首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Intrinsically disordered/unstructured proteins (IDPs) are extremely sensitive to proteolysis in vitro, but show no enhanced degradation rates in vivo. Their existence and functioning may be explained if IDPs are preferentially associated with chaperones in the cell, which may offer protection against degradation by proteases. To test this inference, we took pairwise interaction data from high-throughput interaction studies and analyzed to see if predicted disorder correlates with the tendency of chaperone binding by proteins. Our major finding is that disorder predicted by the IUPred algorithm actually shows negative correlation with chaperone binding in E. coli, S. cerevisiae, and metazoa species. Since predicted disorder positively correlates with the tendency of partner binding in the interactome, the difference between the disorder of chaperone-binding and non-binding proteins is even more pronounced if normalized to their overall tendency to be involved in pairwise protein–protein interactions. We argue that chaperone binding is primarily required for folding of globular proteins, as reflected in an increased preference for chaperones of proteins in which at least one Pfam domain exists. In terms of the functional consequences of chaperone binding of mostly disordered proteins, we suggest that its primary reason is not the assistance of folding, but promotion of assembly with partners. In support of this conclusion, we show that IDPs that bind chaperones also tend to bind other proteins.  相似文献   

3.
Natively unstructured or disordered regions appear to be abundant in eukaryotic proteins. Many such regions have been found alongside small linear binding motifs. We report a Monte Carlo study that aims to elucidate the role of disordered regions adjacent to such binding motifs. The coarse-grained simulations show that small hydrophobic peptides without disordered flanks tend to aggregate under conditions where peptides embedded in unstructured peptide sequences are stable as monomers or as part of small micelle-like clusters. Surprisingly, the binding free energy of the motif is barely decreased by the presence of disordered flanking regions, although it is sensitive to the loss of entropy of the motif itself upon binding. This latter effect allows for reversible binding of the signalling motif to the substrate. The work provides insights into a mechanism that prevents the aggregation of signalling peptides, distinct from the general mechanism of protein folding, and provides a testable hypothesis to explain the abundance of disordered regions in proteins.  相似文献   

4.
Hef is an archaeal protein that probably functions mainly in stalled replication fork repair. The presence of an unstructured region was predicted between the two distinct domains of the Hef protein. We analyzed the interdomain region of Thermococcus kodakarensis Hef and demonstrated its disordered structure by CD, NMR, and high speed atomic force microscopy (AFM). To investigate the functions of this intrinsically disordered region (IDR), we screened for proteins interacting with the IDR of Hef by a yeast two-hybrid method, and 10 candidate proteins were obtained. We found that PCNA1 and a RecJ-like protein specifically bind to the IDR in vitro. These results suggested that the Hef protein interacts with several different proteins that work together in the pathways downstream from stalled replication fork repair by converting the IDR structure depending on the partner protein.  相似文献   

5.
The exchange kinetics for the slowly exchanging amide hydrogens in three defensins, rabbit NP-2, rabbit NP-5, and human HNP-1, have been measured over a range of pH at 25°C using 1D and 2D NMR methods. These NHs have exchange rates 102 to 105 times slower than rates from unstructured model peptides. The observed distribution of exchange rates under these conditions can be rationalized by intramolecular hydrogen bonding of the individual NHs, solvent accessibility of the NHs, and local fluctuations in structure. The temperature dependencies of NH chemical shifts (NH temperature coefficients) were measured for the defensins and these values are consistent with the defensin structure. A comparison is made between NH exchange kinetics, NH solvent accessibility, and NH temperature coefficients of the defensins and other globular proteins. Titration of the histidine side chain in NP-2 was examined and the results are mapped to the three-dimensional structure. © 1994 Wiley-Liss, Inc.  相似文献   

6.
Most proteins exist in the cell as multi-component assemblies. However, which proteins need to be present simultaneously in order to perform a given function is frequently unknown. The first step toward this goal would be to predict proteins that can function only when in a complexed form. Here, we propose a scheme to distinguish whether the protein components are ordered (stable) or disordered when separated from their complexed partners. We analyze structural characteristics of several types of complexes, such as natively unstructured proteins, ribosomal proteins, two-state and three-state complexes, and crystal-packing dimers. Our analysis makes use of the fact that natively unstructured proteins, which undergo a disorder-to-order transition upon binding their partner, and stable monomeric proteins, which exist as dimers only in their crystal form, provide examples of two vastly different scenarios. We find that ordered monomers can be distinguished from disordered monomers on the basis of the per-residue surface and interface areas, which are significantly smaller for ordered proteins. With this scale, two-state dimers (where the monomers unfold upon dimer separation) and ribosomal proteins are shown to resemble disordered proteins. On the other hand, crystal-packing dimers, whose monomers are stable in solution, fall into the ordered protein category. While there should be a continuum in the distributions, nevertheless, the per-residue scale measures the confidence in the determination of whether a protein can exist as a stable monomer. Further analysis, focusing on the chemical and contact preferences at the interface, interior and exposed surface areas, reveals that disordered proteins lack a strong hydrophobic core and are composed of highly polar surface area. We discuss the implication of our results for de novo design of stable monomeric proteins and peptides.  相似文献   

7.
Intrinsically disordered proteins and intrinsically disordered regions are frequently enriched in charged amino acids. Intrinsically disordered regions are regularly involved in important biological processes in which one or more charged residues is the driving force behind a protein-biomolecule interaction. Several lines of experimental and computational evidence suggest that polypeptides and proteins that carry high net charges have a high preference for extended conformations with average end-to-end distances exceeding expectations for self-avoiding random coils. Here, we show that charged arginine residues even in short glycine-capped model peptides (GRRG and GRRRG) significantly affect the conformational propensities of each other when compared with the intrinsic propensities of a mostly unperturbed arginine in the tripeptide GRG. A conformational analysis based on experimentally determined J-coupling constants from heteronuclear NMR spectroscopy and amide I′ band profiles from vibrational spectroscopy reveals that nearest-neighbor interactions stabilize extended β-strand conformations at the expense of polyproline II and turn conformations. The results from molecular dynamics simulations with a CHARMM36m force field and TIP3P water reproduce our results only to a limited extent. The use of the Ramachandran distribution of the central residue of GRRRG in a calculation of end-to-end distances of polyarginines of different length yielded the expected power law behavior. The scaling coefficient of 0.66 suggests that such peptides would be more extended than predicted by a self-avoiding random walk. Our findings thus support in principle theoretical predictions.  相似文献   

8.
Evolution is driven by mutations, which lead to new protein functions but come at a cost to protein stability. Non-conservative substitutions are of interest in this regard because they may most profoundly affect both function and stability. Accordingly, organisms must balance the benefit of accepting advantageous substitutions with the possible cost of deleterious effects on protein folding and stability. We here examine factors that systematically promote non-conservative mutations at the proteome level. Intrinsically disordered regions in proteins play pivotal roles in protein interactions, but many questions regarding their evolution remain unanswered. Similarly, whether and how molecular chaperones, which have been shown to buffer destabilizing mutations in individual proteins, generally provide robustness during proteome evolution remains unclear. To this end, we introduce an evolutionary parameter λ that directly estimates the rate of non-conservative substitutions. Our analysis of λ in Escherichia coli, Saccharomyces cerevisiae, and Homo sapiens sequences reveals how co- and post-translationally acting chaperones differentially promote non-conservative substitutions in their substrates, likely through buffering of their destabilizing effects. We further find that λ serves well to quantify the evolution of intrinsically disordered proteins even though the unstructured, thus generally variable regions in proteins are often flanked by very conserved sequences. Crucially, we show that both intrinsically disordered proteins and highly re-wired proteins in protein interaction networks, which have evolved new interactions and functions, exhibit a higher λ at the expense of enhanced chaperone assistance. Our findings thus highlight an intricate interplay of molecular chaperones and protein disorder in the evolvability of protein networks. Our results illuminate the role of chaperones in enabling protein evolution, and underline the importance of the cellular context and integrated approaches for understanding proteome evolution. We feel that the development of λ may be a valuable addition to the toolbox applied to understand the molecular basis of evolution.  相似文献   

9.
Intrinsically disordered regions of proteins, which lack unique tertiary structure under physiological conditions, are enriched in phosphorylation sites and in significant local bias toward the polyproline II conformation. The overrepresented coincidence of this posttranslational regulatory signal and local conformational bias within unstructured regions raises a question: can phosphorylation serve to manipulate the conformational preferences of a disordered protein? In this study, we use time-resolved fluorescence resonance energy transfer and a, to our knowledge, novel data analysis method to directly measure the end-to-end distance distribution of a phosphorylatable peptide derived from the human microtubule associated protein tau. Our results show that phosphorylation at threonine or serine extends the end-to-end distance and increases the effective persistence length of the tested model peptides. Unexpectedly, the extension is independent of salt concentration, suggestive of a nonelectrostatic origin. The phosphorylation extension and stiffening effect provides a peptide-scale physical interpretation for the posttranslational regulation of the highly abundant protein-protein interactions found in disordered proteins, as well as a potential insight into the regulatory mechanism of the tau protein’s microtubule binding activity.  相似文献   

10.
The properties of disordered proteins are thought to depend on intrinsic conformational propensities for polyproline II (PP II) structure. While intrinsic PP II propensities have been measured for the common biological amino acids in short peptides, the ability of these experimentally determined propensities to quantitatively reproduce structural behavior in intrinsically disordered proteins (IDPs) has not been established. Presented here are results from molecular simulations of disordered proteins showing that the hydrodynamic radius (R h) can be predicted from experimental PP II propensities with good agreement, even when charge-based considerations are omitted. The simulations demonstrate that R h and chain propensity for PP II structure are linked via a simple power-law scaling relationship, which was tested using the experimental R h of 22 IDPs covering a wide range of peptide lengths, net charge, and sequence composition. Charge effects on R h were found to be generally weak when compared to PP II effects on R h. Results from this study indicate that the hydrodynamic dimensions of IDPs are evidence of considerable sequence-dependent backbone propensities for PP II structure that qualitatively, if not quantitatively, match conformational propensities measured in peptides.  相似文献   

11.
The precursor mRNA retention and splicing (RES) complex mediates nuclear retention and enhances splicing of precursor mRNAs. The RES complex from yeast comprises three proteins, Snu17p, Bud13p and Pml1p. Snu17p acts as a central platform that concomitantly binds the Bud13p and Pml1p subunits via short peptide epitopes. As a step to decipher the molecular architecture of the RES complex, we have determined crystal structures of full-length Pml1p and N-terminally truncated Pml1p. The first 50 residues of full-length Pml1p, encompassing the Snu17p-binding region, are disordered, showing that Pml1p binds to Snu17p via an intrinsically unstructured region. The remainder of Pml1p folds as a forkhead-associated (FHA) domain, which is expanded by a number of noncanonical elements compared with known FHA domains from other proteins. An atypical N-terminal appendix runs across one β-sheet and thereby stabilizes the domain as shown by deletion experiments. FHA domains are thought to constitute phosphopeptide-binding elements. Consistently, a sulfate ion was found at the putative phosphopeptide-binding loops of full-length Pml1p. The N-terminally truncated version of the protein lacked a similar phosphopeptide mimic but retained an almost identical structure. A long loop neighboring the putative phosphopeptide-binding site was disordered in both structures. Comparison with other FHA domain proteins suggests that this loop adopts a defined conformation upon ligand binding and thereby confers ligand specificity. Our results show that in the RES complex, an FHA domain of Pml1p is flexibly tethered via an unstructured N-terminal region to Snu17p.  相似文献   

12.
Natively unstructured or disordered protein regions may increase the functional complexity of an organism; they are particularly abundant in eukaryotes and often evade structure determination. Many computational methods predict unstructured regions by training on outliers in otherwise well-ordered structures. Here, we introduce an approach that uses a neural network in a very different and novel way. We hypothesize that very long contiguous segments with nonregular secondary structure (NORS regions) differ significantly from regular, well-structured loops, and that a method detecting such features could predict natively unstructured regions. Training our new method, NORSnet, on predicted information rather than on experimental data yielded three major advantages: it removed the overlap between testing and training, it systematically covered entire proteomes, and it explicitly focused on one particular aspect of unstructured regions with a simple structural interpretation, namely that they are loops. Our hypothesis was correct: well-structured and unstructured loops differ so substantially that NORSnet succeeded in their distinction. Benchmarks on previously used and new experimental data of unstructured regions revealed that NORSnet performed very well. Although it was not the best single prediction method, NORSnet was sufficiently accurate to flag unstructured regions in proteins that were previously not annotated. In one application, NORSnet revealed previously undetected unstructured regions in putative targets for structural genomics and may thereby contribute to increasing structural coverage of large eukaryotic families. NORSnet found unstructured regions more often in domain boundaries than expected at random. In another application, we estimated that 50%–70% of all worm proteins observed to have more than seven protein–protein interaction partners have unstructured regions. The comparative analysis between NORSnet and DISOPRED2 suggested that long unstructured loops are a major part of unstructured regions in molecular networks.  相似文献   

13.
Hydrogen exchange in thermally denatured ribonuclease A   总被引:14,自引:0,他引:14  
A D Robertson  R L Baldwin 《Biochemistry》1991,30(41):9907-9914
Hydrogen exchange has been used to test for the presence of nonrandom structure in thermally denatured ribonuclease A (RNase A). Quenched-flow methods and 2D 1H NMR spectroscopy were used to measure exchange rates for 36 backbone amide protons (NHs) at 65 degrees C and at pH* (uncorrected pH measured in D2O) values ranging from 1.5 to 3.8. The results show that exchange is approximately that predicted for a disordered polypeptide [Molday, R. S., Englander, S. W., & Kallen, R. G. (1972) Biochemistry 11, 150-158]; we thus are unable to detect any stable hydrogen-bonded structure in thermally denatured RNase A. Two observations suggest, however, that the predicted rates should be viewed with some caution. First, we discovered that one of the approximations made by Molday et al. (1972), that exchange for valine NHs is similar to that for alanine NHs, had to be modified; the exchange rates for valine NHs are about 4-fold slower. Second, the pH minima for exchange tend to fall at lower pH values than predicted, by as much as 0.45 pH units. These results are in accord with those of Roder and co-workers for bovine pancreatic trypsin inhibitor [see Table I in Roder, H., Wagner, G., & Wüthrich, K. (1985) Biochemistry 24, 7407-7411]. The origin of the disagreement between predicted and observed pH minima is unknown but may be the high net positive charge on these proteins at low pH. In common with some other thermally unfolded proteins, heat-denatured ribonuclease A shows a significant circular dichroism spectrum in the far-ultraviolet region [Labhardt, A. M. (1982) J. Mol. Biol. 157, 331-355].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
We have performed a statistical analysis of unstructured amino acid residues in protein structures available in the databank of protein structures. Data on the occurrence of disordered regions at the ends and in the middle part of protein chains have been obtained: in the regions near the ends (at distance less than 30 residues from the N- or C-terminus), there are 66% of unstructured residues (38% are near the N-terminus and 28% are near the C-terminus), although these terminal regions include only 23% of the amino acid residues. The frequencies of occurrence of unstructured residues have been calculated for each of 20 types in different positions in the protein chain. It has been shown that relative frequencies of occurrence of unstructured residues of 20 types at the termini of protein chains differ from the ones in the middle part of the protein chain; amino acid residues of the same type have different probabilities to be unstructured in the terminal regions and in the middle part of the protein chain. The obtained frequencies of occurrence of unstructured residues in the middle part of the protein chain have been used as a scale for predicting disordered regions from amino acid sequence using the method (FoldUnfold) previously developed by us. This scale of frequencies of occurrence of unstructured residues correlates with the contact scale (previously developed by us and used for the same purpose) at a level of 95%. Testing the new scale on a database of 427 unstructured proteins and 559 completely structured proteins has shown that this scale can be successfully used for the prediction of disordered regions in protein chains.  相似文献   

15.
15N relaxation rates of amide moieties provide insight both into global as well as local backbone dynamics of peptides and proteins. As the differences in the relaxation rates in general are small, their accurate determination is of prime importance. One potential source of error is fast amide exchange. It is well known that in its presence the effects of saturation transfer and H/D exchange may result in erroneous apparent relaxation rates R 1 and R 2. Here, the extent of these errors is rigorously examined. Theoretical considerations reveal that even when saturation effects are absent, H/D exchange will easily result in significant deviations from the true values. In particular overestimations of up to 10 % in R 1 and up to 5 % in R 2 are observed. An alternative scheme for fitting the relaxation data to the corresponding exponentials is presented that in the best cases not only delivers more accurate relaxation rates but also allows extracting estimates for the exchange rates. The theoretical computations were tested and verified for the case of ubiquitin.  相似文献   

16.
We recently found that the larger parts of the endocytic proteins epsin 1 and AP180 consist of an unstructured polypeptide chain. As a result these segments are completely heat-stable without loss of their functional properties. We have taken advantage of this fact and developed a combined heat lysis and pre-purification procedure after expressing the disordered domains in E. coli. This results in the irreversible denaturation and precipitation of the majority of bacterial proteins. The bacteria are resuspended in a non-denaturing buffer, heated in a boiling water bath and shock-cooled. We demonstrate that this procedure compared to conventional lysis improves both yield and quality of the purified protein.  相似文献   

17.
Plants often respond to abiotic stresses by the increased expression of LEA (late embryogenesis abundant) proteins, so called because they also accompany seed formation. Whereas the cellular function of LEA proteins in mitigating the damage caused by stress is clear, the molecular mechanisms of their action are rather enigmatic. Several models have been developed, based on their putative activities as ion sinks, stabilizers of membrane structure, buffers of hydrate water, antioxidants and/or chaperones. Due to their known structural flexibility, this latter idea has received little experimental attention thus far. Recently, however, it has been suggested that intrinsically disordered proteins (IDPs) may exert chaperone activity by an “entropy transfer” mechanism. In our subsequent study published in the May issue of Plant Physiology, we provided evidence that two group 2 LEA proteins, ERD (early response to dehydration) 10 and 14, are potent molecular chaperones. This observation may have far-reaching implications, as it may explain how LEA proteins of ill-defined structures protect plant cells during dehydration, and it may also lead to the general experimental validation of the entropy transfer model of disordered chaperones.Key words: abiotic stress, dehydration stress, stress tolerance, late embryogenesis abundant protein, chaperone, disordered protein, unstructured protein  相似文献   

18.
Two novel 5D NMR experiments (CACONCACO, NCOCANCO) for backbone assignment of disordered proteins are presented. The pulse sequences exploit relaxation properties of the unstructured proteins and combine the advantages of 13C-direct detection, non-uniform sampling, and longitudinal relaxation optimization to maximize the achievable resolution and minimize the experimental time. The pulse sequences were successfully tested on the sample of partially disordered delta subunit from RNA polymerase from Bacillus subtilis. The unstructured part of this 20 kDa protein consists of 81 amino acids with frequent sequential repeats. A collection of 0.0003% of the data needed for a conventional experiment with linear sampling was sufficient to perform an unambiguous assignment of the disordered part of the protein from a single 5D spectrum.  相似文献   

19.
Serine/arginine-rich (SR) splicing factors play an important role in constitutive and alternative splicing as well as during several steps of RNA metabolism. Despite the wealth of functional information about SR proteins accumulated to-date, structural knowledge about the members of this family is very limited. To gain a better insight into structure-function relationships of SR proteins, we performed extensive sequence analysis of SR protein family members and combined it with ordered/disordered structure predictions. We found that SR proteins have properties characteristic of intrinsically disordered (ID) proteins. The amino acid composition and sequence complexity of SR proteins were very similar to those of the disordered protein regions. More detailed analysis showed that the SR proteins, and their RS domains in particular, are enriched in the disorder-promoting residues and are depleted in the order-promoting residues as compared to the entire human proteome. Moreover, disorder predictions indicated that RS domains of SR proteins were completely unstructured. Two different classification methods, the charge-hydropathy measure and the cumulative distribution function (CDF) of the disorder scores, were in agreement with each other, and they both strongly predicted members of the SR protein family to be disordered. This study emphasizes the importance of the disordered structure for several functions of SR proteins, such as for spliceosome assembly and for interaction with multiple partners. In addition, it demonstrates the usefulness of order/disorder predictions for inferring protein structure from sequence.  相似文献   

20.
Natively unstructured regions are a common feature of eukaryotic proteomes. Between 30% and 60% of proteins are predicted to contain long stretches of disordered residues, and not only have many of these regions been confirmed experimentally, but they have also been found to be essential for protein function. In this study, we directly address the potential contribution of protein disorder in predicting protein function using standard Gene Ontology (GO) categories. Initially we analyse the occurrence of protein disorder in the human proteome and report ontology categories that are enriched in disordered proteins. Pattern analysis of the distributions of disordered regions in human sequences demonstrated that the functions of intrinsically disordered proteins are both length- and position-dependent. These dependencies were then encoded in feature vectors to quantify the contribution of disorder in human protein function prediction using Support Vector Machine classifiers. The prediction accuracies of 26 GO categories relating to signalling and molecular recognition are improved using the disorder features. The most significant improvements were observed for kinase, phosphorylation, growth factor, and helicase categories. Furthermore, we provide predicted GO term assignments using these classifiers for a set of unannotated and orphan human proteins. In this study, the importance of capturing protein disorder information and its value in function prediction is demonstrated. The GO category classifiers generated can be used to provide more reliable predictions and further insights into the behaviour of orphan and unannotated proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号