首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Members of two temperature-sensitive (ts) mutant groups of influenza A/WSN virus defective in complementary RNA synthesis were analyzed with respect to the identity of their defective genes. RNA analysis of recombinants having a ts+ phenotype derived from the mutants and HK virus permitted the identification of RNA 1 and RNA 2 as the single defective gene in mutant groups I and III, respectively. Based on knowledge obtained by mapping the WSN virus genome, it then was possible to determine that biologically functional P3 protein (coded for by RNA 1) and P1 protein (RNA 2) are required for complementary RNA synthesis of influenza virus.  相似文献   

2.
From infection studies with cultured chicken cells and experimental mammalian hosts, it is well known that influenza viruses use the nonstructural protein 1 (NS1) to suppress the synthesis of interferon (IFN). However, our current knowledge regarding the in vivo role of virus-encoded NS1 in chickens is much more limited. Here, we report that highly pathogenic avian influenza viruses of subtypes H5N1 and H7N7 lacking fully functional NS1 genes were attenuated in 5-week-old chickens. Surprisingly, in diseased birds infected with NS1 mutants, the IFN levels were not higher than in diseased birds infected with wild-type virus, suggesting that NS1 cannot suppress IFN gene expression in at least one cell population of infected chickens that produces large amounts of the cytokine in vivo. To address the question of why influenza viruses are highly pathogenic in chickens although they strongly activate the innate immune system, we determined whether recombinant chicken alpha interferon (IFN-α) can inhibit the growth of highly pathogenic avian influenza viruses in cultured chicken cells and whether it can ameliorate virus-induced disease in 5-week-old birds. We found that IFN treatment failed to confer substantial protection against challenge with highly pathogenic viruses, although it was effective against viruses with low pathogenic potential. Taken together, our data demonstrate that preventing the synthesis of IFN is not the primary role of the viral NS1 protein during infection of chickens. Our results further suggest that virus-induced IFN does not contribute substantially to resistance of chickens against highly pathogenic influenza viruses.  相似文献   

3.
采用重组试验和聚丙烯酰胺凝胶电泳(PAGE)技术,把晚期甲3型流感病毒自然ts突变株齐防79-39的ts损害定位在膜蛋白(M)基因上。但互补试验表明,齐防79-39与M基因损害的WSN标准株ts51可以发生互补,这是基因内互补的一个证据。PAGE技术证实,新甲1型流感病毒自然ts株津防77-78的M基因上确有损害。互补试验证明齐防79-39属于一个互补组,而津防77-78与ts51同属于另一个互补组。 本文结果还表明,晚期甲3型齐防79-39的ts损害基因可能是由甲3型野毒株自发突变所产生,而并非通过在自然界与新甲1型重组而获得。  相似文献   

4.
5.
Li Z  Jiang Y  Jiao P  Wang A  Zhao F  Tian G  Wang X  Yu K  Bu Z  Chen H 《Journal of virology》2006,80(22):11115-11123
In the present study, we explored the genetic basis underlying the virulence and host range of two H5N1 influenza viruses in chickens. A/goose/Guangdong/1/96 (GS/GD/1/96) is a highly pathogenic virus for chickens, whereas A/goose/Guangdong/2/96 (GS/GD/2/96) is unable to replicate in chickens. These two H5N1 viruses differ in sequence by only five amino acids mapping to the PA, NP, M1, and NS1 genes. We used reverse genetics to create four single-gene recombinants that contained one of the sequence-differing genes from nonpathogenic GS/GD/2/96 and the remaining seven gene segments from highly pathogenic GS/GD/1/96. We determined that the NS1 gene of GS/GD/2/96 inhibited the replication of GS/GD/1/96 in chickens, while the substitution of the PA, NP, or M gene did not change the highly pathogenic properties of GS/GD/1/96. Conversely, of the recombinant viruses generated in the GS/GD/2/96 background, only the virus containing the NS1 gene of GS/GD/1/96 was able to replicate and cause disease and death in chickens. The single-amino-acid difference in the sequence of these two NS1 genes resides at position 149. We demonstrate that a recombinant virus expressing the GS/GD/1/96 NS1 protein with Ala149 is able to antagonize the induction of interferon protein levels in chicken embryo fibroblasts (CEFs), but a recombinant virus carrying a Val149 substitution is not capable of the same effect. These results indicate that the NS1 gene is critical for the pathogenicity of avian influenza virus in chickens and that the amino acid residue Ala149 correlates with the ability of these viruses to antagonize interferon induction in CEFs.  相似文献   

6.
研究去除重组鸡痘病毒中的报告基因,构建一株只含目的基因的重组毒。将H5亚型AIV的HA基因作为靶基因,两侧含loxP序列的GFP表达盒插入鸡痘病毒重组臂基因构建了转移质粒载体,将其与脂质体混合转染CEF细胞,获得了表达H5和GFP的鸡痘病毒重组体。通过二次转染,利用Cre酶自动敲除重组病毒中的GFP基因,最终获得了只含H5血凝素基因表达盒的重组鸡痘病毒。免疫荧光和病毒滴度测定结果表明,经过连续传代后重组病毒仍然稳定复制并表达H5血凝素。用105PFU和2×105PFU rFPV H5免疫SPF鸡,28d后,免疫组鸡抗体平均滴度(HI)分别达到4log 2和4.5log 2,结果表明,H5HA基因重组病毒能刺激鸡群产生较高特异抗体。  相似文献   

7.
Highly pathogenic avian influenza A (HPAI) viruses of the H5N1 subtypes caused enormous economical loss to poultry farms in China and Southeastern Asian countries. The vaccination program is a reliable strategy in controlling the prevalence of these disastrous diseases. The six internal genes of the high-yield influenza virus A/Goose/Dalian/3/01 (H9N2), the haemagglutinin (HA) gene of A/Goose/HLJ/QFY/04 (H5N1) strain, and the neuraminidase gene from A/Duck/Germany/1215/73 (H2N3) reference strain were amplified by RT-PCR technique. The HA gene was modified by the deletion of four basic amino acids of the connecting peptide between HA1 and HA2. Eight gene expressing plasmids were constructed, and the recombinant virus rH5N3 were generated by cell transfection. The infection of chicken embryos and the challenge tests involving chickens demonstrated that the recombinant H5N3 (rH5N3) influenza virus is avirulent. The allantoic fluids of rH5N3-infected eggs contain high-titer influenza viruses with haemagglutination unit of 1:2 048, which are eight times those of the parental H5N1 virus. The rH5N3 oil-emulsified vaccine could induce haemagglutination inhibition (HI) antibodies in chickens in 2 weeks post-vaccination, and the maximum geometric mean HI-titers were observed 4–5 weeks post-vaccination and were kept under observation for 18 weeks. The rH5N3-vaccinated chickens were fully protected against morbidity and mortality of the lethal challenge of the H5N1 HPAI viruses, A/Goose/Guangdong/1/96 and A/Goose/HLJ/QFY/04, which had 8 years expansion and differences among multiple amino acids in HA protein. The N3 neuraminidase protein marker makes it possible to distinguish between H5N1-infected and H5N3-vaccinated animals.  相似文献   

8.
利用反向遗传学技术构建H5亚型禽流感高产疫苗株   总被引:13,自引:0,他引:13  
采用RT-PCR技术分别扩增了鹅源高产禽流感病毒的6条内部基因片段,近期分离的H5N1亚型禽流感病毒的血凝素基因以及N3亚型参考毒株的神经氨酸酶基因,分别构建了8个基因的转录与表达载体,利用反向遗传学技术拯救出了全部基因都源于禽源的重组流感病毒疫苗株rH5N3。通过对血凝素蛋白HA1和HA2连接肽处的5个碱性氨基酸(R-R-R-K-K)基因缺失与修饰,从而消除了病毒基因的毒力相关序列,拯救的rH5N3疫苗株对鸡和鸡胚均无致病性,病毒在鸡胚尿囊液和细胞培养上清的HA效价得到极大提高,分别为12048和1512。制备的禽流感疫苗免疫动物后4~5周即可诱导产生高效价的HI抗体,鸡免疫后18周依然保持高水平的HI抗体。重组疫苗不论是对于国内早期分离的禽流感病毒A/Goose/Guangdong/1/96还是近期分离的A/Goose/HLJ/QFY/04都能够产生完全的免疫保护作用,免疫鸡攻毒后不发病、不排毒、不死亡。带有N3鉴别诊断标记禽流感疫苗株的研制为H5N1高致病性禽流感的防治提供了新的技术保障。  相似文献   

9.
10.
Ge J  Deng G  Wen Z  Tian G  Wang Y  Shi J  Wang X  Li Y  Hu S  Jiang Y  Yang C  Yu K  Bu Z  Chen H 《Journal of virology》2007,81(1):150-158
H5N1 highly pathogenic avian influenza virus (HPAIV) has continued to spread and poses a significant threat to both animal and human health. Current influenza vaccine strategies have limitations that prevent their effective use for widespread inoculation of animals in the field. Vaccine strains of Newcastle disease virus (NDV), however, have been used successfully to easily vaccinate large numbers of animals. In this study, we used reverse genetics to construct a NDV that expressed an H5 subtype avian influenza virus (AIV) hemagglutinin (HA). Both a wild-type and a mutated HA open reading frame (ORF) from the HPAIV wild bird isolate, A/Bar-headed goose/Qinghai/3/2005 (H5N1), were inserted into the intergenic region between the P and M genes of the LaSota NDV vaccine strain. The recombinant viruses stably expressing the wild-type and mutant HA genes were found to be innocuous after intracerebral inoculation of 1-day-old chickens. A single dose of the recombinant viruses in chickens induced both NDV- and AIV H5-specific antibodies and completely protected chickens from challenge with a lethal dose of both velogenic NDV and homologous and heterologous H5N1 HPAIV. In addition, BALB/c mice immunized with the recombinant NDV-based vaccine produced H5 AIV-specific antibodies and were completely protected from homologous and heterologous lethal virus challenge. Our results indicate that recombinant NDV is suitable as a bivalent live attenuated vaccine against both NDV and AIV infection in poultry. The recombinant NDV vaccine may also have potential use in high-risk human individuals to control the pandemic spread of lethal avian influenza.  相似文献   

11.
母源抗体的干扰是重组鸡痘病毒(FPV)活载体疫苗至今未能得到大规模推广应用的主要原因,而选择适当的FPV复制非必需区可能是解决这一问题的方法之一。根据已发表的美国致病株FPV的基因组设计两对引物,用PCR方法扩增FPV假定复制非必需区的两个侧翼区FPV1和FPV2 ,利用此假定复制非必需区构建FPV表达载体pP12LS及表达ZJ1株新城疫病毒(NDV)F基因的转移载体pP12LSF。pP12LSF与2 82E4株FPV共转染鸡胚成纤维细胞(CEF) ,经数轮蓝斑筛选得到纯化的重组病毒rFPV_FSC。重组FPV在CEF上连续传2 0代仍具有良好的遗传稳定性。对重组FPV进行免疫效力试验,在SPF鸡上,重组病毒rFPV_FSC和与之仅有复制非必需区差异的rFPV_FSB均能抵抗NDV强毒的攻击,提供10 0 %的保护。但在有母源抗体的商品鸡上,rFPV_FSC与rFPV_FSB的免疫效力却有显著差异,保护率分别为10 0 %和6 1 5 4 % ,rFPV_FSC的免疫效力与NDV常规油苗相当。试验结果表明,母源抗体对重组FPV的免疫效力有一定的影响,而选择合适的FPV复制非必需区是克服母源抗体并提高重组FPV免疫效力的有效策略之一  相似文献   

12.
利用反向遗传技术获得表达H5亚型禽流感病毒(AIV)血凝素(HA)的新城疫病毒(NDV)。克隆NDV clone 30的全长基因,通过在NDV的融合蛋白基因和血凝素-神经氨酸酶(HN)基因之间插入编码高致病性AIV分离株A/chicken/italy/8/98(H5N2)的血凝素基因开放阅读框从而获得两株重组新城疫病毒NDVH5和NDVH5m。NDVH5感染的细胞可以检测到两种HA转录产物。对于重组病毒NDVH5m,NDV位于HA ORF的转录终止信号序列被沉默突变消除,产生2.7个全长HA转录产物的折叠,从而使修饰过的HA得到稳定地高表达。1日龄小鸡的脑内接种证实了两种重组病毒均无致病性。鸡群在NDVH5m诱导产生的NDV和H5亚型AIV HA特异性抗体的免疫力下能够免于致死剂量的NDV与高致病性AIV的感染。血清学研究结果表明NDVH5m免疫鸡群产生的抗体可结合NP蛋白抗体的检测从而用于区分免疫和感染AIV的动物。因此,NDVH5m重组病毒可作为抗NDV和AIV的"二联疫苗",也可成为控制AJ的标记疫苗。  相似文献   

13.
Seven complementation-recombination groups of temperature-sensitive (ts) influenza WSN virus mutants have been previously isolated. Recently two of these groups (IV and VI) were shown to possess defects in the neuraminidase and the hemagglutinin gene, respectively, and two groups (I and III) were reported to have defects in the P3 and P1 proteins which are required for complementary RNA synthesis. In this communication we report on the defects in the remaining three mutant groups. Wild-type (ts+) recombinants derived from ts mutants and different non-ts influenza viruses were analyzed on RNA polyacrylamide gels. This technique permitted the identification of the P2 protein, the nucleoprotein, and the M protein as the defective gene products in mutant groups II, V, and VII, respectively. Based on the physiological behavior of mutants in groups II and V, it appears that P2 protein and nucleoprotein are required for virion RNA synthesis during influenza virus replication.  相似文献   

14.
将我国分离的人H5N1亚型禽流感病毒A/Anhui/1/2005作为研究对象,扩增其HA和M2基因片段并克隆至DNA疫苗表达载体pVRC中,构建成真核表达质粒。为提高HA的表达量,按照人偏爱密码子将HA基因进行优化改造,经全基因合成后插入真核表达载体pVRC,以β-actin蛋白为内参比证明了优化后的HA蛋白表达效果明显提高。将M2基因和优化后的HA基因共同克隆入双顺反子表达载体pIRES中,获得同时表达HA或M2的双顺反子真核表达质粒;通过Western blot和间接免疫荧光检测方法,确认构建的重组质粒在真核细胞中成功地表达了目的蛋白HA和M2。通过上述结果为进一步开展人高致病性禽流感病毒安徽株HA和M2基因的功能与致病性研究及使用表达HA和M2蛋白进行新型人用禽流感双价疫苗研发奠定基础。  相似文献   

15.
Fowlpox virus (FPV) recombinants expressing the glycoprotein B and the phosphorylated protein (pp38) of the GA strain of Marek's disease virus (MDV) were assayed for their ability to protect chickens against challenge with virulent MDV. The recombinant FPV expressing the glycoprotein B gene elicited neutralizing antibodies against MDV, significantly reduced the level of cell-associated viremia, and, similar to the conventional herpesvirus of turkeys, protected chickens against challenge with the GA strain and the highly virulent RB1B and Md5 strains of MDV. The recombinant FPV expressing the pp38 gene failed to either elicit neutralizing antibodies against MDV or protect the vaccinated chickens against challenge with MDV.  相似文献   

16.
Specific single stranded DNA probes have been obtained for both influenza virion RNA (vRNA) and complementary RNA (cRNA) by cloning a hemagglutinin gene fragment in the single stranded DNA phase M13. These probes were used for hybridization with the total labeled RNA from cytoplasmic extracts of infected cells. MDCK cells were infected with temperature-sensitive mutants of influenza HK/68 and the production of the virus specific RNA species was analysed at both permissive and restrictive temperatures. Results show that two NP mutants which undergo intracistronic complementation exhibit two different phenotypes at the non permissive temperature: ts2C is poly A cRNA and vRNA negative whereas ts463 is RNA positive. Two mutants of P genes were also analysed and we discuss the relationship existing between the synthesis of the three RNA species especially between poly A and non poly A cRNA.  相似文献   

17.
H5N1 influenza viruses pose a pandemic threat but have not acquired the ability to support sustained transmission between mammals in nature. The restrictions to transmissibility of avian influenza viruses in mammals are multigenic, and overcoming them requires adaptations in hemagglutinin (HA) and PB2 genes. Here we propose that a further restriction to mammalian transmission of the majority of highly pathogenic avian influenza (HPAI) H5N1 viruses may be the short stalk length of the neuraminidase (NA) protein. This genetic feature is selected for when influenza viruses adapt to chickens. In our study, a recombinant virus with seven gene segments from a human isolate of the 2009 H1N1 pandemic combined with the NA gene from a typical chicken-adapted H5N1 virus with a short stalk did not support transmission by respiratory droplet between ferrets. This virus was also compromised in multicycle replication in cultures of human airway epithelial cells at 32°C. These defects correlated with a reduction in the ability of virus with a short-stalk NA to penetrate mucus and deaggregate virions. The deficiency in transmission and in cleavage of tethered substrates was overcome by increasing the stalk length of the NA protein. These observations suggest that H5N1 viruses that acquire a long-stalk NA through reassortment might be more likely to support transmission between humans. Phylogenetic analysis showed that reassortment with long-stalk NA occurred sporadically and as recently as 2011. However, all identified H5N1 viruses with a long-stalk NA lacked other mammalian adapting features and were thus several genetic steps away from becoming transmissible between humans.  相似文献   

18.
The origin and characteristics of the first naturally occurring temperature-sensitive (ts) strain of influenza A virus identified in 1973, Xia-ts, are described. Natural ts strains were found to occur in the early egg passage material of all influenza A subtypes examined, but the proportion of ts virus varied from 8.3% for old H1N1 virus (1949 to 1957) to 82.4% for recent H3N2 virus (1979 to 1980). A number of strains were found to be composed of a mixture of ts and wild-type (ts+) particles. Six natural ts strains with different shutoff temperatures and one ts+ strain of the H1N1 subtype were tested in antibody-free volunteers. Strains with a shutoff temperature of 38 degrees C or lower caused very mild symptoms, whereas those with a shutoff temperature of 39 degrees C and the ts+ strain were much more reactogenic. By complementation tests against a set of prototype WSN ts mutants with a defined genetic lesion, the ts lesion of two H3N2 viruses (HK/8/68 and Xia-ts) was located on the NP gene and that of two H1N1 viruses (Tianjin/78/77 and Beijing/1/79) was located on the M protein gene. The present study demonstrates the widespread occurrence in nature of influenza viruses of different degrees of temperature sensitivity and presumably of different degrees of virulence.  相似文献   

19.
Gao H  Cui H  Cui X  Shi X  Zhao Y  Zhao X  Quan Y  Yan S  Zeng W  Wang Y 《PloS one》2011,6(7):e22549
Herpesvirus of turkey (HVT) is being widely used as a vector for development of recombinant vaccines and US2 and US10 genes are often chosen as insertion sites for targeted gene expression. However, the different effects of the two genes for generation of recombinant HVT vaccines were unknown. In order to compare the effects of inserted genes in the two sites on the efficacy of the recombinant vaccines, host-protective haemagglutinin (HA) gene of the highly pathogenic avian influenza virus (HPAIV) H5N1 was inserted into either US2 or US10 gene locus of the HVT. The resulting US2 (rHVT-US2-HA) or US10 (rHVT-US10-HA) recombinant HVT viruses were used to infect chicken embryo fibroblasts. Plaques and the growth kinetics of rHVT-US2-HA-infected chicken embryo fibroblasts were similar to those of parental HVT whereas rHVT-US10-HA infected chicken embryo fibroblasts had different growth kinetics and plaque formation. The viremia levels in rHVT-US10-HA virus-infected chickens were significantly lower than those of rHVT-US2-HA group on 28 days post infection. The vaccine efficacy of the two recombinant viruses against H5N1 HPAIV and virulent Marek's disease virus was also evaluated in 1-day-old vaccinated chickens. rHVT-US2-HA-vaccinated chickens were better protected with reduced mortality than rHVT-US10-HA-vaccinated animals following HPAIV challenge. Furthermore, the overall hemaglutination inhibition antibody titers of rHVT-US2-HA-vaccinated chickens were higher than those of rHVT-US10-HA-vaccinated chickens. Protection levels against Marek's disease virus challenge following vaccination with either rHVT-US2-HA or rHVT-US10-HA, however, were similar to those of the parental HVT virus. These results, for the first time, indicate that US2 gene provides a favorable foreign gene insertion site for generation of recombinant HVT vaccines.  相似文献   

20.
In order to establish cell lines which complement the growth of temperature-sensitive (ts) mutants of influenza virus, three RNA polymerase and nucleoprotein (NP) genes each linked to the mouse mammary tumor virus LTR were cloned into the bovine papillomavirus vector DNA. After co-transfection of mouse C127 cells with these recombinant plasmids, a cell line, clone 76, in which the expression of the three polymerase and NP genes could be stimulated by dexamethasone, was established. The clone 76 cells could complement the growth of ts-mutants defective in one of the polymerase subunit genes at the nonpermissive temperature in response to dexamethasone. The results suggest that the simultaneous expression of the three polymerase genes in the same compartment of protein synthesis machinery is required for an efficient complementation of ts-mutant growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号