首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Complexes containing rat liver 80 S ribosomes, poly(uridylic acid), phenylalanyl-tRNA, elongation factor 1 alpha, and guanylyl(beta, gamma-methylene)-diphosphonate were prepared. Neighboring proteins in the complexes were cross-linked with the bifunctional reagent 2-iminothiolane. Proteins were extracted and then separated into 26 fractions by chromatography on carboxymethylcellulose. Each protein fraction was subjected to diagonal polyacrylamide-sodium dodecyl sulfate gel electrophoresis. Four cross-linked pairs containing elongation factor 1 alpha were on the vertical line below the diagonal. The ribosomal protein spot of each pair was cut out from the gel plate and labeled with 125I. The labeled proteins were extracted from the gel and identified by two-dimensional gel electrophoresis, followed by autoradiography. The following proteins of both 60 S and 40 S subunits were identified: L12, L23, L39, S23/S24, and S26, three proteins of which had been found to be cross-linked also to elongation factor 2 (Uchiumi, T., Kikuchi, M., Terao, K., Iwasaki, K., and Ogata, K. (1986) Eur. J. Biochem. 156, 37-44). These results afford direct evidence that both elongation factors interact with partially overlapping sites on rat liver ribosomes.  相似文献   

2.
Protein-protein cross-linking was used to determine the spatial arrangement of proteins within the 60 S ribosomal subunits of Saccharomyces cerevisiae. Protein cross-links were generated by treatment of intact ribosomal subunits with dimethyl 3,3'-dithiobispropionimidate. Proteins were extracted from the treated subunits and fractionated by Cm-cellulose chromatography. Cross-linked proteins in these fractions were analyzed by electrophoresis on two-dimensional diagonal polyacrylamide gels containing sodium dodecyl sulfate. Component members of cross-linked pairs were radiolabeled with 125I and identified by two-dimensional gel electrophoresis and comparison with nonradioactive ribosomal protein markers. Seventeen pairs involving 16 of the 45 60 S subunit proteins were identified. Several proteins were detected in numerous cross-linked dimers and were used as foci for constructing a model depicting the arrangement of proteins within the 60 S ribosomal subunit. The model also incorporated previously published data on structure and function of proteins from the yeast 60 S subunit.  相似文献   

3.
Complexes containing rat liver 80S ribosomes treated with puromycin and high concentrations of KCl, elongation factor 2 (EF-2) from pig liver, and guanosine 5'-[beta, gamma-methylene]triphosphate were prepared. Neighboring proteins in the complexes were cross-linked with the bifunctional reagent 2-iminothiolane. Proteins were extracted and then separated into 22 fractions by chromatography on carboxymethylcellulose of which seven fractions were used for further analyses. Each protein fraction was subjected to diagonal polyacrylamide/sodium dodecyl sulfate gel electrophoresis. Nine cross-linked protein pairs between EF-2 and ribosomal proteins were shifted from the line formed with monomeric proteins. The spots of ribosomal proteins cross-linked to EF-2 were cut out from the gel plate and labelled with 125I. The labelled protein was extracted from the gel and identified by three kinds of two-dimensional gel electrophoresis, followed by autoradiography. The following proteins of both large and small subunits were identified: L9, L12, L23, LA33 (acidic protein of Mr 33000), P2, S6 and S23/S24, and L3 and L4 in lower yields. The results are discussed in relation to the topographies of ribosomal proteins in large and small subunits. Furthermore we found new neighboring protein pairs in large subunits, LA33-L11 and LA33-L12.  相似文献   

4.
Complexes were prepared containing 30S ribosomal subunits from Escherichia coli and the three initiation factors IF1, IF2, and IF3. In different experiments, each of the factors was radiolabeled with the others unlabeled. The complexes were allowed to react with 2-iminothiolane and then oxidized to promote the formation of intermolecular disulfide bonds, some of which were between factors and ribosomal proteins. Each of the labeled factors becomes covalently cross-linked to the complex as judged by its failure to dissociate when centrifuged in a sucrose gradient containing a high salt concentration. Proteins from the complexes were extracted and analyzed on two-dimensional polyacrylamide gels by nonequilibrium isoelectric focusing and sodium dodecyl sulfate gel electrophoresis. Spots corresponding to cross-linked dimers that contained initiation factors, as indicated on autoradiographs, were cut out and analyzed further. The following cross-linked dimers between factors and ribosomal proteins were identified: IF1-S12, IF1-S18, IF2-S13, IF3-S7, IF3-S11, IF3-S13, and IF3-S19. Cross-links between factors IF1-IF2 and IF3-IF2 were also identified. A model integrating these findings with others on the protein topography of the ribosome is presented.  相似文献   

5.
Protein-protein cross-linking was used to examine the spatial arrangement of proteins within the 40 S ribosomal subunits of Saccharomyces cerevisiae. Purified ribosomal subunits were treated with either 2-iminothiolane or dimethyl 3,3'-dithiobispropionimidate under conditions such that the ribosomal particle was intact and that formation of 40 S subunit dimers was minimized. Proteins were extracted from the treated subunits and fractionated on Sephadex G-150 or by acid-urea-polyacrylamide gel electrophoresis. Cross-linked proteins in these fractions were analyzed by two-dimensional diagonal sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Constituent members of cross-linked pairs were radiolabeled with 125I and identified by two-dimensional gel electrophoresis and comparison with nonradioactive ribosomal protein markers. Forty-two pairs involving 25 of the 32 40 S subunit proteins were identified. Many proteins were detected in several cross-linked dimers. These proteins with multiple cross-links form foci for the construction of a schematic model of the spatial arrangement of proteins within the 40 S subunit.  相似文献   

6.
A comparison has been made between the ribosomal proteins phosphorylated in intact cells and proteins isolated from ribosomal subunits after modification in vitro by purified protein kinases and [gamma-32P]ATP. When intact reticulocytes were incubated for 2 h in a nutritional medium containing radioactive inorganic phosphate, one phosphorylated protein was identified as a 40S ribosomal component using two-dimensional polyacrylamide gel electrophoresis followed by electrophoresis in a third step containing sodium dodecyl sulfate. This protein, containing 99% of the total radioactivity associated with ribosomal proteins as observed by two-dimensional electrophoresis, is found in a nonphosphorylated form in addition to several phosphorylated states. These states differ by the number of phosphoryl group attached to the protein. The same 40S protein is modified in vitro by the three cAMP-regulated protein kinases from rabbit reticulocytes. Two additional proteins associated with the 40S subunit are phosphorylated in situ. These proteins migrate as a symmetrical doublet, and contain less than 1% of the radioactive phosphate in the 40S subunit. A number of phosphorylated proteins associated with 60S subunits are observed by disc gel electrophoresis after incubation of whole cells with labeled phosphate. These proteins do not migrate with previously identified ribosomal proteins and are not present in sufficient amounts to be identified as ribosomal structural proteins. Proteins in the large subunit are modified in vitro by cAMP-regulated protein kinases and ATP, and these modified proteins migrate with known ribosomal proteins. However, this phosphorylation has not been shown to occur in intact cells.  相似文献   

7.
Rat liver 80 S ribosomes were cross-linked with 2-iminothiolane. Proteins extracted from the cross-linked 80 S ribosomes were separated into 25 fractions by chromatography on carboxy methylcellulose. Each protein fraction was analyzed by diagonal polyacrylamide-sodium dodecyl sulfate gel electrophoresis. Eight pairs characteristic of 80 S ribosomes were detected which did not appear when isolated 40 S and 60 S subunits were cross-linked, and the cross-linked proteins were analyzed in similar manners. The cross-linked components were radioiodinated and then analyzed by two-dimensional gel electrophoresis, followed by autoradiography. Eight kinds of cross-links between 60 S subunit proteins and 40 S subunit proteins were identified as follows: SA30 (acidic protein with Mr 30,000)-LA33 (acidic protein with Mr 33,000), S2-LA33, S2-L11, S3a-L11, S4-L5, S25-L5, S4-L24 and S6-L24.  相似文献   

8.
The interaction of ribosomal proteins with mRNA in the 40S initiation complex was examined by chemical cross-linking. 40S initiation complexes were formed by incubating rat liver [(3)H]Met-tRNAi, rat liver 40S ribosomal subunits, rabbit globin mRNA, and partially purified initiation factors of rabbit reticulocytes in the presence of guanylyl(beta, gamma-methylene)-diphosphonate. The initiation complexes were then treated with 1,3-butadiene diepoxide to introduce crosslinks between the mRNA and proteins. The covalent mRNA-protein conjugates were isolated by chromatography on an oligo(dT) cellulose column in the presence of sodium dodecyl sulfate, followed by sucrose density gradient centrifugation. Proteins cross-linked to the mRNA were labeled with Na(125)I, extracted by extensive ribonuclease digestion, and analyzed by two-dimensional and diagonal polyacrylamide gel electrophoresis. Three ribosomal proteins, S6, S8, and S23/S24, together with small amounts of S3/S3a, S27, and S30, were identified as the protein components cross-linked to the globin mRNA protein complex, and were shown to attach directly to the mRNA. It is suggested that these proteins constitute the ribosomal binding site for mRNA in the 40S initiation complex.  相似文献   

9.
Neighboring proteins in rat liver 60 S ribosomal subunits were investigated by two kinds of cross-linking techniques: treatment of 60 S subunits with 1) hydrogen peroxide, which promotes the formation of protein-protein disulfide linkages and 2) a disulfide-bridged bifunctional reagent dithiobis(succinimidyl propionate). The cross-linked protein complexes formed were separated by two-dimensional polyacrylamide gel electrophoresis in a basic-sodium dodecyl sulfate gel system under nonreducing conditions. Each complex in the gel was labeled with 125I and extracted under reducing conditions. The protein components of the complex were analyzed by two kinds of two-dimensional polyacrylamide gel electrophoresis, followed by autoradiography. Closely neighboring pairs disulfide-linked by hydrogen peroxide were identified as L4-L6, L4-L29, L6-L29, L18a-L29, and L29-L32; more distant pairs cross-linked with dithiobis(succinimidyl propionate) were identified as L3-L5, L3-L24, L3-L37a, L4-L14, L4-L18a, L5-L10, L5-L11, L7/L7a-L27, L7/L7a-L36, L13-L35, and L13a-L14.  相似文献   

10.
The ribosomal proteins from 40 S and 60 S subunits of rabbit reticulocytes were separated by two-dimensional polyacrylamide gel electrophoresis. The protein spots stained with Coomassie brilliant blue were cut out and the proteins were extracted. The material extracted from each spot was mixed with proteins of known molecular weight and then analyzed by electrophoresis in polyacrylamide gels containing sodium dodecyl sulfate. Both the total number and the molecular weights of each of the proteins were determined by these procedures. Thirty-two proteins were identified in the 40 S subunits; their molecular weights ranged from 8000 to 39,000 (average mol. wt = 25,000). Thirty-nine proteins were identified in the 60 S subunit; their molecular weights ranged from 9000 to 58,000 (average mol. wt = 31,000). The sum of the molecular weights of the individual proteins from each subunit is in agreement with previous estimations, derived from physico-chemical measurements of the total protein in mammalian ribosomal subunits. The molecular weight distribution obtained for the isolated proteins was nearly identical to that derived from spectrophotometric analysis of polyacrylamide-sodium dodecyl sulfate gels of the total protein mixtures from each subunit stained with Coomassie brilliant blue. The results are consistent with the hypothesis that reticulocyte ribosomes contain one copy of most of their protein constituents.  相似文献   

11.
To cross-link the 3′-terminus of 5 S RNA to its neighbouring proteins, ribosomal 60 S subunits of rat liver were oxidized with sodium periodate and reduced with sodium borohydride. 5 S RNP was then isolated by EDTA treatment followed by sucrose density-gradient centrifugation and subjected to SDS-polyacrylamide gel electrophoresis. The protein with a slower mobility than the L5 protein, which was thought to be cross-linked 5 S RNP, was labeled with 125I, treated with RNAase, and analyzed by two-dimensional polyacrylamide gel electrophoresis, followed by radioautography. A radioactive spot located anodically from L5 protein was observed, suggesting that it is the L5 protein-oligonucleotide complex. When analyzed by SDS slab polyacrylamide gel electrophoresis followed by radioautography, the peptide pattern of the α-chymotrypsin digest of this 125I-labeled protein-oligonucleotide complex was similar to that of the digest of 125I-labeled L5 protein. The results indicate that L5 protein binds to the 3′-terminal region of 5 S RNA in rat liver 60 S subunits.  相似文献   

12.
Earlier studies have indicated that the reaction of tetranitromethane with the 30 S riboaome from Escherichia coli results in the disappearance of two protein bands from the polyacrylamide gel electrophoresis pattern (Craven et al., 1969b). As tetranitromethane is known to induce intermolecular cross-linkage in other protein systems, we studied further this reaction with the view that it might yield knowledge of protein-protein neighbor relationships within the ribosome.The use of two-dimensional polyacrylamide gel electrophoresis showed that the reaction with tetranitromethane caused the disappearance of four proteins from the pattern of 30 S ribosomal proteins. It was shown that this alteration in electrophoretic behavior was not due to simple protein modification (e.g. production of 3-nitrotyrosine), as reaction with extracted protein in 8 M-urea resulted in no observable change in the electrophoretic pattern.It was also shown that three of these proteins could be uniquely labeled with [14C]iodoacetate without changing their reactivity with tetranitromethane. Thus, ribosomes were labeled with [14C]iodoacetate, reacted with tetranitromethane and the radioactive reaction products were isolated by column chromatography and preparative gel electrophoresis. The radioactive peptide patterns of the three proteins digested by trypsin were compared with the three major reaction products. One of these products was shown to contain the radioactive tryptic peptides of all three proteins. We believe that this reaction product is an intermolecular cross-linked aggregate of these three proteins, identified as S11, S18 and S21. We suggest that these three proteins are clustered closely together in the 30 S ribosome. The fourth protein, S12, may also be involved in this aggregate.  相似文献   

13.
Summary A pea leaf cDNA library was constructed in the expression vector gt11 and screened with antisera raised against proteins extracted from 30S and 50S ribosomal subunits and 70S ribosomes prepared from isolated pea chloroplasts. Six recombinant phage were identified that encoded fusion proteins containing plastid ribosomal protein antigenic determinants. Phage-induced cell lysate proteins, containing the fusion proteins, were bound to nitrocellulose membranes and used as affinity matrices to prepare monospecific antibodies. These antibodies were then used to identify by Western blotting which plastid ribosomal protein shared antigenic determinants with the fusion proteins. cDNA inserts from the antigen-producing phage were used to hybrid-select complementary mRNAs. The cell-free translation products of these mRNAs were added to a pea chloroplast in vitro transport system and imported proteins analyzed by two-dimensional gel electrophoresis. The imported proteins comigrated with the plastid ribosomal proteins that were identified as being antigenically related to the fusion proteins produced by the corresponding recombinant phage. The imported proteins were 3,500–5,500 daltons smaller than their precursors.  相似文献   

14.
(1) When rat liver 40 S ribosomal proteins in 6 M urea were were mixed with poly(U) at an appropriate ratio, a precipitate was formed which was also insoluble in the sample solution for two-dimensional acrylamide gel electrophoresis. Analyses by two-dimensional acrylamide gel electrophoresis showed that S7 and S10 proteins (according to our numbering system) had disappeared selectively from the fraction soluble in 6 M urea. These two proteins were present in the fraction insoluble in 6 M urea, and became soluble in the sample solution after treating it with RNase. The results suggest that S7 and S10 proteins have strong affinities for poly(U). When rat liver 40 S subunits were incubated with poly(U), similar results were obtained. (2) After incubation of 40 S subunits with [3H]poly(U) and then with unlabeled poly(U), UV irradiation cross-linked poly(U) to the protein moiety of the 40 S subunit. When the protein fraction insoluble in the sample solution for two-dimensional electrophoresis was prepared from 40 S subunits cross-linked to poly(U) and then subjected to two-dimensional acrylamide gel electrophoresis after RNase treatment, S7 and S10 proteins were detected on the gel. In addition to the S7 protein spot, a triangular area spreading from the spot to the origin contained radioactivity. The results suggest that poly(U) is cross-linked to S7 protein and oligo(U) fragments bound to S7 protein affect its electrophoretic mobility. (3) Ribosomal proteins were prepared from 40 S subunits cross-linked to carrier-free [3H]poly(U) and analyzed by three-dimensional acrylamide gel electrophoresis (Terao, K. & Ogata, K. (1975) Biochim. Biophys. Acta 402, 214--229) after RNase treatment. It was found that S7, S6, and S15 proteins are cross-linked to poly(U). From the results of the present and preceding experiments it is concluded that S7 is the poly(U)-binding protein. The possibility that other proteins in 40 S ribosomal subunits interact with poly(U) is discussed.  相似文献   

15.
Ribosome 70S tight couples and 30S subunits derived from them were modified with 2-iminothiolane under conditions where about two sulfhydryl groups per protein were added to the ribosomal particles. The 70S and 30S particles were not treated with elevated concentrations of NH4Cl, in contrast to those used in earlier studies. The modified particles were oxidized to promote disulfide bond formation. Proteins were extracted from the cross-linked particles by using conditions to preclude disulfide interchange. Disulfide-linked protein complexes were fractionated on the basis of charge by electrophoresis in polyacrylamide/urea gels at pH 5.5. The proteins from sequential slices of the urea gels were analyzed by two-dimensional diagonal polyacrylamide/sodium dodecyl sulfate gel electrophoresis. Final identification of proteins in cross-linked complexes was made by radioiodination of the proteins, followed by two-dimensional polyacrylamide/urea gel electrophoresis. Attention was focused on cross-links between 30S proteins. We report the identification of 27 cross-linked dimers and 2 trimers of 30S proteins, all but one of which were found in both 70S ribosomes and free 30S subunits in similar yield. Seven of the cross-links, S3-S13, S13-S21, S14-S19, S7-S12, S9-S13, S11-S21, and S6-S18-S21, have not been reported previously when 2-iminothiolane was used. Cross-links S3-S13, S13-S21, S7-S12, S11-S21, and S6-S18-S21 are reported for the first time. The identification of the seven new cross-links is illustrated and discussed in detail. Ten of the dimers reported in the earlier studies of Sommer & Traut (1976) [Sommer, A., & Traut, R. R. (1976) J. Mol. Biol. 106, 995-1015], using 30S subunits treated with high salt concentrations, were not found in the experiments reported here.  相似文献   

16.
Bacillus stearothermophilus 50 S ribosomal subunits have been reconstituted from a mixture of purified RNA and protein components. The protein fraction of 50 S subunits was separated into 27 components by a combination of various methods including ion exchange and gel filtration chromatography. The individual proteins showed single bands in a variety of polyacrylamide gel electrophoresis systems, and nearly all showed single spots on two-dimensional polyacrylamide gels. The molecular weights of the proteins were determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. An equimolar mixture of the purified proteins was combined with 23 S RNA and 5 S RNA to reconstitute active 50 S subunits by the procedure of Nomura and Erdmann (Nomura, M., and Erdmann, V. A. (1970) Nature 226, 1214-1218). Reconstituted 52 S subunits containing purified proteins were slightly more active than subunits reconstituted with an unfractionated total protein extract in poly(U)-dependent polyphenylalanine synthesis and showed comparable activity in various assays for ribosomal function. The reconstitution proceeded more rapidly with the mixture of purified proteins than with the total protein extract. Reconstituted 50 S subunits containing purified proteins co-sedimented with native 50 S subunits on sucrose gradients and had a similar protein compsoition. Initial experiments on the roles of the individual proteins in ribosomal structure and function were performed. B. stearothermophilus protein 13 was extracted from 50 S subunits under the same conditions as escherichia coli L7/L12, and the extraction had a similar effect on ribosomal function. When single proteins were omitted from reconstitution mixtures, in most cases the reconstituted 50 S subunits showed decreased activity in polypheylalanine synthesis.  相似文献   

17.
The effects of other components of the initiation complex on Escherichia coli initiation factor IFI binding to 30 S ribosomal subunits were studied. Binding of [14C]IF1 in the absence of other initiation complex components was slight. Addition of either IF2 or IF3 stimulated binding to a variable extent. Maximum binding was observed when both IF2 and IF3 were present. Addition of GTP, fMet-tRNA, and phage R17 RNA caused little or no further stimulation of [14C]IF1 binding. A maximum of 0.5 molecule of [14C]IF1 bound per 30 S subunit in the presence of an excess of each of the three factors over 30 S subunits.Complexes of 30 S subunits, [14C]IF1, IF2, and IF3 were treated with the bifunctional protein cross-linking reagent dimethyl suberimidate in order to identify the ribosomal proteins near the binding site for IF1. Non-cross-linked [14C]IF1 was removed from the complexes by sedimentation through buffer containing a high salt concentration, and total protein was extracted from the pelleted particles. Approximately 12% of the [14C]IF1 was recovered in the pellet fraction. The mixture of cross-linked products was analyzed by polyacrylamide/sodium dodecyl sulfate gel electrophoresis. Autoradiography of the gel showed radioactive bands with molecular weights of 21,000, 25,000, and many greater than 120,000. The results indicate that [14C]IF1 was cross-linked directly to at least two ribosomal proteins. Analysis of the cross-linked mixture by radioimmunodiffusion with specific antisera prepared against each of the 30 S ribosomal proteins showed radioactivity in the precipitin bands formed with antisera against S12 and S19, and in lower yield with those against S1 and S13. Antiserum against IF2 also showed [14C]IF1 in the precipitin band. The results show that [14C]IF1 was present in covalently cross-linked complexes containing 30 S ribosomal proteins S1, S12, S13 and S19, and initiation factor IF2. The same ribosomal proteins have been implicated in the binding sites for IF2 and IF3. The results suggest that the three initiation factors bind to the 30 S subunit at the same or overlapping sites.  相似文献   

18.
Cross-linking of proteins within the small subunit of rat liver ribosomes by the bifunctional reagent dimethyl 4,7-dioxo-5,6-dihydroxy-3,8-diazadecanbisimidate produced numerous covalently linked protein dimers which could be separated by a combination of ion-exchange chromatography on carboxymethyl cellulose and polyacrylamide gel electrophoresis. The protein components of the dimers were identified electrophoretically after periodate cleavage of the cross-link(s). The analysis revealed 42 cross-linked dimers involving 25 different proteins. Among these, proteins S3, S4 and S20 occurred in combinations with six, eight and seven different proteins, respectively. For proteins S13, S14 and S17 five protein neighbours could be identified, while 13 of the remaining proteins were linked to three or four different protein partners. The involvement of the majority of proteins in the formation of multiple cross-linked dimers implies that a large number of protein-protein interaction sites exist within the ribosomal subunit. A preliminary model illustrating the arrangement of 16 proteins in the small ribosomal subunit is presented and discussed with respect to possible functions, especially in the event of translation initiation.  相似文献   

19.
The 50 S ribosomal subunits from Escherichia coli were modified by reaction with 2-iminothiolane under conditions in which 65 sulfhydryl groups, about 2/protein, were added per subunit. Earlier work showed that protein L7/L12 was modified more extensively than the average but that nearly all 50 S proteins contained sulfhydryl groups. Mild oxidation led to the formation of disulfide protein-protein cross-links. These were fractionated by urea gel electrophoresis and then analyzed by diagonal gel electrophoresis. Cross-linked complexes containing two, three, and possibly four copies of L7/L12 were evident. Cross-links between L7/L12 and other ribosomal proteins were also formed. These proteins were identified as L5, L6, L10, L11, and, in lower yield, L9, L14, and L17. The yields of cross-links to L5, L6, L10, and L11 were comparable to the most abundant cross-links formed. Similar experiments were performed with 70 S ribosomes. Protein L7/L12 in 70 S ribosomes was cross-linked to proteins L6, L10, and L11. The strong L7/L12-L5 cross-link found in 50 S subunits was absent in 70 S ribosomes. No cross-links between 30 S proteins and L7/L12 were observed.  相似文献   

20.
Association of protein C23 with rapidly labeled nucleolar RNA   总被引:21,自引:0,他引:21  
A H Herrera  M O Olson 《Biochemistry》1986,25(20):6258-6264
The association of nucleolar phosphoprotein C23 with preribosomal ribonucleoprotein (RNP) particles was examined in Novikoff hepatoma nucleoli. RNA was labeled with [3H]uridine for various times in cell suspensions, and RNP particles were extracted from isolated nucleoli and fractionated by sucrose gradient ultracentrifugation. The majority of protein C23 cosedimented with fractions containing rapidly labeled RNA (RL fraction). To determine whether there was a direct association of RNA with protein C23, the RL fraction was exposed to ultraviolet (UV) light (254 nm) for short periods of time. After 2 min of exposure there was a 50% decrease in C23 as measured by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analyses, with no significant further decrease at longer times. When UV-treated fractions were subjected to phenol/chloroform extractions, as much as 30% of the labeled RNA was found in the phenol (protein) layer, indicating that RNA became cross-linked to protein. Similarly, there was an increase in protein C23 extracted into the water layer after irradiation. By SDS-PAGE analyses the cross-linked species migrated more slowly than protein C23, appearing as a smear detected either by [3H]uridine radioactivity or by anti-C23 antibody. With anti-C23 antibodies, up to 25% of the labeled RNA was precipitated from the RL fraction. Dot-blot hybridizations, using cloned rDNA fragments as probes, indicated that the RNA in the RL fraction and the immunoprecipitated RNA contained sequences from 18S and 28S ribosomal RNA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号