首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ion exchange chromatography is one of the most widely used chromatographic technique for the separation and purification of important biological molecules. Due to its wide applicability in separation processes, a targeted approach is required to suggest the effective binding conditions during ion exchange chromatography. A surface energetics approach was used to study the interaction of proteins to different types of ion exchange chromatographic beads. The basic parameters used in this approach are derived from the contact angle, streaming potential, and zeta potential values. The interaction of few model proteins to different anionic and cationic exchanger, with different backbone chemistry, that is, agarose and methacrylate, was performed. Generally, under binding conditions, it was observed that proteins having negative surface charges showed strong to lose interaction (20 kT for Hannilase to 0.5 kT for IgG) with different anionic exchangers (having different positive surface charges). On the contrary, anionic exchangers showed almost no interaction (0–0.1 kT) with the positively charged proteins. An inverse behavior was observed for the interaction of proteins to cationic exchangers. The outcome from these theoretical calculations can predict the binding behavior of different proteins under real ion exchange chromatographic conditions. This will ultimately propose a better bioprocess design for protein separation.  相似文献   

2.
Hydrophobic interaction chromatography, an important and effective purification strategy, is generally used for the purification of variety of biomolecules. A basic understanding of the protein interaction behavior is required to effectively separate these biomolecules. A colloidal type extended Derjaguin, Landau, Verwey, and Overbeek calculations were utilized to study the interactions behavior of model proteins to commercially available hydrophobic chromatographic materials that is, Toyopearl Phenyl 650C and Toyopearl Butyl 650C. Physicochemical properties of selected model proteins were achieved by contact angle and zeta potential measurements. The contact angle of chromatographic materials used was achieved through sessile drop method on disrupted beads and capillary penetration method (CPM) on intact beads. The surface properties were further used to calculate the interactions of the proteins to chromatographic supports. The calculated secondary energy minimum of the proteins with the chromatographic materials (from the contact angle values determined through both methods can be correlated with the retention volumes from the real chromatography. The secondary energy minimum values are higher for each protein to the chromatographic materials calculated from the inputs derived through sessile drop method compared to CPM. For instance, immunoglobulin G has secondary energy minimum value of 0.17 kT compared to 0.11 kT, obtained through sessile drop method and CPM, respectively. Average relative values of the energy minimum calculated for all proteins are as 1.51 kT and 1.29 kT for Toyopearl Butyl 650C and Toyopearl Phenyl 650C, respectively, as a conversion factor for estimation of secondary energy minimum for both methods.  相似文献   

3.
Monoliths represent a special class of chromatographic supports. In contrast to other stationary phases, they consist of a single piece of highly porous material through which a sample is mainly transported by convection. As a consequence, monoliths enable fast separations and exhibit flow-unaffected properties, which make them attractive for purification of macromolecules like proteins or DNA. In this work, methacrylate-based monolithic columns with the bed volume up to 8000 ml are characterized. They perform high-resolution separations of several hundreds of grams of proteins per hour by utilizing liter per minute flow rates. They are incompressible under these operating conditions and resistant to strong alkaline conditions.  相似文献   

4.
Polymer monoliths are an efficient platform for antibody purification. The use of monoclonal antibodies (mAbs) and engineered antibody structures as therapeutics has increased exponentially over the past few decades. Several approaches use polymer monoliths to purify large quantities of antibody with defined clinical and performance requirements. Functional monolithic supports have attracted a great deal of attention as they offer practical advantages for antibody purification, such as more rapid analysis, smaller sample volume requirements and the opportunity for a greater target molecule enrichment. This review focuses on the development of synthetic and natural polymer-based monoliths for antibody purification. The materials and methods employed in monolith production are discussed, highlighting the properties of each system. We also review the structural characterization techniques available using monolithic systems and their performance under different chromatographic approaches to antibody capture and release. Finally, a summary of monolithic platforms developed for antibody separation is presented, as well as expected trends in research to solve current and future challenges in this field. This review comprises a comprehensive analysis of proposed solutions highlighting the remarkable potential of monolithic platforms.  相似文献   

5.
The importance of continuous beds (monoliths) as separation materials is connected with their better chromatographic properties and easier preparation in comparison to particulate-packed columns. Moreover the tuning of porosity as well as surface chemistry can lead to obtaining of highly selective materials, especially useful in separation of biologically important compounds or even microorganisms. To obtain high selectivity for such analytes as e.g. proteins, it is often important to have a knowledge about their shape, size, charge and finally charge distribution. This article presents our considerations on the charge distribution on the monolithic stationary phase and surface of such species as proteins or microorganisms as well as its eventual influence on the separation or sample preparation processes and tuning of their selectivity.  相似文献   

6.
Based on the monolithic silica gel materials with hierarchical pore structure and on the SPE devices (MonoTip) developed thereof, a trypsin-immobilized monolithic silica in a pipette tip (MonoTip Trypsin) suitable for digesting proteins has been newly developed. The surface of monolithic silica fixed into the tip was chemically modified with trypsin via an aminopropyl group. Trypsin-immobilized monolith successfully performed a rapid digestion of reduced and alkylated proteins with only a few times pipetting operation for the pre-treatment procedure of chromatographic analysis. The novel solid-phase digestion tool using monolithic silica allows a high-throughput trypsin proteolysis of bio-substances in proteomics.  相似文献   

7.
Protein hydrophobicity can be modified after a PEGylation process. However, hydrophobic interaction chromatography (HIC) has been used to separate PEGylation reaction products less frequently than other techniques. In this context, chromatographic monoliths represent a good alternative to continue exploring the separation of PEGylated proteins with HIC. In this work, the separation of PEGylated proteins using C4 A monolith as well as Toyopearl Butyl 650C and Butyl Sepharose was analyzed. Three proteins were used as models: RNase A, β‐lactoglobulin, and lysozyme. All proteins were PEGylated in the N‐terminal amino groups with 20 kDa methoxy poly(ethylene glycol) propionaldehyde. The concentration of ammonium sulfate (1 M) used was the same for all stationary phases. The results obtained demonstrated that the C4 A monolith could better resolve all protein PEGylation reaction mixtures, since the peaks of mono‐ and di‐PEGylated proteins can be clearly distinguished in the chromatographic profiles. On the contrary, while using Butyl Sepharose media only the PEGylation reaction mixtures of RNase A could be partially separated at 35 and 45 CVs. PEGylated proteins of β‐lactoglobulin and lysozyme could not be resolved when Toyopearl Butyl 650C and Butyl Sepharose were used. It is then clear that monoliths are an excellent choice to explore the purification process of PEGylated proteins exploiting the advantages of HIC. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:702–707, 2016  相似文献   

8.
Monolithic media have found widespread use as excellent tools for fast analytical separations of small molecules, proteins, pDNA and viruses. Polymethacrylate monoliths with large channels are attractive for capturing large molecules, like immunoglobulins, DNA, and viruses. For preparative purposes, these monoliths are operated in radial flow mode. Band spreading in monoliths is extremely low and mostly dominated by the contribution of extra column effects. The model used here had a single axial dispersion coefficient which lumps together extra column effects and the intrinsic band spreading of the monolithic material to characterize the adsorption of proteins and pDNA on polymethacrylate ion-exchange monoliths. Due to the fact that the performance of the monolith was unaffected by the velocity within the applied range, and due to highly favourable adsorption isotherms, a constant pattern model could be applied to predict preparative runs on radial flow units assuming axial flow for modelling.  相似文献   

9.
A novel β-cyclodextrin (β-CD) functionalized organic polymer monolith was prepared by covalently bonding ethylenediamine-β-CD (EDA-β-CD) to poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) (poly(GMA-co-EGDMA)) monolith via ring opening reaction of epoxy groups. SEM characterization was performed to confirm the homogeneity of the monolithic polymer. The resulting monolith was then characterized by DSC and XPS elemental analysis to study the thermal stability of the monolith, and to prove the successful immobilization of β-CD on the polymer substrate. The β-CD ligand density of 0.68 mmol g?1 was obtained for the modified monolith, indicating the high reactivity and efficiency of the EDA-β-CD modifier. The ethylenediamine-β-CD functionalized monoliths were used for the chiral separation of ibuprofen racemic mixture and showed promising results.  相似文献   

10.
Monolithic media have found widespread use as excellent tools for fast analytical separations of small molecules, proteins, pDNA and viruses. Polymethacrylate monoliths with large channels are attractive for capturing large molecules, like immunoglobulins, DNA, and viruses. For preparative purposes, these monoliths are operated in radial flow mode. Band spreading in monoliths is extremely low and mostly dominated by the contribution of extra column effects. The model used here had a single axial dispersion coefficient which lumps together extra column effects and the intrinsic band spreading of the monolithic material to characterize the adsorption of proteins and pDNA on polymethacrylate ion-exchange monoliths. Due to the fact that the performance of the monolith was unaffected by the velocity within the applied range, and due to highly favourable adsorption isotherms, a constant pattern model could be applied to predict preparative runs on radial flow units assuming axial flow for modelling.  相似文献   

11.
Cell‐to‐support interaction and cell‐to‐cell aggregation phenomena have been studied in a model system composed of intact yeast cells and agarose‐based chromatography adsorbent surfaces. Biomass components and beaded adsorbents were characterized by contact angle determinations with three diagnostic liquids and, complementarily, by zeta potential measurements. Such experimental characterization of the interacting surfaces has allowed the calculation of interfacial free energy of interaction in aqueous media vs. distance profiles. The extent of biomass adhesion was inferred from calculations performed assuming standard chromatographic conditions, but different adsorption modes. Several stationary support/mobile phase systems were considered, i.e., ion exchange, hydrophobic interaction, and pseudo‐affinity. The calculated interaction energy minima revealed marginal attraction between cells and cation exchangers or agarose‐matrix beads (U ≤ |10–20| kT) but strong attraction with anion exchangers (U ≥ |200–1000| kT). Other systems including hydrophobic interaction and chelating beads showed intermediate energy minimum values (U <$>\approx<$> |40–100| kT) for interaction with biological particles. However, the calculations also showed that working conditions in the presence of salt can promote cell aggregation apart from cell‐to‐support interaction. Predictions based on the application of the XDLVO approach were confirmed by independent experimental methods, e.g., biomass deposition experiments and laser diffraction spectroscopy. The understanding of biomass attachment onto chromatographic supports can help in alleviating process limitations normally encountered during direct (primary) sequestration of bioproducts.  相似文献   

12.
Based on the monolithic silica gel materials with hierarchical pore structure and on the SPE devices (MonoTip®) developed thereof, a trypsin-immobilized monolithic silica in a pipette tip (MonoTip® Trypsin) suitable for digesting proteins has been newly developed. The surface of monolithic silica fixed into the tip was chemically modified with trypsin via an aminopropyl group. Trypsin-immobilized monolith successfully performed a rapid digestion of reduced and alkylated proteins with only a few times pipetting operation for the pre-treatment procedure of chromatographic analysis. The novel solid-phase digestion tool using monolithic silica allows a high-throughput trypsin proteolysis of bio-substances in proteomics.  相似文献   

13.
The secondary structures of proteins (alpha-helical, beta-sheet, beta-turn, and random coil) in the solid state and when bound to polymer beads, containing immobilized phenyl and butyl ligands such as those as commonly employed in hydrophobic interaction chromatography, have been investigated using FTIR-ATR spectroscopy and partial least squares (PLS) methods. Proteins with known structural features were used as models, including 12 proteins in the solid state and 7 proteins adsorbed onto the hydrophobic surfaces. A strong PLS correlation was achieved between predictions derived from the experimental data for 4 proteins adsorbed onto the phenyl-modified beads and reference data obtained from the X-ray crystallographic structures with r(2) values of 0.9974, 0.9864, 0.9924, and 0.9743 for alpha-helical, beta-sheet, beta-turn, and random coiled structures, respectively. On the other hand, proteins adsorbed onto the butyl sorbent underwent greater secondary structural changes compared to the phenyl sorbent as evidenced from the poorer PLS r(2) values (r(2) are 0.9658, 0.9106, 0.9571, and 0.9340). The results thus indicate that the secondary structures for these proteins were more affected by the butyl sorbent, whereas the secondary structure remains relatively unchanged for the proteins adsorbed onto the phenyl sorbent. This study has important ramifications for understanding the nature of protein secondary structural changes following adsorption onto hydrophobic sorbent surfaces. This knowledge could also enable the development of useful protocols for enhancing the chromatographic purification of proteins in their native bioactive states. (c) 2008 Wiley Periodicals, Inc. Biopolymers 89: 895-905, 2008.This article was originally published online as an accepted preprint. The "Published Online" date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com.  相似文献   

14.
The immobilization of the enzymes citrate lyase, malate dehydrogenase, isocitrate dehydrogenase and lactate dehydrogenase to CIM monolithic supports was performed. The long-term stability, reproducibility, and linear response range of the immobilized enzyme reactors were investigated along with the determination of the kinetic behavior of the enzymes immobilized on the CIM monoliths. The Michaelis-Menten constant K(m) and the turnover number k(3) of the immobilized enzymes were found to be flow-unaffected. Furthermore, the K(m) values of the soluble and immobilized enzyme were found to be comparable. Both facts indicate the absence of a diffusional limitation in immobilized CIM enzyme reactors.  相似文献   

15.
Enzymatic digestion of proteins is a key step in protein identification by mass spectrometry (MS). Traditional solution-based protein digestion methods require long incubation times and are limitations for high throughput proteomics research. Recently, solid phase digestion (e.g. trypsin immobilization on solid supports) has become a useful strategy to accelerate the speed of protein digestion and eliminate autodigestion by immobilizing and isolating the enzyme moieties on solid supports. Monolithic media is an attractive support for immobilization of enzymes due to its unique properties that include fast mass transfer, stability in most solvents, and versatility of functional groups on the surfaces of monoliths. We prepared immobilized trypsin monolithic capillaries for on-column protein digestion, analyzed the digested peptides through LC/FTICR tandem MS, and compared peptide mass fingerprinting by MALDI-TOF-MS. To further improve the digestion efficiency for low abundance proteins, we introduced C4 functional groups onto the monolith surfaces to combine on-column protein enrichment and digestion. Compared with immobilized trypsin monolithic capillaries without C4, the immobilized trypsin-C4 monolith showed improved digestion efficiency. A mechanism for increased efficiency from the combination of sample enrichment and on-column digestion is also proposed in this paper. Moreover, we investigated the effects of organic solvent on digestion and detection by comparing the observed digested peptide sequences. Our data demonstrated that all columns showed good tolerance to organic solvents and maintained reproducible enzymatic activity for at least 30 days.  相似文献   

16.
The efficient immobilization of antibodies on monolithic support is one of the most critical steps when preparing immunoaffinity supports. In this work, the ADECA (amino density estimation by colorimetric assay) method was adapted to tridimensional supports (in a dynamic mode) and proved to be efficient to characterize the antibodies grafting efficiency on 15.3±0.9mg porous glycidyl methacrylate (GMA)-co-ethylene dimethacrylate (EDMA) monolithic columns. The amount of grafted antibodies measured in situ on the monolith by ADECA (8.2±0.2μg of antibodies per milligram of monolith) was consistent with values obtained by bicinchoninic acid assay (BCA) after crushing the monolith. ADECA was shown to be less time-consuming and more versatile than BCA. The ADECA method was further implemented to thoroughly study and optimize the antibody grafting conditions (influence of pH and kinetics of the grafting step) on GMA-based monoliths and to check the covalent nature of the antibody/surface linking and its stability. Using the total amount of grafted antibodies and the amount of recognized antigen, we found that 65±6% of antibodies were able to capture their antigen. Finally, the grafting of Fab and F(ab')(2) fragments demonstrated that no significant improvement of the global binding capacity of the monolith was obtained.  相似文献   

17.
The extracellular lipase Yarrowia lipolytica (YLLIP2) crude extract was efficiently separated and purified from Candida sp. 99–125 by one-step ion-exchange chromatography on polyethyleneimine (PEI) functionalized monolithic columns. The preparative conditions for the functionalization of monoliths were optimized, including PEI molecular mass, PEI concentration, modification time and temperature. The monolithic skeleton was prepared in situ by polymerization of glycidyl methacrylate (GMA) and ethylene glycol dimethacrylate (EGDMA) with a volume ratio of 8:2. Heptane was used as the porogen. PEI 30 kDa with the concentration of 10% (v/v) was applied for the modification of the monolith at 55 °C for 12 h. Lipase (EC.3.1.1.3) from Candida sp. 99–125 was separated to four isoforms (isoform A, isoform B, isoform C and isoform D). As analyzed on non-denaturing PAGE and MALDI-TOF–MS, the four isoforms are homogenous and have the same molecular mass of approximate 38 kDa. The monoliths can afford direct crude lipase loading without increasing too much back pressure, which explores the great potential of the application of monoliths for one-single step fast separation and purification of complicated proteins.  相似文献   

18.
Hydrophobic interaction chromatography (HIC) is an important tool in the industrial purification of proteins from various sources. The HIC separation behavior of individual (or model) proteins has been widely researched by others. On the contrary, this study focused on the fractionation ability of HIC when it is challenged with whole proteomes. The impact of the nature of three different proteomes, that is, yeast, soybean, and Chinese hamster ovary cells, on HIC separation was investigated. In doing so, chromatography fractions obtained under standardized conditions were evaluated in terms of their overall hydrophobicity—as measured by fluorescence dye binding. This technique allowed for the calculation of an average protein surface hydrophobicity (S0) for each fraction; a unique correlation between S0 and the observed chromatographic behavior was established in each case. Following a similar strategy, the effect of three different ligands (polypropylene glycol, phenyl, and butyl) and two adsorbent particle sizes (65 and 100 µm) on the chromatographic behavior of the yeast proteome was evaluated. As expected, the superficial hydrophobicity of the proteins eluted is correlated with the salt concentration of its corresponding elution step. The findings reveled how—and in which extent—the type of ligand and the size of the beads actually influenced the fractionation of the complex biological mixture. Summarizing, the approach presented here can be instrumental to the study of the performance of chromatography adsorbents under conditions close to industrial practice and to the development of downstream processing strategies. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
The objective of this work was to develop a hydrogel-coated monolith for the entrapment of penicillin G acylase (E. coli, PGA). After screening of different hydrogels, chitosan was chosen as the carrier material for the preparation of monolithic biocatalysts. This protocol leads to active immobilized biocatalysts for the enzymatic hydrolysis of penicillin G (PenG). The monolithic biocatalyst was tested in a monolith loop reactor (MLR) and compared with conventional reactor systems using free PGA, and a commercially available immobilized PGA. The optimal immobilization protocol was found to be 5 g l(-1) PGA, 1% chitosan, 1.1% glutaraldehyde and pH 7. Final PGA loading on glass plates was 29 mg ml(-1) gel. For 400 cpsi monoliths, the final PGA loading on functionalized monoliths was 36 mg ml(-1) gel. The observed volumetric reaction rate in the MLR was 0.79 mol s(-1) m(-3) (monolith). Apart from an initial drop in activity due to wash out of PGA at higher ionic strength, no decrease in activity was observed after five subsequent activity test runs. The storage stability of the biocatalysts is at least a month without loss of activity. Although the monolithic biocatalyst as used in the MLR is still outperformed by the current industrial catalyst (immobilized preparation of PGA, 4.5 mol s(-1) m(-3) (catalyst)), the rate per gel volume is slightly higher for monolithic catalysts. Good activity and improved mechanical strength make the monolithic bioreactor an interesting alternative that deserves further investigation for this application. Although moderate internal diffusion limitations have been observed inside the gel beads and in the gel layer on the monolith channel, this is not the main reason for the large differences in reactor performance that were observed. The pH drop over the reactor as a result of the chosen method for pH control results in a decreased performance of both the MLR and the packed bed reactor compared to the batch system. A different reactor configuration including an optimal pH profile is required to increase the reactor performance. The monolithic stirrer reactor would be an interesting alternative to improve the performance of the monolith-PGA combination.  相似文献   

20.
A matrine-imprinted monolithic stationary phase (MIP monolith) was prepared by in situ polymerization for extraction and purification of matrine from Sophorae flavescentis Ait. Matrine was used as the template molecule, methacrylic acid as the function monomer, ethylene glycol dimethacrylate as the cross-linking agent, and toluene and dodecanol as the porogenic solvents. Scanning electron microscope study revealed that a monolithic structure with mesopores and 36 μm diameter nodules was obtained. The molecular recognition process and the effect of varying chromatographic conditions on separation were examined by high-performance liquid chromatography (HPLC). Hydrogen bonding, electrostatic, hydrophobic interactions and the molecular shape matching in MIP monolith cavities were proposed to be responsible for the recognition mechanism. The use of MIP monolith as a solid-phase extraction (SPE) sorbent for extraction and purification of matrine from S. flavescentis Ait was investigated. The extraction yield was 89.2% (for 3.0 mmol l(-1) matrine) with enrichment factor 29.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号