首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
We report here the 2.3 A resolution structure of the hypothetical uricase regulator (HucR) from Deinococcus radiodurans R1. HucR, a member of the MarR family of DNA-binding proteins, was previously shown to repress its own expression as well as that of a uricase, a repression that is alleviated both in vivo and in vitro upon binding uric acid, the substrate for uricase. As uric acid is a potent scavenger of reactive oxygen species, and as D. radiodurans is known for its remarkable resistance to DNA-damaging agents, these observations indicate a novel oxidative stress response mechanism. The crystal structure of HucR in the absence of ligand or DNA reveals a dimer in which the DNA recognition helices are preconfigured for DNA binding. This configuration of DNA-binding domains is achieved through an apparently stable dimer interface that, in contrast to what is observed in other MarR homologs for which structures have been determined, shows little conformational heterogeneity in the absence of ligand. An additional amino-terminal segment, absent from other MarR homologs, appears to brace the principal helix of the dimerization interface. However, although HucR is preconfigured for DNA binding, the presence of a stacked pair of symmetry-related histidine residues at a central pivot point in the dimer interface suggests a mechanism for a conformational change to attenuate DNA binding.  相似文献   

2.
Fatty acids play critical role in the survival and virulence of Mycobacterium?tuberculosis (Mtb). Activation of fatty acids by acyl-CoA synthetases (Fad) into fatty acyl-CoA is the first and one of the crucial steps in fatty acid metabolism. Mtb possesses 36 fatty acyl-CoA synthetases, unlike Escherichia?coli, which has single enzyme. However, the mechanisms by which the expression of these multiple Fad genes is regulated remain uncharacterized. We characterized the DNA- and ligand-binding properties of a putative tetracycline repressor family regulator, named Fad35R, located upstream of the Fad35 gene and ScoA-citE operon. We identified a palindromic regulatory motif upstream of Fad35 and characterized the binding of Fad35R to this motif. Equilibrium binding studies show that Fad35R binds to this motif with high affinity (K(d) ~?0.033?μm) and the specificity of binding was confirmed by an electromobility gel shift assay. Kinetic studies indicate that faster association (k(a,avg) ~?5.4?×?10(4) m(-1) ·s(-1) ) and slower dissociation rates (k(d,avg) ~?5.84?×?10(-4) s(-1) ) confer higher affinity. The affinity for the promoter is maximum at 300?mm NaCl but decreases rapidly beyond this range. Ligand-binding studies indicate that Fad35R binds specifically to tetracycline and also binds to fatty acid derivatives. The promoter-binding affinity is decreased significantly in the presence of palmityl-CoA, suggesting that Fad35R can sense the levels of activated fatty acids and alter its DNA-binding activity. Our results suggest that Fad35R may be the functional homologue of FadR and controls the expression of genes in a metabolite-dependent manner. Structured digital abstract ? Fad35R?binds to?palindromic sequence?shown by surface plasmon resonance ? Fad35R?binds to?tetracycline?and?activated fatty acids?as shown by fluorescence spectroscopy.  相似文献   

3.
Fis is an abundant bacterial DNA binding protein that functions in many different reactions. We show here that Fis subunits rapidly exchange between dimers in solution by disulfide cross-linking mixtures of Fis mutants with different electrophoretic mobilities and by monitoring energy transfer between fluorescently labeled Fis subunits upon heterodimer formation. The effects of detergents and salt concentrations on subunit exchange imply that the dimer is predominantly stabilized by hydrophobic forces, consistent with the X-ray crystal structures. Specific and nonspecific DNA strongly inhibit Fis subunit exchange. In all crystal forms of Fis, the separation between the DNA recognition helices within the Fis dimer is too short to insert into adjacent major grooves on canonical B-DNA, implying that conformational changes within the Fis dimer and/or the DNA must occur upon binding. We therefore investigated the functional importance of dimer interface flexibility for Fis-DNA binding by studying the DNA binding properties of Fis mutants that were cross-linked at different positions in the dimer. Flexibility within the core dimer interface does not appear to be required for efficient DNA binding, Fis-DNA complex dissociation, or Fis-induced DNA bending. Moreover, FRET-based experiments provided no evidence for a change in the spatial relationship between the two helix-turn-helix motifs in the Fis dimer upon DNA binding. These results support a model in which the unusually short distance between DNA recognition helices on Fis is accommodated primarily through bending of the DNA.  相似文献   

4.
5.
6.
The Mre11–Rad50–Nbs1 (MRN) complex plays important roles in sensing DNA damage, as well as in resecting and tethering DNA ends, and thus participates in double-strand break repair. An earlier structure of Mre11 bound to a short duplex DNA molecule suggested that each Mre11 in a dimer recognizes one DNA duplex to bridge two DNA ends at a short distance. Here, we provide an alternative DNA recognition model based on the structures of Methanococcus jannaschii Mre11 (MjMre11) bound to longer DNA molecules, which may more accurately reflect a broken chromosome. An extended stretch of B-form DNA asymmetrically runs across the whole dimer, with each end of this DNA molecule being recognized by an individual Mre11 monomer. DNA binding induces rigid-body rotation of the Mre11 dimer, which could facilitate melting of the DNA end and its juxtaposition to an active site of Mre11. The identified Mre11 interface binding DNA duplex ends is structurally conserved and shown to functionally contribute to efficient resection, non-homologous end joining, and tolerance to DNA-damaging agents when other resection enzymes are absent. Together, the structural, biochemical, and genetic findings presented here offer new insights into how Mre11 recognizes damaged DNA and facilitates DNA repair.  相似文献   

7.
KdpD/KdpE two‐component signaling system regulates expression of a high affinity potassium transporter responsible for potassium homeostasis. The C‐terminal module of KdpD consists of a GAF domain linked to a histidine kinase domain. Whereas certain GAF domains act as regulators by binding cyclic nucleotides, the role of the juxtamembrane GAF domain in KdpD is unknown. We report the high‐resolution crystal structure of KdpD GAF domain (KdpDG) consisting of five α‐helices, four β‐sheets and two large loops. KdpDG forms a symmetry‐related dimer, wherein parallelly arranged monomers contribute to a four‐helix bundle at the dimer‐interface, SAXS analysis of KdpD C‐terminal module reveals an elongated structure that is a dimer in solution. Substitution of conserved residues with various residues that disrupt the dimer interface produce a range of effects on gene expression demonstrating the importance of the interface in inactive to active transitions during signaling. Comparison of ligand binding site of the classic cyclic nucleotide‐binding GAF domains to KdpDG reveals structural differences arising from naturally occurring substitutions in primary sequence of KdpDG that modifies the canonical NKFDE sequence motif required for cyclic nucleotide binding. Together these results suggest a structural role for KdpDG in dimerization and transmission of signal to the kinase domain.  相似文献   

8.
As opposed to the vast majority of prokaryotic repressors, the immunity repressor of temperate Escherichia coli phage P2 (C) recognizes non-palindromic direct repeats of DNA rather than inverted repeats. We have determined the crystal structure of P2 C at 1.8 Å. This constitutes the first structure solved from the family of C proteins from P2-like bacteriophages. The structure reveals that the P2 C protein forms a symmetric dimer oriented to bind the major groove of two consecutive turns of the DNA. Surprisingly, P2 C has great similarities to binders of palindromic sequences. Nevertheless, the two identical DNA-binding helixes of the symmetric P2 C dimer have to bind different DNA sequences. Helix 3 is identified as the DNA-recognition motif in P2 C by alanine scanning and the importance for the individual residues in DNA recognition is defined. A truncation mutant shows that the disordered C-terminus is dispensable for repressor function. The short distance between the DNA-binding helices together with a possible interaction between two P2 C dimers are proposed to be responsible for extensive bending of the DNA. The structure provides insight into the mechanisms behind the mutants of P2 C causing dimer disruption, temperature sensitivity and insensitivity to the P4 antirepressor.  相似文献   

9.
10.
Myomesin is one of the most important structural molecules constructing the M-band in the force-generating unit of striated muscle, and a critical structural maintainer of the sarcomere. Using molecular dynamics simulations, we here dissect the mechanical properties of the structurally known building blocks of myomesin, namely α-helices, immunglobulin (Ig) domains, and the dimer interface at myomesin’s 13th Ig domain, covering the mechanically important C-terminal part of the molecule. We find the interdomain α-helices to be stabilized by the hydrophobic interface formed between the N-terminal half of these helices and adjacent Ig domains, and, interestingly, to show a rapid unfolding and refolding equilibrium especially under low axial forces up to ∼15 pN. These results support and yield atomic details for the notion of recent atomic-force microscopy experiments, namely, that the unique helices inserted between Ig domains in myomesin function as elastomers and force buffers. Our results also explain how the C-terminal dimer of two myomesin molecules is mechanically outperforming the helices and Ig domains in myomesin and elsewhere, explaining former experimental findings. This study provides a fresh view onto how myomesin integrates elastic helices, rigid immunoglobulin domains, and an extraordinarily resistant dimer into a molecular structure, to feature a mechanical hierarchy that represents a firm and yet extensible molecular anchor to guard the stability of the sarcomere.  相似文献   

11.
RecA plays a central role in the nonmutagenic repair of stalled replication forks in bacteria. RdgC, a recombination-associated DNA-binding protein, is a potential negative regulator of RecA function. Here, we have determined the crystal structure of RdgC from Pseudomonas aeruginosa. The J-shaped monomer has a unique fold and can be divided into three structural domains: tip domain, center domain and base domain. Two such monomers dimerize to form a ring-shaped molecule of approximate 2-fold symmetry. Of the two inter-subunit interfaces within the dimer, one interface (‘interface A’) between tip/center domains is more nonpolar than the other (‘interface B’) between base domains. The structure allows us to propose that the RdgC dimer binds dsDNA through the central hole of ~30Å diameter. The proposed model is supported by our DNA-binding assays coupled with mutagenesis, which indicate that the conserved positively charged residues on the protein surface around the central hole play important roles in DNA binding. The novel ring-shaped architecture of the RdgC dimer has significant implications for its role in homologous recombination.  相似文献   

12.
The nucleotide excision repair pathway corrects many structurally unrelated DNA lesions. Damage recognition in bacteria is performed by UvrA, a member of the ABC ATPase superfamily whose functional form is a dimer with four nucleotide-binding domains (NBDs), two per protomer. In the 3.2 A structure of UvrA from Bacillus stearothermophilus, we observe that the nucleotide-binding sites are formed in an intramolecular fashion and are not at the dimer interface as is typically found in other ABC ATPases. UvrA also harbors two unique domains; we show that one of these is required for interaction with UvrB, its partner in lesion recognition. In addition, UvrA contains three zinc modules, the number and ligand sphere of which differ from previously published models. Structural analysis, biochemical experiments, surface electrostatics, and sequence conservation form the basis for models of ATP-modulated dimerization, UvrA-UvrB interaction, and DNA binding during the search for lesions.  相似文献   

13.
14.
Controller proteins play a key role in the temporal regulation of gene expression in bacterial restriction-modification (R-M) systems and are important mediators of horizontal gene transfer. They form the basis of a highly cooperative, concentration-dependent genetic switch involved in both activation and repression of R-M genes. Here we present biophysical, biochemical, and high-resolution structural analysis of a novel class of controller proteins, exemplified by C.Csp231I. In contrast to all previously solved C-protein structures, each protein subunit has two extra helices at the C-terminus, which play a large part in maintaining the dimer interface. The DNA binding site of the protein is also novel, having largely AAAA tracts between the palindromic recognition half-sites, suggesting tight bending of the DNA. The protein structure shows an unusual positively charged surface that could form the basis for wrapping the DNA completely around the C-protein dimer.  相似文献   

15.
RNA recognition motif (RRM) being the most abundant RNA binding domain in eukaryotes, is a major player in cellular regulation. Several variations in the canonical βαββαβ topology have been observed. We have determined the 2.3 Å crystal structure of the human DND1‐RRM2 domain. The structure revealed an interesting non‐canonical RRM fold, which is maintained by the formation of a 3D domain swapped dimer between β1 and β4 strands across protomers. We have delineated the structural basis of the stable domain swapped dimer formation using the residue level dynamics of protein explored by NMR spectroscopy and MD simulations. Our structural and dynamics studies substantiate major determinants and molecular basis for domain swapped dimerization observed in the RRM domain.  相似文献   

16.
Protein function often requires remodeling of protein structure. In the well-studied iteron-containing plasmids, the initiator of replication has a dimerization interface that undergoes chaperone-mediated remodeling. This remodeling reduces dimerization and promotes DNA replication, since only monomers bind origin DNA. A structurally homologs interface exists in RctB, the replication initiator of Vibrio cholerae chromosome 2 (Chr2). Chaperones also promote Chr2 replication, although both monomers and dimers of RctB bind to origin, and chaperones increase the binding of both. Here we report how five changes in the dimerization interface of RctB affect the protein. The mutants are variously defective in dimerization, more active as initiator, and except in one case, unresponsive to chaperone (DnaJ). The results indicate that chaperones also reduce RctB dimerization and support the proposal that the paradoxical chaperone-promoted dimer binding likely represents sequential binding of monomers on DNA. RctB is also activated for replication initiation upon binding to a DNA site, crtS, and three of the mutants are also unresponsive to crtS. This suggests that crtS, like chaperones, reduces dimerization, but additional evidence suggests that the remodelling activities function independently. Involvement of two remodelers in reducing dimerization signifies the importance of dimerization in limiting Chr2 replication.  相似文献   

17.
Ras GTPase Activating Protein SH3 Domain Binding Protein (G3BP) is a potential anti-cancer drug target implicated in several cellular functions. We have used protein crystallography to solve crystal structures of the human G3BP1 NTF2-like domain both alone and in complex with an FxFG Nup repeat peptide. Despite high structural similarity, the FxFG binding site is located between two alpha helices in the G3BP1 NTF2-like domain and not at the dimer interface as observed for nuclear transport factor 2. ITC studies showed specificity towards the FxFG motif but not FG and GLFG motifs. The unliganded form of the G3BP1 NTF2-like domain was solved in two crystal forms to resolutions of 1.6 and 3.3 Å in space groups P212121 and P6322 based on two different constructs, residues 1–139 and 11–139, respectively. Crystal packing of the N-terminal residues against a symmetry related molecule in the P212121 crystal form might indicate a novel ligand binding site that, however, remains to be validated. The crystal structures give insight into the nuclear transportation mechanisms of G3BP and provide a basis for future structure based drug design.  相似文献   

18.
Horning MS  Mayer ML 《Neuron》2004,41(3):379-388
Ionotropic glutamate receptors are tetramers, the isolated ligand binding cores of which assemble as dimers. Previous work on nondesensitizing AMPA receptor mutants, which combined crystallography, ultracentrifugation, and patch-clamp recording, showed that dimer formation by the ligand binding cores is required for activation of ion channel gating by agonists. To define the mechanisms responsible for stabilization of dimer assembly in native AMPA receptors, contacts between the adjacent ligand binding cores were individually targeted by amino acid substitutions, using the GluR2 crystal structure as a guide to design mutants. We show that disruption of a salt bridge, hydrogen bond network, and intermolecular van der Waals contacts between helices D and J in adjacent ligand binding cores greatly accelerates desensitization. Conservation of these contacts in AMPA and kainate receptors indicates that they are important determinants of dimer stability and that the dimer interface is a key structural element in the gating mechanism of these glutamate receptor families.  相似文献   

19.
Aptamers are nucleic acids developed by in vitro evolution techniques that bind to specific ligands with high affinity and selectivity. Despite such high affinity and selectivity, however, in vitro evolution does not necessarily reveal the minimum structure of the nucleic acid required for selective ligand binding. Here, we show that a 35mer RNA aptamer for the cofactor flavin mononucleotide (FMN) identified by in vitro evolution can be computationally evolved to a mere 14mer structure containing the original binding pocket and eight scaffolding nucleotides while maintaining its ability to bind in vitro selectively to FMN. Using experimental and computational methodologies, we found that the 14mer binds with higher affinity to FMN (KD ~ 4 µM) than to flavin adenine dinucleotide (KD ~ 12 µM) or to riboflavin (KD ~ 13 µM),despite the negative charge of FMN. Different hydrogen-bond strengths resulting from differing ring-system electron densities associated with the aliphatic-chain charges appear to contribute to the selectivity observed for the binding of the 14mer to FMN and riboflavin. Our results suggest that high affinity and selectivity in ligand binding is not restricted to large RNAs, but can also be a property of extraordinarily short RNAs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号