reason for this is the technical difficulty in directly measuring CN variation (CNV) using molecular methods, and the lack of single nucleotide polymorphisms (SNPs) that can tag complex CNV that has arisen multiple times on different SNP haplotypes. One CNV locus implicated in human disease is FCGR. Here we aimed to use next-generation sequencing (NGS) data from the 1000 Genomes Project to assign CN at FCGR3A and FCGR3B and to comprehensively assess the ability of SNPs to tag specific CN variants. A read-depth algorithm was developed (CNVrd) and validated on a subset of HapMap samples using CN assignments that had previously been determined using molecular and microarray methods. At 7 out of 9 other complex loci there was >90% concordance with microarray data. However, given that some prior knowledge of CN is required, the generalizability of CNVrd is limited and should be applied to other complex CNV loci with caution. Subsequently, CN was assigned et FCGR3B using CNVrd in a total of 952 samples from the 1000 Genomes Project, using three classes and SNPs that correlated with duplication were identified. The best tag SNP was observed in the Mexican-American sample set for duplication at FCGR3B. This SNP (rs117435514, r2 = 0.79) also tagged similar duplication in Chinese and Japanese (r2 = 0.35–0.60), but not in Caucasian or African. No tag SNP for duplication at FCGR3A or deletion at FCGR3B was identified in any population. We conclude that it is possible to tag CNV at the FCGR locus, but CN and SNPs have to be characterized and correlated on a population-specific basis.  相似文献   

9.
Whole-genome sequencing across multiple samples in a population provides an unprecedented opportunity for comprehensively characterizing the polymorphic variants in the population. Although the 1000 Genomes Project (1KGP) has offered brief insights into the value of population-level sequencing, the low coverage has compromised the ability to confidently detect rare and low-frequency variants. In addition, the composition of populations in the 1KGP is not complete, despite the fact that the study design has been extended to more than 2,500 samples from more than 20 population groups. The Malays are one of the Austronesian groups predominantly present in Southeast Asia and Oceania, and the Singapore Sequencing Malay Project (SSMP) aims to perform deep whole-genome sequencing of 100 healthy Malays. By sequencing at a minimum of 30× coverage, we have illustrated the higher sensitivity at detecting low-frequency and rare variants and the ability to investigate the presence of hotspots of functional mutations. Compared to the low-pass sequencing in the 1KGP, the deeper coverage allows more functional variants to be identified for each person. A comparison of the fidelity of genotype imputation of Malays indicated that a population-specific reference panel, such as the SSMP, outperforms a cosmopolitan panel with larger number of individuals for common SNPs. For lower-frequency (<5%) markers, a larger number of individuals might have to be whole-genome sequenced so that the accuracy currently afforded by the 1KGP can be achieved. The SSMP data are expected to be the benchmark for evaluating the value of deep population-level sequencing versus low-pass sequencing, especially in populations that are poorly represented in population-genetics studies.  相似文献   

10.
There is strong evidence that rare variants are involved in complex disease etiology. The first step in implicating rare variants in disease etiology is their identification through sequencing in both randomly ascertained samples (e.g., the 1,000 Genomes Project) and samples ascertained according to disease status. We investigated to what extent rare variants will be observed across the genome and in candidate genes in randomly ascertained samples, the magnitude of variant enrichment in diseased individuals, and biases that can occur due to how variants are discovered. Although sequencing cases can enrich for casual variants, when a gene or genes are not involved in disease etiology, limiting variant discovery to cases can lead to association studies with dramatically inflated false positive rates.  相似文献   

11.
The 1000 Genomes Project aims to provide a deep characterization of human genome sequence variation by sequencing at a level that should allow the genome-wide detection of most variants with frequencies as low as 1%. However, in the major histocompatibility complex (MHC), only the top 10 most frequent haplotypes are in the 1% frequency range whereas thousands of haplotypes are present at lower frequencies. Given the limitation of both the coverage and the read length of the sequences generated by the 1000 Genomes Project, the highly variable positions that define HLA alleles may be difficult to identify. We used classical Sanger sequencing techniques to type the HLA-A, HLA-B, HLA-C, HLA-DRB1 and HLA-DQB1 genes in the available 1000 Genomes samples and combined the results with the 103,310 variants in the MHC region genotyped by the 1000 Genomes Project. Using pairwise identity-by-descent distances between individuals and principal component analysis, we established the relationship between ancestry and genetic diversity in the MHC region. As expected, both the MHC variants and the HLA phenotype can identify the major ancestry lineage, informed mainly by the most frequent HLA haplotypes. To some extent, regions of the genome with similar genetic or similar recombination rate have similar properties. An MHC-centric analysis underlines departures between the ancestral background of the MHC and the genome-wide picture. Our analysis of linkage disequilibrium (LD) decay in these samples suggests that overestimation of pairwise LD occurs due to a limited sampling of the MHC diversity. This collection of HLA-specific MHC variants, available on the dbMHC portal, is a valuable resource for future analyses of the role of MHC in population and disease studies.  相似文献   

12.
Prior studies have identified common genetic variants influencing diabetic and non-diabetic nephropathy, diseases which disproportionately affect African Americans. Recently, exome sequencing techniques have facilitated identification of coding variants on a genome-wide basis in large samples. Exonic variants in known or suspected end-stage kidney disease (ESKD) or nephropathy genes can be tested for their ability to identify association either singly or in combination with known associated common variants. Coding variants in genes with prior evidence for association with ESKD or nephropathy were identified in the NHLBI-ESP GO database and genotyped in 5,045 African Americans (3,324 cases with type 2 diabetes associated nephropathy [T2D-ESKD] or non-T2D ESKD, and 1,721 controls) and 1,465 European Americans (568 T2D-ESKD cases and 897 controls). Logistic regression analyses were performed to assess association, with admixture and APOL1 risk status incorporated as covariates. Ten of 31 SNPs were associated in African Americans; four replicated in European Americans. In African Americans, SNPs in OR2L8, OR2AK2, C6orf167 (MMS22L), LIMK2, APOL3, APOL2, and APOL1 were nominally associated (P = 1.8 × 10?4–0.044). Haplotype analysis of common and coding variants increased evidence of association at the OR2L13 and APOL1 loci (P = 6.2 × 10?5 and 4.6 × 10?5, respectively). SNPs replicating in European Americans were in OR2AK2, LIMK2, and APOL2 (P = 0.0010-0.037). Meta-analyses highlighted four SNPs associated in T2D-ESKD and all-cause ESKD. Results from this study suggest a role for coding variants in the development of diabetic, non-diabetic, and/or all-cause ESKD in African Americans and/or European Americans.  相似文献   

13.
Length differences in animal mitochondrial DNA (mtDNA) are common, frequently due to variation in copy number of direct tandem duplications. While such duplications appear to form without great difficulty in some taxonomic groups, they appear to be relatively short-lived, as typical duplication products are geographically restricted within species and infrequently shared among species. To better understand such length variation, we have studied a tandem and direct duplication of approximately 260 bp in the control region of the cyprinid fish, Cyprinella spiloptera. Restriction site analysis of 38 individuals was used to characterize population structure and the distribution of variation in repeat copy number. This revealed two length variants, including individuals with two or three copies of the repeat, and little geographic structure among populations. No standard length (single copy) genomes were found and heteroplasmy, a common feature of length variation in other taxa, was absent. Nucleotide sequence of tandem duplications and flanking regions localized duplication junctions in the phenylalanine tRNA and near the origin of replication. The locations of these junctions and the stability of folded repeat copies support the hypothesized importance of secondary structures in models of duplication formation.  相似文献   

14.

Background

Despite evidence of an association between variants at the apolipoprotein L1 gene (APOL1) locus and a spectrum of related kidney diseases, underlying biological mechanisms remain unknown. An earlier preliminary study published by our group showed that an APOL1 variant (rs73885319) modified the association between high-density lipoprotein cholesterol (HDLC) and estimated glomerular filtration rate (eGFR) in African Americans. To further understand this relationship, we evaluated the interaction in two additional large cohorts of African Americans for a total of 3,592 unrelated individuals from the Howard University Family Study (HUFS), the Natural History of APOL1-Associated Nephropathy Study (NHAAN), and the Atherosclerosis Risk in Communities Study (ARIC). The association between HDLC and eGFR was determined using linear mixed models, and the interaction between rs73885319 genotype and HDLC was evaluated using a multiplicative term.

Results

Among individuals homozygous for the risk genotype, a strong inverse HDLC-eGFR association was observed, with a positive association in others (p for the interaction of the rs73885319 × HDLC =0.0001). The interaction was similar in HUFS and NHAAN, and attenuated in ARIC. Given that ARIC participants were older, we investigated an age effect; age was a significant modifier of the observed interaction. When older individuals were excluded, the interaction in ARIC was similar to that in the other studies.

Conclusions

Based on these findings, it is clear that the relationship between HDLC and eGFR is strongly influenced by the APOL1 rs73885319 kidney risk genotype. Moreover, the degree to which this variant modifies the association may depend on the age of the individual. More detailed physiological studies are warranted to understand how rs73885319 may affect the relationship between HDLC and eGFR in individuals with and without disease and across the lifespan.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1645-7) contains supplementary material, which is available to authorized users.  相似文献   

15.
Mitochondrial DNA (mtDNA) variants have been traditionally used as markers to trace ancient population migrations. Although experiments relying on model organisms and cytoplasmic hybrids, as well as disease association studies, have served to underline the functionality of certain mtDNA SNPs, only little is known of the regulatory impact of ancient mtDNA variants, especially in terms of gene expression. By analyzing RNA-seq data of 454 lymphoblast cell lines from the 1000 Genomes Project, we found that mtDNA variants defining the most common African genetic background, the L haplogroup, exhibit a distinct overall mtDNA gene expression pattern, which was independent of mtDNA copy numbers. Secondly, intra-population analysis revealed subtle, yet significant, expression differences in four tRNA genes. Strikingly, the more prominent African mtDNA gene expression pattern best correlated with the expression of nuclear DNA-encoded RNA-binding proteins, and with SNPs within the mitochondrial RNA-binding proteins PTCD1 and MRPS7. Our results thus support the concept of an ancient regulatory transition of mtDNA-encoded genes as humans left Africa to populate the rest of the world.  相似文献   

16.
Hu CA  Klopfer EI  Ray PE 《FEBS letters》2012,586(7):947-955
Human apolipoprotein L1 (ApoL1) possesses both extra- and intra-cellular functions crucial in host defense and cellular homeostatic mechanisms. Alterations in ApoL1 function due to genetic, environmental, and lifestyle factors have been associated with African sleeping sickness, atherosclerosis, lipid disorders, obesity, schizophrenia, cancer, and chronic kidney disease (CKD). Importantly, two alleles of APOL1 carrying three coding-sequence variants have been linked to CKD, particularly in Sub-Saharan Africans and African Americans. Intracellularly, elevated ApoL1 can induce autophagy and autophagy-associated cell death, which may be critical in the maintenance of cellular homeostasis in the kidney. Similarly, ApoL1 may protect kidney cells against renal cell carcinoma (RCC). We summarize the role of ApoL1 in RCC and CKD, highlighting the critical function of ApoL1 in autophagy.  相似文献   

17.

Background

Among African-Americans, genome wide association revealed a strong correlation between the G1 and G2 alleles of APOL1 (apolipoproteinL1, also called trypanolytic factor) and kidney diseases including focal and segmental glomerulosclerosis, HIV-associated nephropathy and hypertensive nephrosclerosis. In the prevailing hypothesis, heterozygous APOL1 G1 and G2 alleles increase resistance against Trypanosoma that cause African sleeping sickness, resulting in positive selection of these alleles, but when homozygous the G1 and G2 alleles predispose to glomerulosclerosis. While efforts are underway to screen patients for G1 and G2 alleles and to better understand “APOL1 glomerulopathy,” no data prove that these APOL1 sequence variants cause glomerulosclerosis. G1 and G2 correlate best with glomerulosclerosis as recessive alleles, which suggests a loss of function mutation for which proof of causality is commonly tested with homozygous null alleles. This test cannot be performed in rodents as the APOL gene cluster evolved only in primates. However, there is a homozygous APOL1 null human being who lives in a village in rural India. This individual and his family offer a unique opportunity to test causality between APOL1 null alleles and glomerulosclerosis.

Methods and Findings

We obtained clinical data, blood and urine from this APOL1 null patient and 50 related villagers. Based on measurements of blood pressure, BUN, creatinine, albuminuria, genotyping and immunoblotting, this APOL1 null individual does not have glomerulosclerosis, nor do his relatives who carry APOL1 null alleles.

Conclusions

This small study cannot provide definitive conclusions but the absence of glomerulosclerosis in this unique population is consistent with the possibility that African-American glomerulosclerosis is caused, not by loss of APOL1 function, but by other mechanisms including a subtle gain of function or by the “genetic hitchhiking” of deleterious mutations in a gene linked to APOL1 G1 and G2.  相似文献   

18.
We previously isolated APOL3 (CG12-1) cDNA and now describe the isolation of APOL1 and APOL2 cDNA from an activated endothelial cell cDNA library and show their endothelialspecific expression in human vascular tissue. APOL1-APOL4 are clustered on human chromosome 22q13.1, as a result of tandem gene duplication, and were detected only in primates (humans and African green monkeys) and not in dogs, pigs, or rodents, showing that this gene cluster has arisen recently in evolution. The specific tissue distribution and gene organization suggest that these genes have diverged rapidly after duplication. This has resulted in the emergence of an additional signal peptide encoding exon that ensures secretion of the plasma high-density lipoprotein-associated APOL1. Our results show that the APOL1-APOL4 cluster might contribute to the substantial differences in the lipid metabolism of humans and mice, as dictated by the variable expression of genes involved in this process.  相似文献   

19.
The kallikrein gene family (KLK1-KLK15) is the largest contiguous group of protease genes within the human genome and is associated with both risk and outcome of cancer and other diseases. We searched for copy number variants in all KLK genes using quantitative PCR analysis and analysis of inheritance patterns of single nucleotide polymorphisms. Two deletions were identified: one 2235-bp deletion in KLK9 present in 1.2% of alleles, and one 3394-bp deletion in KLK15 present in 4.0% of alleles. Each deletion eliminated one complete exon and created out-of-frame coding that eliminated the catalytic triad of the resulting truncated gene product, which therefore likely is a non-functional protein. Deletion breakpoints identified by DNA sequencing located the KLK9 deletion breakpoint to a long interspersed element (LINE) repeated sequence, while the deletion in KLK15 is located in a single copy sequence. To search for an association between each deletion and risk of prostate cancer (PC), we analyzed a cohort of 667 biopsied men (266 PC cases and 401 men with no evidence of PC at biopsy) using short deletion-specific PCR assays. There was no association between evidence of PC in this cohort and the presence of either gene deletion. Haplotyping revealed a single origin of each deletion, with most recent common ancestor estimates of 3000-8000 and 6000-14 000 years for the deletions in KLK9 and KLK15, respectively. The presence of the deletions on the same haplotypes in 1000 Genomes data of both European and African populations indicate an early origin of both deletions. The old age in combination with homozygous presence of loss-of-function variants suggests that some kallikrein-related peptidases have non-essential functions.  相似文献   

20.
We present GStream, a method that combines genome-wide SNP and CNV genotyping in the Illumina microarray platform with unprecedented accuracy. This new method outperforms previous well-established SNP genotyping software. More importantly, the CNV calling algorithm of GStream dramatically improves the results obtained by previous state-of-the-art methods and yields an accuracy that is close to that obtained by purely CNV-oriented technologies like Comparative Genomic Hybridization (CGH). We demonstrate the superior performance of GStream using microarray data generated from HapMap samples. Using the reference CNV calls generated by the 1000 Genomes Project (1KGP) and well-known studies on whole genome CNV characterization based either on CGH or genotyping microarray technologies, we show that GStream can increase the number of reliably detected variants up to 25% compared to previously developed methods. Furthermore, the increased genome coverage provided by GStream allows the discovery of CNVs in close linkage disequilibrium with SNPs, previously associated with disease risk in published Genome-Wide Association Studies (GWAS). These results could provide important insights into the biological mechanism underlying the detected disease risk association. With GStream, large-scale GWAS will not only benefit from the combined genotyping of SNPs and CNVs at an unprecedented accuracy, but will also take advantage of the computational efficiency of the method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号