首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Since Feb, 2013, more than 100 human beings had been infected with novel H7N9 avian influenza virus. As of May 2013, several H7N9 viruses had been found in retail live bird markets (LBMs) in Guangdong province of southern China where several human cases were confirmed later. However, the real avian influenza virus infection status especially H7N9 in Guangzhou remains unclear. Therefore, a cross-sectional study of avian influenza in commercial poultry farms, the wholesale LBM and retail LBMs in one district of Guangzhou was conducted from October to November, 2013. A total of 1505 cloacal and environmental samples from 52 commercial poultry farms, 1 wholesale LBM and 18 retail LBMs were collected and detected using real-time RT-PCR for type A, H7, H7N9 and H9 subtype avian influenza virus, respectively. Of all the flocks randomly sampled, 6 farms, 12 vendors of the wholesale LBM and 18 retail LBMs were type A avian influenza virus positive with 0, 3 and 11 positive for H9, respectively. The pooled prevalence and individual prevalence of type A avian influenza virus were 33.9% and 7.9% which for H9 subtype was 7.6% and 1.6%, respectively. None was H7 and H7N9 subtype virus positive. Different prevalence and prevalence ratio were found in different poultry species with partridges having the highest prevalence for both type A and H9 subtype avian influenza virus. Our results suggest that LBM may have a higher risk for sustaining and transmission of avian influenza virus than commercial poultry farms. The present study also indicates that different species may play different roles in the evolution and transmission of avian influenza virus. Therefore, risk-based surveillance and management measures should be conducted in future in this area.  相似文献   

2.
研究广东省活禽市场外环境禽流感病毒污染状况并及时发现人流感发病潜在的危险因素,为人流感防治提供科学参考依据。应用传染病技术监测平台信息管理系统数据,采用描述性流行病学方法分析各种亚型病毒感染的流行病学特征,研究2012-2015年广东省活禽市场外环境禽流感病毒污染。共采集检测广东省21个地市级样本33079份,FluA 总阳性率为24.23%,H5、H7和 H9型高致病性禽流感病毒阳性率分别为3.70%、3.89%和13.53%;除2012年阳性率呈现季节性增加外,其他年份 FluA 核酸检测阳性率均在冬春季出现一个高峰。不同部位或地点采集的标本中,宰杀或摆放禽肉案板表面阳性率最高(FluA39.49%,H58.41%,H77.41%,H923.84%),而采集的粪便标本阳性率最低(FluA14.99%,H51.73%、H72.38%、和 H97.23%);所采集的标本所对应的相关动物种类中,鸡(64.08%)、鸭(55.84%)和鸟类(51.92%)的禽流感病毒阳性率都达到50%以上,H5、H7和 H9在各禽类中均可以检出。同时发现,在环境中检出 H7亚型多的地区分布与其相应地区 H7N9感染的病例数呈显著相关性,(r =0.689,P <0.05);对2322份样本进行 H6亚型核酸检测,总阳性率为2.58%,并选取 H5、H6和 H9亚型标本153份进行 N 亚型检测,检测出 H5N1、H5N2、H5N6、H6N2和 H9N2等多种亚型。2012-2015年广东省21个地市活禽市场均存在 HA 亚型(H5、H7、H9和 H6)和 NA 亚型(N1、N2、N6)等多种亚型的污染,污染程度呈现季节性分布,不同样本类型和禽类其禽流感病毒分状况不同,H7亚型的污染严重程度与 H7N9的病例感染数呈正相关性。  相似文献   

3.
Continuing evolution of H9N2 influenza viruses in Southeastern China   总被引:10,自引:0,他引:10       下载免费PDF全文
H9N2 influenza viruses are panzootic in domestic poultry in Eurasia and since 1999 have caused transient infections in humans and pigs. To investigate the zoonotic potential of H9N2 viruses, we studied the evolution of the viruses in live-poultry markets in Hong Kong in 2003. H9N2 was the most prevalent influenza virus subtype in the live-poultry markets between 2001 and 2003. Antigenic and phylogenetic analysis of hemagglutinin (HA) showed that all of the 19 isolates found except one belonged to the lineage represented by A/Duck/Hong Kong/Y280/97 (H9N2). The exception was A/Guinea fowl/NT184/03 (H9N2), whose HA is most closely related to that of the human isolate A/Guangzhou/333/99 (H9N2), a virus belonging to the A/Chicken/Beijing/1/94-like (H9N2) lineage. At least six different genotypes were recognized. The majority of the viruses had nonstructural (and HA) genes derived from the A/Duck/Hong Kong/Y280/97-like virus lineage but had other genes of mixed avian virus origin, including genes similar to those of H5N1 viruses isolated in 2001. Viruses of all six genotypes of H9N2 found were able to replicate in chickens and mice without adaptation. The infected chickens showed no signs of disease, but representatives of two viral genotypes were lethal to mice. Three genotypes of virus replicated in the respiratory tracts of swine, which shed virus for at least 5 days. These results show an increasing genetic and biologic diversity of H9N2 viruses in Hong Kong and support their potential role as pandemic influenza agents.  相似文献   

4.
【背景】自2014年以来,H5N6禽流感病毒在我国家禽和活禽市场持续进化,成为人类和动物健康的重大威胁。【目的】对2017–2019年中国南方地区93株高致病性H5N6禽流感病毒的HA基因进行分子进化分析。【方法】接种9–11日龄鸡胚分离核酸检测阳性的H5N6标本,运用下一代测序平台对病毒分离物进行全基因组测序,从NCBI和GISAID数据库下载参考序列,利用BLAST、MEGA6.1及Clustal X等软件进行序列分析。【结果】2017–2019年,从189份江苏省H5亚型禽类/环境标本和1名H5N6患者咽拭子标本中共分离到43株病毒,完成了33株H5N6病毒的全基因组测序。下载网上同时期中国其他地区流行的H5N6毒株序列,对总计93株H5N6病毒的HA基因进行分子进化分析。93株H5N6病毒中有78株属于Clade 2.3.4.4h,9株病毒属于Clade 2.3.4.4e,4株H5N6病毒属于Clade 2.3.4.4b,1株属于Clade 2.3.4.4f,1株属于Clade 2.3.4.4g。所有93株病毒HA蛋白的裂解位点含有多个碱性氨基酸,表明它们都属于高致病性禽流感病...  相似文献   

5.
A novel avian influenza A H7N9-subtype virus emerged in China in 2013 and threatened global public health. Commercial kits that specifically detect avian influenza A (H7N9) virus RNA are urgently required to prepare for the emergence and potential pandemic of this novel influenza virus. The safety and effectiveness of three commercial molecular diagnostic assays were evaluated using a quality-control panel and clinical specimens collected from over 90 patients with confirmed avian influenza A (H7N9) virus infections. The analytical performance evaluation showed that diverse influenza H7N9 viruses can be detected with high within- and between-lot reproducibility and without cross-reactivity to other influenza viruses (H1N1 pdm09, seasonal H1N1, H3N2, H5N1 and influenza B). The detection limit of all the commercial assays was 2.83 Log10 copies/μl [0.7 Log10TCID50/mL of avian influenza A (H7N9) virus strain A/Zhejiang/DTID-ZJU01/2013], which is comparable to the method recommended by the World Health Organization (WHO). In addition, using a WHO-Chinese National Influenza Center (CNIC) method as a reference for clinical evaluation, positive agreement of more than 98% was determined for all of the commercial kits, while negative agreement of more than 99% was observed. In conclusion, our findings provide comprehensive evidence for the high performance of three commercial diagnostic assays and suggest the application of these assays as rapid and effective diagnostic tools for avian influenza A (H7N9) virus in the routine clinical practice of medical laboratories.  相似文献   

6.
Multiple reassortment events within poultry and wild birds had resulted in the establishment of another novel avian influenza A(H10N8) virus, and finally resulted in human death in Nanchang, China. However, there was a paucity of information on the prevalence of avian influenza virus in poultry and wild birds in Nanchang area. We investigated avian influenza virus in poultry and wild birds from live poultry markets, poultry countyards, delivery vehicles, and wild-bird habitats in Nanchang. We analyzed 1036 samples from wild birds and domestic poultry collected from December 2013 to February 2014. Original biological samples were tested for the presence of avian influenza virus using specific primer and probe sets of H5, H7, H9, H10 and N8 subtypes by real-time RT-PCR. In our analysis, the majority (97.98%) of positive samples were from live poultry markets. Among the poultry samples from chickens and ducks, AIV prevalence was 26.05 and 30.81%, respectively. Mixed infection of different HA subtypes was very common. Additionally, H10 subtypes coexistence with N8 was the most prevalent agent during the emergence of H10N8. This event illustrated a long-term surveillance was so helpful for pandemic preparedness and response.  相似文献   

7.
In March 2013 a new avian influenza A(H7N9) virus emerged in China and infected humans with a case fatality rate of over 30%. Like the highly pathogenic H5N1 virus, H7N9 virus is causing severe respiratory distress syndrome in most patients. Based on genetic analysis this avian influenza A virus shows to some extent adaptation to mammalian host. In the present study, we analyzed the activation of innate immune responses by this novel H7N9 influenza A virus and compared these responses to those induced by the avian H5N1 and seasonal H3N2 viruses in human monocyte-derived dendritic cells (moDCs). We observed that in H7N9 virus-infected cells, interferon (IFN) responses were weak although the virus replicated as well as the H5N1 and H3N2 viruses in moDCs. H7N9 virus-induced expression of pro-inflammatory cytokines remained at a significantly lower level as compared to H5N1 virus-induced “cytokine storm” seen in human moDCs. However, the H7N9 virus was extremely sensitive to the antiviral effects of IFN-α and IFN-β in pretreated cells. Our data indicates that different highly pathogenic avian viruses may show considerable differences in their ability to induce host antiviral responses in human primary cell models such as moDCs. The unexpected appearance of the novel H7N9 virus clearly emphasizes the importance of the global influenza surveillance system. It is, however, equally important to systematically characterize in normal human cells the replication capacity of the new viruses and their ability to induce and respond to natural antiviral substances such as IFNs.  相似文献   

8.
本研究综述了自1959年以来国内外发生的人感染H7亚型禽流感事件。大多数是在家禽爆发禽流感期间,农场工人在处置感染鸡群过程中被暴露而感染;也有曾接触活禽或曾到过活禽市场而感染;有经禽流感病毒致病的哺乳动物(海豹)感染于人或实验室感染(事故)所致。引起人感染的H7亚型中已知有H7N2、H7N3、H7N7以及2013年在中国发现的新的致病亚型H7N9。H7N2、H7N3、H7N7感染以结膜炎为主,大多为轻症;而H7N9感染以严重的呼吸道感染为特征,表现为重症肺炎,呼吸窘迫综合症,病死率高达33.6%。  相似文献   

9.
A novel avian influenza A (H7N9) virus recently emerged in the Yangtze River delta and caused diseases, often severe, in over 130 people. This H7N9 virus appeared to infect humans with greater ease than previous avian influenza virus subtypes such as H5N1 and H9N2. While there are other potential explanations for this large number of human infections with an avian influenza virus, we investigated whether a lack of conserved T-cell epitopes between endemic H1N1 and H3N2 influenza viruses and the novel H7N9 virus contributes to this observation. Here we demonstrate that a number of T cell epitopes are conserved between endemic H1N1 and H3N2 viruses and H7N9 virus. Most of these conserved epitopes are from viral internal proteins. The extent of conservation between endemic human seasonal influenza and avian influenza H7N9 was comparable to that with the highly pathogenic avian influenza H5N1. Thus, the ease of inter-species transmission of H7N9 viruses (compared with avian H5N1 viruses) cannot be attributed to the lack of conservation of such T cell epitopes. On the contrary, our findings predict significant T-cell based cross-reactions in the human population to the novel H7N9 virus. Our findings also have implications for H7N9 virus vaccine design.  相似文献   

10.
In 1997, avian H5N1 influenza virus transmitted from chickens to humans resulted in 18 confirmed infections. Despite harboring lethal H5N1 influenza viruses, most chickens in the Hong Kong poultry markets showed no disease signs. At this time, H9N2 influenza viruses were cocirculating in the markets. We investigated the role of H9N2 influenza viruses in protecting chickens from lethal H5N1 influenza virus infections. Sera from chickens infected with an H9N2 influenza virus did not cross-react with an H5N1 influenza virus in neutralization or hemagglutination inhibition assays. Most chickens primed with an H9N2 influenza virus 3 to 70 days earlier survived the lethal challenge of an H5N1 influenza virus, but infected birds shed H5N1 influenza virus in their feces. Adoptive transfer of T lymphocytes or CD8(+) T cells from inbred chickens (B(2)/B(2)) infected with an H9N2 influenza virus to naive inbred chickens (B(2)/B(2)) protected them from lethal H5N1 influenza virus. In vitro cytotoxicity assays showed that T lymphocytes or CD8(+) T cells from chickens infected with an H9N2 influenza virus recognized target cells infected with either an H5N1 or H9N2 influenza virus in a dose-dependent manner. Our findings indicate that cross-reactive cellular immunity induced by H9N2 influenza viruses protected chickens from lethal infection with H5N1 influenza viruses in the Hong Kong markets in 1997 but permitted virus shedding in the feces. Our findings are the first to suggest that cross-reactive cellular immunity can change the outcome of avian influenza virus infection in birds in live markets and create a situation for the perpetuation of H5N1 influenza viruses.  相似文献   

11.
自2013年3月中国首次发现新型禽流感病毒H7N9以来,其于2013-2014年期间发生流行,2015年也有散发性感染。该病毒的流行不仅危及家禽养殖业,还对公共卫生安全造成严重威胁。为调查活禽市场中H7N9的进化史和季节性变化,本研究于2013年7-12月在H7N9主要流行地区之一江苏省苏州市活禽市场采集2 655份鸡、鸭咽拭子样本,对样本中流感病毒核酸进行检测。结果显示,冬季样本中H7N9阳性率显著高于夏季样本,同时发现样本中存在H5、H7和H9亚型毒株之间的混合感染。进一步对H7N9阳性样本的HA、NA和PB2基因序列进行分析,结果表明阳性样本中HA、NA和PB2基因序列与新型H7N9病毒的相应基因序列同源,其在家禽体内传代时也在继续进化。特别是一些样品中PB2基因序列与H5N1病毒PB2基因序列的同源性较高。结果提示,苏州存在一种新型H7N9病毒基因重排的可能性,建议在活禽市场对所有禽流感病毒亚型进行持续监控,从而有助于流感病毒的及时防控。  相似文献   

12.
分离到一株鹅源 H5N2亚型高致病性禽流感病毒,SPF鸡静脉接种致病指数为2.99,但鸭子对该病毒不敏感.病毒感染小鼠后不致病,但能够在肺内有效复制,表明其具有感染哺乳动物的潜在风险.血凝素(hemagglutinin, HA)蛋白裂解位点上插入有多个连续的碱性氨基酸(-RRRKKR-),从分子上证实这是一株高致病性禽流感病毒.核酸序列比较分析表明,分离的流感病毒HA基因与A/chicken/Hubei/489/2004 (H5N1)同源率达到99.4%,神经氨酸酶(neuraminidase, NA)基因与A/chicken/Jilin/53/01(H9N2)同源率达到99.8%;氨基酸水平上,HA与2004年分离到的A/chicken/Hubei/489/2004(H5N1)、A/swan/Guangxi/307/2004(H5N1)、A/wildduck/Guangdong/314/ 2004(H5N1)和A/chicken/Henan/210/2004(H5N1)同源率均为99.3%,NA 与A/chicken/Jilin/53/01(H9N2)同源率为99.6%.进化树分析结果表明,该流感病毒分离株可能是由H5N1和H9N2两个亚型病毒重排而来.  相似文献   

13.
The transmission of H9N2 influenza viruses to humans and the realization that the A/Hong Kong/156/97-like (H5N1) (abbreviated HK/156/97) genome complex may be present in H9N2 viruses in southeastern China necessitated a study of the distribution and characterization of H9N2 viruses in poultry in the Hong Kong SAR in 1999. Serological studies indicated that H9N2 influenza viruses had infected a high proportion of chickens and other land-based birds (pigeon, pheasant, quail, guinea fowl, and chukka) from southeastern China. Two lineages of H9N2 influenza viruses present in the live-poultry markets were represented by A/Quail/Hong Kong/G1/97 (Qa/HK/G1/97)-like and A/Duck/Hong Kong/Y280/97 (Dk/HK/Y280/97)-like viruses. Up to 16% of cages of quail in the poultry markets contained Qa/HK/G1/97-like viruses, while about 5% of cages of other land-based birds were infected with Dk/HK/Y280/97-like viruses. No reassortant between the two H9N2 virus lineages was detected despite their cocirculation in the poultry markets. Reassortant viruses represented by A/Chicken/Hong Kong/G9/97 (H9N2) were the major H9N2 influenza viruses circulating in the Hong Kong markets in 1997 but have not been detected since the chicken slaughter in 1997. The Qa/HK/G1/97-like viruses were frequently isolated from quail, while Dk/HK/Y280/97-like viruses were predominately associated with chickens. The Qa/HK/G1/97-like viruses were evolving relatively rapidly, especially in their PB2, HA, NP, and NA genes, suggesting that they are in the process of adapting to a new host. Experimental studies showed that both H9N2 lineages were primarily spread by the aerosol route and that neither quail nor chickens showed evidence of disease. The high prevalence of quail infected with Qa/HK/G1/97-like virus that contains six gene segments genetically highly related to HK/156/97 (H5N1) virus emphasizes the need for surveillance of mammals including humans.  相似文献   

14.
The transmission of highly pathogenic avian influenza H5N1 virus to Southeast Asian countries triggered the first major outbreak and transmission wave in late 2003, accelerating the pandemic threat to the world. Due to the lack of influenza surveillance prior to these outbreaks, the genetic diversity and the transmission pathways of H5N1 viruses from this period remain undefined. To determine the possible source of the wave 1 H5N1 viruses, we recently conducted further sequencing and analysis of samples collected in live-poultry markets from Guangdong, Hunan, and Yunnan in southern China from 2001 to 2004. Phylogenetic analysis of the hemagglutinin and neuraminidase genes of 73 H5N1 isolates from this period revealed a greater genetic diversity in southern China than previously reported. Moreover, results show that eight viruses isolated from Yunnan in 2002 and 2003 were most closely related to the clade 1 virus sublineage from Vietnam, Thailand, and Malaysia, while two viruses from Hunan in 2002 and 2003 were most closely related to viruses from Indonesia (clade 2.1). Further phylogenetic analyses of the six internal genes showed that all 10 of those viruses maintained similar phylogenetic relationships as the surface genes. The 10 progenitor viruses were genotype Z and shared high similarity (>/=99%) with their corresponding descendant viruses in most gene segments. These results suggest a direct transmission link for H5N1 viruses between Yunnan and Vietnam and also between Hunan and Indonesia during 2002 and 2003. Poultry trade may be responsible for virus introduction to Vietnam, while the transmission route from Hunan to Indonesia remains unclear.  相似文献   

15.
【目的】由于H7N9禽流感病毒能够感染鸡,并且已经变异成了高致病性毒株,因此,鸡群中H7N9禽流感疫苗的免疫是一个趋势,而鸡群免疫后抗体检测方法的建立也十分必要。本研究旨在建立一种灵敏、高效、高通量的鸡群H7N9亚型禽流感病毒抗体间接酶联免疫吸附试验(ELISA)检测方法。【方法】通过昆虫杆状病毒表达系统分别表达属于W1、W2-A和W2-B分支H7N9流感病毒的3种野生型血凝素(HA)蛋白,以及跨膜区(TM)置换为H3 HA TM的W2-B分支HA蛋白(H7-53TM)。4种HA蛋白经过离子交换层析纯化后作为抗原,通过ELISA检测H7N9禽流感病毒抗体。【结果】ELISA特异性、敏感性和重复性试验结果显示,跨膜区置换主要影响HA蛋白ELISA检测的重复性,以H7-53TM为抗原的ELISA方法具有较好的重复性,其批内和批间变异系数小于10%,然而3种野生型HA蛋白与部分血清反应批内和批间变异系数大于10%,重复性较差,因此选择H7-53TM蛋白作为ELISA包被抗原。通过受试者工作特征曲线(ROC曲线)分析,以H7-53TM为抗原的ELISA能够精准地区分H7N9亚型流感病毒抗体阳性和阴性血清。通过相关性分析,该ELISA方法与134份鸡血清HI试验结果具有显著强相关性(r=0.854 6,P0.000 1),并且与3个分支疫苗株免疫血清的HI试验结果也具有显著相关性(r0.5,P0.05)。【结论】跨膜区置换能够提高HA蛋白抗原检测H7N9禽流感病毒抗体的重复性,并应用跨膜区置换的HA蛋白建立了一种能够检测不同分支疫苗株免疫的H7N9亚型禽流感病毒抗体间接ELISA检测方法。  相似文献   

16.
P Jiao  Y Song  R Yuan  L Wei  L Cao  K Luo  M Liao 《Journal of virology》2012,86(16):8894-8895
An H5N1 avian influenza virus (AIV) designated A/Parrot/Guangdong/C99/2005 (H5N1) was first isolated from a sick parrot in Guangdong in southern China in 2005. The complete genome of this strain was analyzed. Genome sequence analysis showed that all 8 gene segments of the virus nucleotide had 99.0% homology to A/chicken/Henan/12/2004 (H5N1). Phylogenetic analysis demonstrated that all 8 gene segments of the virus were derived from the Eurasian lineage. The availability of genome sequences is useful to investigate the host range and genetic evolution of the H5N1 avian influenza virus in Southern China.  相似文献   

17.
Influenza virus surveillance, poultry outbreak investigations and genomic sequencing were assessed to understand the ecology and evolution of low pathogenicity avian influenza (LPAI) A viruses in Bangladesh from 2007 to 2013. We analyzed 506 avian specimens collected from poultry in live bird markets and backyard flocks to identify influenza A viruses. Virus isolation-positive specimens (n = 50) were subtyped and their coding-complete genomes were sequenced. The most frequently identified subtypes among LPAI isolates were H9N2, H11N3, H4N6, and H1N1. Less frequently detected subtypes included H1N3, H2N4, H3N2, H3N6, H3N8, H4N2, H5N2, H6N1, H6N7, and H7N9. Gene sequences were compared to publicly available sequences using phylogenetic inference approaches. Among the 14 subtypes identified, the majority of viral gene segments were most closely related to poultry or wild bird viruses commonly found in Southeast Asia, Europe, and/or northern Africa. LPAI subtypes were distributed over several geographic locations in Bangladesh, and surface and internal protein gene segments clustered phylogenetically with a diverse number of viral subtypes suggesting extensive reassortment among these LPAI viruses. H9N2 subtype viruses differed from other LPAI subtypes because genes from these viruses consistently clustered together, indicating this subtype is enzootic in Bangladesh. The H9N2 strains identified in Bangladesh were phylogenetically and antigenically related to previous human-derived H9N2 viruses detected in Bangladesh representing a potential source for human infection. In contrast, the circulating LPAI H5N2 and H7N9 viruses were both phylogenetically and antigenically unrelated to H5 viruses identified previously in humans in Bangladesh and H7N9 strains isolated from humans in China. In Bangladesh, domestic poultry sold in live bird markets carried a wide range of LPAI virus subtypes and a high diversity of genotypes. These findings, combined with the seven year timeframe of sampling, indicate a continuous circulation of these viruses in the country.  相似文献   

18.

Background

Human infection with a novel avian-origin influenza A (H7N9) virus occurred continuously in China during the first half of 2013, with high infectivity and pathogenicity to humans. In this study, we investigated the origin of internal genes of the novel H7N9 virus and analyzed the relationship between internal genes and infectivity of the virus.

Methodology and Principal findings

We tested the environmental specimens using real-time RT-PCR assays and isolated five H9N2 viruses from specimens that were positive for both H7 and H9. Results of recombination and phylogeny analysis, performed based on the entire sequences of 221 influenza viruses, showed that one of the Zhejiang avian H9N2 isolates, A/environment/Zhejiang/16/2013, shared the highest identities on the internal genes with the novel H7N9 virus A/Anhui/1/2013, ranging from 98.98% to 100%. Zhejiang avian H9N2 isolates were all reassortant viruses, by acquiring NS gene from A/chicken/Dawang/1/2011-like viruses and other five internal genes from A/brambling/Beijing/16/2012-like viruses. Compared to A/Anhui/1/2013 (H7N9), the homology on the NS gene was 99.16% with A/chicken/Dawang/1/2011, whereas only 94.27-97.61% with A/bramnling/Beijing/16/2012-like viruses. Analysis on the relationship between internal genes and the infectivity of novel H7N9 viruses were performed by comparing amino acid sequences with the HPAI H5N1 viruses, the H9N2 and the earlier H7N9 avian influenza viruses. There were nine amino acids on the internal genes found to be possibly associated with the infectivity of the novel H7N9 viruses.

Conclusions

These findings indicate that the internal genes, sharing the highest similarities with A/environment/Zhejiang/16/2013-like (H9N2) viruses, may affect the infectivity of the novel H7N9 viruses.  相似文献   

19.
The H5N1 influenza virus, which killed humans and poultry in 1997, was a reassortant that possibly arose in one type of domestic poultry present in the live-poultry markets of Hong Kong. Given that all the precursors of H5N1/97 are still circulating in poultry in southern China, the reassortment event that generated H5N1 could be repeated. Because A/goose/Guangdong/1/96-like (H5N1; Go/Gd) viruses are the proposed donors of the hemagglutinin gene of the H5N1 virus, we investigated the continued circulation, host range, and transmissibility of Go/Gd-like viruses in poultry. The Go/Gd-like viruses caused weight loss and death in some mice inoculated with high virus doses. Transmission of Go/Gd-like H5N1 viruses to geese by contact with infected geese resulted in infection of all birds but limited signs of overt disease. In contrast, oral inoculation with high doses of Go/Gd-like viruses resulted in the deaths of up to 50% of infected geese. Transmission from infected geese to chickens occurred only by fecal contact, whereas transmission to quail occurred by either aerosol or fecal spread. This difference is probably explained by the higher susceptibility of quail to Go/Gd-like virus. The high degree of susceptibility of quail to Go/Gd (H5N1)-like viruses and the continued circulation of H6N1 and H9N2 viruses in quail support the hypothesis that quail were the host of origin of the H5N1/97 virus. The ease of transmission of Go/Gd (H5N1)-like viruses to land-based birds, especially quail, supports the wisdom of separating aquatic and land-based poultry in the markets in Hong Kong and the need for continued surveillance in the field and live-bird markets in which different types of poultry are in contact with one another.  相似文献   

20.

Background

A novel avian-origin influenza A(H7N9) caused a major outbreak in Mainland China in early 2013. Exposure to live poultry was believed to be the major route of infection. There are limited data on how the general public changes their practices regarding live poultry exposure in response to the early outbreak of this novel influenza and the frequency of population exposure to live poultry in different areas of China.

Methodology

This study investigated population exposures to live birds from various sources during the outbreak of H7N9 in Guangzhou city, China in 2013 and compared them with those observed during the 2006 influenza A(H5N1) outbreak. Adults were telephone-interviewed using two-stage sampling, stratified by three residential areas of Guangzhou: urban areas and two semi-rural areas in one of which (Zengcheng) A(H7N9) virus was detected in a chicken from wet markets. Logistic regression models were built to describe practices protecting against avian influenza, weighted by age and gender, and then compare these practices across residential areas in 2013 with those from a comparable 2006 survey.

Principal Findings

Of 1196 respondents, 45% visited wet markets at least daily and 22.0% reported buying live birds from wet markets at least weekly in April-May, 2013, after the H7N9 epidemic was officially declared in late March 2013. Of those buying live birds, 32.3% reported touching birds when buying and 13.7% would slaughter the poultry at home. Although only 10.1% of the respondents reported raising backyard birds, 92.1% of those who did so had physical contact with the birds they raised. Zengcheng respondents were less likely to report buying live birds from wet markets, but more likely to buy from other sources when compared to urban respondents. Compared with the 2006 survey, the prevalence of buying live birds from wet markets, touching when buying and slaughtering birds at home had substantially declined in the 2013 survey.

Conclusion/Significance

Although population exposures to live poultry were substantially fewer in 2013 compared to 2006, wet markets and backyard poultry remained the two major sources of live bird exposures for the public in Guangzhou in 2013. Zengcheng residents seemed to have reduced buying live birds from wet markets but not from other sources in response to the detection of H7N9 virus in wet markets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号