首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electromagnetic radiation effects are calculated for the case of the solar radiation spectrum in the vicinity of the Earth. The influence of the photoelectric effect on the propagation of nonlinear waves in complex plasmas is studied when the dust grains acquire large positive charges. Exact solutions to nonlinear equations in the form of steady-state shocks that do not involve electron-ion collisions are found, and the conditions for their existence are obtained. In contrast to the classical collisionless shock waves, the dissipation due to the dust charging involves the interaction of the electrons and ions with the dust grains in the form of microscopic grain currents and the photoelectric current. The nonsteady problem of the evolution of a perturbation and its transformation into a nonlinear wave structure is considered. The evolution of an intense, initially nonmoving region with a constant increased ion density is investigated. It is shown that the evolution of a rather intense nonmoving region with a constant increased ion density can result in the formation of a shock wave. In addition to the compressional wave, a rarefaction region (dilatation wave) appears. The presence of a dilatation wave finally leads to the destruction of the shock structure. The possibility is discussed of the observation of shock waves related to dust charging in the presence of electromagnetic radiation in active rocket experiments, which involve the release of a gaseous substance in the Earth's ionosphere in the form of a high-speed plasma jet at altitudes of 500–600 km.  相似文献   

2.
3.
The propagation of ion-acoustic solitons in a warm dusty plasma containing two ion species is investigated theoretically. Using an approach based on the Korteveg de Vries equation, it is shown that the critical value of the negative ion density that separates the domains of existence of compression and rarefaction solitons depends continuously on the dust density. A modified Korteveg de Vries equation for the critical density is derived in the higher order of the expansion in the small parameter. It is found that the nonlinear coefficient of this equation is positive for any values of the dust density and the masses of positive and negative ions. For the case where the negative ion density is close to its critical value, a soliton solution is found that takes into account both the quadratic and cubic nonlinearities. The propagation of a solitary wave of arbitrary amplitude is investigated by the quasi-potential method. It is shown that the range of dust densities around the critical value within which solitary waves with positive and negative potentials can exist simultaneously is relatively wide.  相似文献   

4.
A study is made of the propagation of ion acoustic waves in a collisionless unmagnetized dusty plasma containing degenerate ion and electron gases at nonzero temperatures. In linear theory, a dispersion relation for isothermal ion acoustic waves is derived and an exact expression for the linear ion acoustic velocity is obtained. The dependence of the linear ion acoustic velocity on the dust density in a plasma is calculated. An analysis of the dispersion relation reveals parameter ranges in which the problem has soliton solutions. In nonlinear theory, an exact solution to the basic equations is found and examined. The analysis is carried out by Bernoulli’s pseudopotential method. The ranges of the phase velocities of periodic ion acoustic waves and the velocities of solitons are determined. It is shown that these ranges do not overlap and that the soliton velocity cannot be lower than the linear ion acoustic velocity. The profiles of the physical quantities in a periodic wave and in a soliton are evaluated, as well as the dependence of the critical velocity of solitons on the dust density in a plasma.  相似文献   

5.
The propagation of nonlinear periodic ion acoustic waves in a dusty plasma is considered for conditions in which the coefficient in the nonlinear equation that describes the quadratic nonlinearity of the medium is zero. An equation that accounts for the cubic nonlinearity of the system is derived, and its solution is found. The dependence of the phase velocity of a cnoidal wave on its amplitude and modulus is determined. In describing the effect of higher order nonlinearities on the properties of a dust ion acoustic wave, two coupled equations for the first- and second-order potentials are obtained. It is shown that the nonlinear ion flux generated by a cnoidal wave propagating in a medium with a cubic nonlinearity is proportional to the fourth power of the wave amplitude.  相似文献   

6.
The properties of magnetosonic waves that propagate perpendicularly to the external magnetic field in a polydisperse dusty plasma and the frequencies of which are about the dust cyclotron frequency are analyzed. A dispersion relation containing integrals of functions of the dust grain radius is derived and investigated as a function of the parameters characterizing the polydisperse properties of dust. It is found that, in a polydisperse dusty plasma, the low-frequency magnetosonic mode splits into two branches. The first, lower frequency branch has a cutoff, while the higher frequency branch has a resonance. Between the two branches, there is a forbidden frequency range within which electromagnetic waves cannot propagate perpendicular to the magnetic field. The width of the forbidden frequency range is determined as a function of the slope of the distribution function of dust grains over radii and the interval within which the dust grain radii lie.  相似文献   

7.
Some features of nonlinear dust-acoustic (DA) structures are investigated in a space plasma consisting of superthermal electrons, positrons, and positive ions in the presence of negatively charged dust grains with finite-temperature by employing a pseudo-potential technique in a hydrodynamic model. For this purpose, it is assumed that the electrons, positrons, and ions obey a kappa-like (κ) distribution in the background of adiabatic dust population. In the linear analysis, it is found that the dispersion relation yield two positive DA branches, i.e., the slow and fast DA waves. The upper branch (fast DA waves) corresponds to the case in which both (negatively charged) dust particles and (positively charged) ion species oscillate in phase with electrons and positrons. On the other hand, the lower branch (slow DA waves) corresponds to the case in which only dust particles oscillate in phase with electrons and positrons, while ion species are in antiphase with them. On the other hand, the fully nonlinear analysis shows that the existence domain of solitons and their characteristics depend strongly on the dust charge, ion charge, dust temperature, and the spectral index κ. It is found that the minimum/maximum Mach number increases as the spectral index κ increases. Also, it is found that only solitons with negative polarity can propagate and that their amplitudes increase as the parameter κ increases. Furthermore, the domain of Mach number shifts to the lower values, when the value of the dust charge Z d increases. Moreover, it is found that the Mach number increases with an increase in the dust temperature. Our analysis confirms that, in space plasmas with highly charged dusts, the presence of superthermal particles (electrons, positrons, and ions) may facilitate the formation of DA solitary waves. Particularly, in two cases of hydrogen ions H+ (Z i = 1) and doubly ionized Helium atoms He2+ (Z i = 2), the mentioned results are the same. Additionally, the mentioned dusty plasma does not support DA solitons with positive polarity (compressive solitons). Furthermore, our analysis confirms that DA double layers cannot exist in such a system. Moreover, the positron density has not a considerable effect on the behavior of DA solitons in our model.  相似文献   

8.
Nonlinear properties of dust?ion acoustic freak waves have been studied in homogeneous unmagnetized dusty plasmas consisting of ions, nonthermal fast electrons, and positive and negative dust grains. By using derivative expansion method under the assumption of strongly dispersive medium, the basic equations are reduced to nonlinear Schrödinger equation (NLSE). One of NLSE solutions in the unstable region is the rational one which is responsible for creation of the freak waves. The dependence of the freak wave profile on the dust grain charge, carrier wavenumber, and energetic nonthermal electron population is discussed.  相似文献   

9.
Results from experimental studies of ordered dust structures in plasma are reviewed. The experimental conditions and the data on the grain size and intergrain distance in plasma dust crystals are analyzed. It is shown that intergrain distance is a function of the grain size. The range of the ratio of the dust grain size to the Debye radius within which plasma dust crystals can form is determined. A volume cell surrounding a dust grain in plasma is considered. It is found that the potential and charge of the grain depend substantially on the intergrain distance. The charge, potential, and potential energy of a dust grain in a plasma dust crystal, as well as the electrostatic force exerted by the plasma field on the grain, are calculated by the method of molecular dynamics as functions of the intergrain distance. The corresponding analytic approximations and the criterion for the establishment of a steady-state intergrain distance are proposed.  相似文献   

10.
Basic equations for dust structures are formulated that account for the balance of the forces, plasma fluxes, and grain charges with allowance for nonlinearity in the screening of individual grains and possible violation of quasineutrality due to the interaction of collective fields with plasma fluxes. A theory of non-linear drag forces exerted by plasma fluxes on dust grains is developed for moderate drift flux velocities, higher than the mean ion thermal velocity but much lower than the acoustic speed. It is shown that equilibrium dust structures have finite sizes and negative charges and that they can exist only in a certain range of intensities of external fluxes on their surfaces. When there is no additional volume ionization, the size of the structures is determined by the intensity of the external flux. A study is made of a weakly ionized dusty plasma in which the interaction of its components with neutral gas atoms plays a major role. The ion, electron, and dust density distributions, as well as the distributions of the dust grain charges and plasma fluxes, are calculated self-consistently as functions of the distance from the center of a structure.  相似文献   

11.
The modulational instability in a plasma in a strong constant external magnetic field is considered. The plasmon condensate is modulated not by conventional low-frequency ion sound but by the beatings of two high-frequency transverse electromagnetic waves propagating along the magnetic field. The instability reduces the spatial scales of Langmuir turbulence along the external magnetic field and generates electromagnetic fields. It is shown that, for a pump wave with a sufficiently large amplitude, the effect described in the present paper can be a dominant nonlinear process.  相似文献   

12.
Theoretical investigation is carried out for understanding the properties of nonlinear dust-acoustic (DA) waves in an unmagnetized dusty plasma whose constituents are massive, micron-sized, positive and negatively charged inertial dust grains along with q (nonextensive) distributed electrons and ions. The reductive perturbation method is employed in order to derive two types of nonlinear dynamical equations, namely, Burgers equation and modified Gardner equation (Gardner equation with dissipative term). They are also numerically analyzed to investigate the basic features (viz., polarity, amplitude, width, etc.) of shock waves and double layers. It has been observed that the effects of nonextensivity, opposite polarity charged dust grains, and different dusty plasma parameters have significantly modified the fundamental properties of shock waves and double layers. The results of this investigation may be used for researches of the nonlinear wave propagation in laboratory and space plasmas.  相似文献   

13.
A nonlinear theory is constructed that describes steady-state ion-acoustic waves in an ideal plasma in which the electron component is a degenerate Fermi gas and the ion component is a classical gas. The parameter ranges in which such a plasma can exist are determined, and dispersion relations for ion-acoustic waves are obtained that make it possible to find the linear ion-acoustic velocity. Analytic gas-dynamic models of ion sound are developed for a plasma with the ion component as a cold, an isothermal, or an adiabatic gas, and moreover, the solutions to the equations of all the models are brought to a quadrature form. Profiles of a subsonic periodic and a supersonic solitary wave are calculated, and the upper critical Mach numbers of a solitary wave are determined. For a plasma with cold ions, the critical Mach number is expressed by an explicit exact formula.  相似文献   

14.
The oblique propagation of nonlinear periodic ion-acoustic waves in magnetized dusty plasma is investigated. The equations describing the dynamics of the wave potential in the first and second orders of the perturbation theory are derived, and their nonsecular periodic solutions are found. The average nonlinear ion flux caused by the propagation of a cnoidal wave is estimated. The magnitude and direction of the ion flux are analyzed as functions of the dust charge density and the angle between the wave propagation direction and the magnetic field.  相似文献   

15.
The formation of the ion flow to a dust grain and the distribution of the electric potential in a low-pressure dusty plasma are investigated theoretically with allowance for ionization in the intergrain space. Poisson’s equation similar to the Langmuir plasma-sheath equation is solved numerically with the use of partial analytic solutions at the boundary of the Seitz-Wigner cell and in thin layers in the intergrain space. The charge and potential of a dust grain are found as functions of the grain radius and cell size. The grain potential and the total cell potential energy as functions of the cell size display weak minima, whose positions correspond to the observed intergrain distance in dusty crystals.  相似文献   

16.
The problem of the evolution of a perturbation in a dusty plasma and its transformation into a nonlinear wave structure is considered. A computational method that allows one to solve the set of nonlinear evolutionary equations describing variable-charge dust grains, Boltzmann electrons, and inertial ions is developed. Exact steady-state solutions corresponding to ion-acoustic shock structures associated with anomalous dissipation originating from dust grain charging are found taking into account the effect of electron and ion charge separation. The role of this effect increases with the speed of the shock. The evolutions of an initial soliton (which is a steady-state wave solution in a plasma containing dust grains with a constant charge) and an initially immobile perturbation with a constant increased ion density are investigated. In a charge-varying dusty plasma, the soliton evolves into a nonsteady shock wave structure that propagates at a constant speed and whose amplitude decreases with time. The initially immobile perturbation with a constant increased ion density evolves into a shock structure similar to a steady-state shock wave. In the latter case, the compression shock wave is accompanied by a rarefaction region (dilatation wave), which finally leads to the destruction of the shock structure. The solution of the problem of the evolution of a perturbation and its transformation into a shock wave in a charge-varying dusty plasma opens up the possibility of describing real phenomena (such as supernova explosions) and laboratory and active space experiments.  相似文献   

17.
18.
An analytical nonlinear gasdynamic theory of ion-acoustic waves in an e-p-i plasma is developed for the case in which all the plasma components in the wave undergo polytropic compression and rarefaction. An exact solution to the basic equations is found and analyzed by the Bernoulli pseudopotential method. The parameter range in which periodic waves can propagate and the range in which solitary waves (solitons) exist are determined. It is shown that the propagation velocity of a solitary is always higher than the linear ion sound velocity. The profiles of all the physical quantities in both subsonic and supersonic waves are calculated. The results obtained agree well with both the data from other papers and particular limiting cases.  相似文献   

19.
The screening of the grain charge in a nonequilibrium plasma is studied with allowance for electron and ion fluxes to the grain surface and the bulk processes of production and loss of charged particles in an argon plasma. The objective of the paper is to investigate how the conversion of monatomic Ar+ ions into diatomic Ar2+ ions influences the screening of the dust grain charge in a plasma produced by an external gas ionization source. It is found that the conversion of positive ions leads to the onset of a second ion species in the plasma and, as a consequence, to a three-exponential screening of the grain charge; moreover, in a certain range of plasma parameters, all three screening constants are of the same order of magnitude. Analytical results are compared with the data of numerical simulations carried out based on the drift-diffusion approximation.  相似文献   

20.
The presence of strong electric fields in the sheath region of laboratory complex plasma induces an ion drift and perturbs the field around dust grains. The downstream focusing of ions leads to the formation of oscillatory kind of attractive wake potential which superimpose with the normal Debye-Hückel (DH) potential. The structural properties of complex plasma and diffusion coefficient of dust grains in the presence of such a wake potential have been investigated using Langevin dynamics simulation in the subsonic regime of ion flow. The study reveals that the diffusion of dust grains is strongly affected by the ion flow, so that the diffusion changes its character in the wake potential to the DH potential dominant regimes. The dependence of the diffusion coefficient on the parameters, such as the neutral pressure, dust grain size, ion flow velocity, and Coulomb coupling parameter, have been calculated for the subsonic regime by using the Green-Kubo expression, which is based on the integrated velocity autocorrelation function. It is found that the diffusion and the structural property of the system is intimately connected with the interaction potential and significantly get affected in the presence of ion flow in the subsonic regime.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号