首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mesophilic anaerobic digestion of slaughterhouse waste (SHW) and its co-digestion with the organic fraction of municipal solid waste (OFMSW) have been evaluated. These processes were carried out in a laboratory plant semi-continuously operated and two set-ups were run. The first set-up, with a hydraulic retention time (HRT) of 25 days and organic loading rate (OLR) of 1.70 kg VS m−3 day−1 for digestion, and 3.70 kg VS m−3 day−1 for co-digestion, was not successful. The second set-up was initiated with an HRT of 50 days and an OLR of 0.9 kg VS m−3 day−1 for digestion and 1.85 kg VS m−3 day−1 for co-digestion. Under these conditions, once the sludge had been acclimated to a medium with a high fat and ammonia content, it was possible to decrease the HRT while progressively increasing the OLR to the values used in the first set-up until an HRT of 25 days and OLRs of 1.70 and 3.70 kg VS m−3 day−1, for digestion and co-digestion, respectively (the same conditions of the digesters failures previously). These digesters showed a highly stable performance, volatile fatty acids (VFAs) were not detected and long chain fatty acids (LCFAs) were undetected or only trace levels were measured in the analyzed effluent. Fat removal reached values of up to 83%. Anaerobic digestion was thus found to be a suitable technology for efficiently treating lipid and protein waste.  相似文献   

2.
Batch anaerobic digestion was employed to investigate the efficient start-up strategies for the liquefied food waste, and sequencing batch digestion was also performed to determine maximum influent organic loading rate (OLR) for efficient and stable operation. The results indicated that the start-up could be well improved using appropriate wastewater organic load and food-to-microorganism ratios (F/M). When digestion was initialized at low chemical oxygen demand (COD) concentration of 20.0 gCOD L?1, the start-up would go well using lower F/M ratio of 0.5–0.7. The OLR 7.0 gCOD L?1 day?1 was recommended for operating the ASBR digestion, in which the COD conversion of 96.7 ± 0.53 % and biomethane yield of 3.5 ± 0.2 L gCOD?1 were achieved, respectively. The instability would occur when OLR was higher than 7.0 gCOD L?1 day?1, and this instability was not recoverable. Lipid was suggested to be removed before anaerobic digestion. The anaerobic digestion process in engineering project ran well, and good performance was achieved when the start-up and operational strategies from laboratory study were applied. For case application, stable digestion performance was achieved in a digester (850 m3 volume) with biogas production of 1.0–3.8 m3 m?3 day?1.  相似文献   

3.
Soil amendment with organic wastes in the Highlands of Ethiopia has been greatly reduced by widespread use of dung cakes and crop residues as fuels. This study assessed the interaction between household energy and recycling of nutrients and carbon to the soil using household survey, focus group discussions, key informant interviews, direct observations and measurements between 2014 and 2015 in Kumbursa village (Central Highlands of Ethiopia). All surveyed households were entirely dependent on biomass fuel for cooking, with production and consumption rates directly related to wealth status, which significantly varied (P < 0.001) among three farm wealth groups (poor, medium and rich). Crop residues and dung cakes accounted for 80(±3)% by energy content and 85(±4)% by dry mass weight of total biomass fuel consumption. Mean losses were 59(±2) kg ha?1 yr?1 nitrogen (109(±8) kg yr?1 per household), 13.9(±0.3) kg ha?1 yr?1 phosphorus (26(±2) kg yr?1 per household), 79(±2) kg ha?1 yr?1 potassium (150(±11) kg yr?1 per household) and 2100(±40) kg ha?1 yr?1 organic carbon (3000(±300) kg yr?1 per household). Rich farmers lost significantly more carbon and nutrients in fuel than farmers in other wealth groups. However, these losses were spread over a larger area, so losses per land area were significantly higher for medium and poor than for rich farmers. This means that the land of poorer farmers is likely to become degraded more rapidly due to fuel limitations than that of rich farmers, so increasing the poverty gap. The estimated financial loss per household due to not using dung and crop residues as organic fertilizer was 162(±8) USSoil amendment with organic wastes in the Highlands of Ethiopia has been greatly reduced by widespread use of dung cakes and crop residues as fuels. This study assessed the interaction between household energy and recycling of nutrients and carbon to the soil using household survey, focus group discussions, key informant interviews, direct observations and measurements between 2014 and 2015 in Kumbursa village (Central Highlands of Ethiopia). All surveyed households were entirely dependent on biomass fuel for cooking, with production and consumption rates directly related to wealth status, which significantly varied (P < 0.001) among three farm wealth groups (poor, medium and rich). Crop residues and dung cakes accounted for 80(±3)% by energy content and 85(±4)% by dry mass weight of total biomass fuel consumption. Mean losses were 59(±2) kg ha?1 yr?1 nitrogen (109(±8) kg yr?1 per household), 13.9(±0.3) kg ha?1 yr?1 phosphorus (26(±2) kg yr?1 per household), 79(±2) kg ha?1 yr?1 potassium (150(±11) kg yr?1 per household) and 2100(±40) kg ha?1 yr?1 organic carbon (3000(±300) kg yr?1 per household). Rich farmers lost significantly more carbon and nutrients in fuel than farmers in other wealth groups. However, these losses were spread over a larger area, so losses per land area were significantly higher for medium and poor than for rich farmers. This means that the land of poorer farmers is likely to become degraded more rapidly due to fuel limitations than that of rich farmers, so increasing the poverty gap. The estimated financial loss per household due to not using dung and crop residues as organic fertilizer was 162(±8) US$ yr?1. However, this is less than their value as fuels, which was 490(±20) US$ yr?1. Therefore, farmers will only be persuaded to use these valuable assets as soil improvers if an alternative, cheaper fuel source can be found.  相似文献   

4.
Increasing demand for food and biofuel feedstocks may substantially affect soil nutrient budgets, especially in the United States where there is great potential for corn (Zea mays L) stover as a biofuel feedstock. This study was designed to evaluate impacts of projected stover harvest scenarios on budgets of soil nitrogen (N), phosphorus (P), and potassium (K) currently and in the future across the conterminous United States. The required and removed N, P, and K amounts under each scenario were estimated on the basis of both their average contents in grain and stover and from an empirical model. Our analyses indicate a small depletion of soil N (?4 ± 35 kg ha?1) and K (?6 ± 36 kg ha?1) and a moderate surplus of P (37 ± 21 kg ha?1) currently on the national average, but with a noticeable variation from state to state. After harvesting both grain and projected stover, the deficits of soil N, P, and K were estimated at 114–127, 26–27, and 36–53 kg ha?1 yr?1, respectively, in 2006–2010; 131–173, 29–32, and 41–96 kg ha?1 yr?1, respectively, in 2020; and 161–207, 35–39, and 51–111 kg ha?1 yr?1, respectively, in 2050. This study indicates that the harvestable stover amount derived from the minimum stover requirement for maintaining soil organic carbon level scenarios under current fertilization rates can be sustainable for soil nutrient supply and corn production at present, but the deficit of P and K at the national scale would become larger in the future.  相似文献   

5.
Wetlands can influence global climate via greenhouse gas (GHG) exchange of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O). Few studies have quantified the full GHG budget of wetlands due to the high spatial and temporal variability of fluxes. We report annual open‐water diffusion and ebullition fluxes of CO2, CH4, and N2O from a restored emergent marsh ecosystem. We combined these data with concurrent eddy‐covariance measurements of whole‐ecosystem CO2 and CH4 exchange to estimate GHG fluxes and associated radiative forcing effects for the whole wetland, and separately for open‐water and vegetated cover types. Annual open‐water CO2, CH4, and N2O emissions were 915 ± 95 g C‐CO2 m?2 yr?1, 2.9 ± 0.5 g C‐CH4 m?2 yr?1, and 62 ± 17 mg N‐N2O m?2 yr?1, respectively. Diffusion dominated open‐water GHG transport, accounting for >99% of CO2 and N2O emissions, and ~71% of CH4 emissions. Seasonality was minor for CO2 emissions, whereas CH4 and N2O fluxes displayed strong and asynchronous seasonal dynamics. Notably, the overall radiative forcing of open‐water fluxes (3.5 ± 0.3 kg CO2‐eq m?2 yr?1) exceeded that of vegetated zones (1.4 ± 0.4 kg CO2‐eq m?2 yr?1) due to high ecosystem respiration. After scaling results to the entire wetland using object‐based cover classification of remote sensing imagery, net uptake of CO2 (?1.4 ± 0.6 kt CO2‐eq yr?1) did not offset CH4 emission (3.7 ± 0.03 kt CO2‐eq yr?1), producing an overall positive radiative forcing effect of 2.4 ± 0.3 kt CO2‐eq yr?1. These results demonstrate clear effects of seasonality, spatial structure, and transport pathway on the magnitude and composition of wetland GHG emissions, and the efficacy of multiscale flux measurement to overcome challenges of wetland heterogeneity.  相似文献   

6.
Experimental trawl surveys in Izmir Bay (Aegean Sea) were taken seasonally between 2007 and 2009. A total of 1353 specimens were sampled ranging from 5.9 cm (1.4 g) to 44.4 cm (670 g). The main size group of Merluccius merluccius was between 14 and 25 cm total length (TL). In total, the mean catch per unit effort (CPUE) for hake by number and weight was 101.4 ± 18.4 ind h?1 and 10.7 ± 1.5 kg h?1, respectively. Highest mean CPUE by number and biomass was determined as 257.1 ± 15.1 ind h?1 and 15.1 ± 4.9 kg h?1 in summer. Mortality (M, F, Z) ratios of hake were 0.58 year?1, 1.66 year?1 and 2.24 year?1, respectively. Because of the many smaller specimens caught in this study, this seems to indicate that there may be heavy fishing pressures on the hake population; the high exploitation rate (E = 0.74) appears to confirm this conclusion.  相似文献   

7.
Inland waters were recently recognized to be important sources of methane (CH4) and carbon dioxide (CO2) to the atmosphere, and including inland water emissions in large scale greenhouse gas (GHG) budgets may potentially offset the estimated carbon sink in many areas. However, the lack of GHG flux measurements and well‐defined inland water areas for extrapolation, make the magnitude of the potential offset unclear. This study presents coordinated flux measurements of CH4 and CO2 in multiple lakes, ponds, rivers, open wells, reservoirs, springs, and canals in India. All these inland water types, representative of common aquatic ecosystems in India, emitted substantial amounts of CH4 and a major fraction also emitted CO2. The total CH4 flux (including ebullition and diffusion) from all the 45 systems ranged from 0.01 to 52.1 mmol m?2 d?1, with a mean of 7.8 ± 12.7 (mean ± 1 SD) mmol m?2 d?1. The mean surface water CH4 concentration was 3.8 ± 14.5 μm (range 0.03–92.1 μm ). The CO2 fluxes ranged from ?28.2 to 262.4 mmol m?2 d?1 and the mean flux was 51.9 ± 71.1 mmol m?2 d?1. The mean partial pressure of CO2 was 2927 ± 3269 μatm (range: 400–11 467 μatm). Conservative extrapolation to whole India, considering the specific area of the different water types studied, yielded average emissions of 2.1 Tg CH4 yr?1 and 22.0 Tg CO2 yr?1 from India's inland waters. When expressed as CO2 equivalents, this amounts to 75 Tg CO2 equivalents yr?1 (53–98 Tg CO2 equivalents yr?1; ± 1 SD), with CH4 contributing 71%. Hence, average inland water GHG emissions, which were not previously considered, correspond to 42% (30–55%) of the estimated land carbon sink of India. Thereby this study illustrates the importance of considering inland water GHG exchange in large scale assessments.  相似文献   

8.
The rapid increase in atmospheric CO2 concentrations (Ca) has resulted in extensive research efforts to understand its impact on terrestrial ecosystems, especially carbon balance. Despite these efforts, there are relatively few data comparing net ecosystem exchange of CO2 between the atmosphere and the biosphere (NEE), under both ambient and elevated Ca. Here we report data on annual sums of CO2 (NEEnet) for 19 years on a Chesapeake Bay tidal wetland for Scirpus olneyi (C3 photosynthetic pathway)‐ and Spartina patens (C4 photosynthetic pathway)‐dominated high marsh communities exposed to ambient and elevated Ca (ambient + 340 ppm). Our objectives were to (i) quantify effects of elevated Ca on seasonally integrated CO2 assimilation (NEEnet = NEEday + NEEnight, kg C m?2 y?1) for the two communities; and (ii) quantify effects of altered canopy N content on ecosystem photosynthesis and respiration. Across all years, NEEnet averaged 1.9 kg m?2 y?1 in ambient Ca and 2.5 kg m?2 y?1 in elevated Ca, for the C3‐dominated community. Similarly, elevated Ca significantly (P < 0.01) increased carbon uptake in the C4‐dominated community, as NEEnet averaged 1.5 kg m?2 y?1 in ambient Ca and 1.7 kg m?2 y?1 in elevated Ca. This resulted in an average CO2 stimulation of 32% and 13% of seasonally integrated NEEnet for the C3‐ and C4‐dominated communities, respectively. Increased NEEday was correlated with increased efficiencies of light and nitrogen use for net carbon assimilation under elevated Ca, while decreased NEEnight was associated with lower canopy nitrogen content. These results suggest that rising Ca may increase carbon assimilation in both C3‐ and C4‐dominated wetland communities. The challenge remains to identify the fate of the assimilated carbon.  相似文献   

9.
Although the effects of atmospheric nitrogen deposition on species composition are relatively well known, the roles of the different forms of nitrogen, in particular gaseous ammonia (NH3), have not been tested in the field. Since 2002, we have manipulated the form of N deposition to an ombrotrophic bog, Whim, on deep peat in southern Scotland, with low ambient N (wet + dry = 8 kg N ha?1 yr?1) and S (4 kg S ha?1 yr?1) deposition. A gradient of ammonia (NH3, dry N), from 70 kg N ha?1 yr?1 down to background, 3–4 kg N ha?1 yr?1 was generated by free air release. Wet ammonium (NH4+, wet N) was provided to replicate plots in a fine rainwater spray (NH4Cl at +8, +24, +56 kg N ha?1 yr?1). Automated treatments are coupled to meteorological conditions, in a globally unique, field experiment. Ammonia concentrations were converted to NH3‐N deposition (kg N ha?1) using a site/vegetation specific parameterization. Within 3 years, exposure to relatively modest deposition of NH3, 20–56 kg NH3‐N ha?1 yr?1 led to dramatic reductions in species cover, with almost total loss of Calluna vulgaris, Sphagnum capillifolium and Cladonia portentosa. These effects appear to result from direct foliar uptake and interaction with abiotic and biotic stresses, rather than via effects on the soil. Additional wet N by contrast, significantly increased Calluna cover after 5 years at the 56 kg N dose, but reduced cover of Sphagnum and Cladonia. Cover reductions caused by wet N were significantly different from and much smaller than those caused by equivalent dry N doses. The effects of gaseous NH3 described here, highlight the potential for ammonia to destroy acid heathland and peat bog ecosystems. Separating the effects of gaseous ammonia and wet ammonium deposition, for a peat bog, has significant implications for regulatory bodies and conservation agencies.  相似文献   

10.
An experimental study was carried out to compare the performance of selected anaerobic high rate reactors operated simultaneously at 37?°C. The three reactors, namely upflow anaerobic sludge bed reactor (UASB), hybrid of UASB reactor and anaerobic filter (anaerobic hybrid reactor – AHR) and anaerobic baffled reactor (ABR), were inoculated with the anaerobic digested sludge from municipal wastewater treatment plant and tested with synthetic wastewater. This wastewater contained sodium acetate and glucose with balanced nutrients and trace elements (COD 6000?mg?·?l?1). Organic loading rate (B v ) was increased gradually from an initial 0.5?kg?·?m?3?·?d?1 to 15?kg?·?m?3?·?d?1 in all the reactors. From the comparison of the reactors' performance, the lowest biomass wash-out resulted from ABR. In the UASB, significant biomass wash-out was observed at the B v 6?kg?·?m?3?·?d?1, and in the AHR at the B v 12?kg?·?m?3?·?d?1. The demand of sodium bicarbonate for pH maintenance in ABR was two times higher as for UASB and AHR. The efficiency of COD removal was comparable for all three reactors – 80–90%. A faster biomass granulation was observed in the ABR than in the other two reactors. This fact is explained by the kinetic selection of filamentous bacteria of the Methanotrix sp. under a high (over 1.5?g?·?l?1) acetate concentration.  相似文献   

11.
The Working Group on Eel of the International Council for the Exploration of the Sea (ICES) regularly reports that a significant amount of stocked eels in Europe was pre‐grown in aquaculture farms prior to stocking—so called “farmed eels.” The ICES advices chemical marking of stocked recruits to ensure their traceability throughout all life stages. To date, however, there was a lack of knowledge concerning the most suitable chemical substance and its application on farmed eels. The aim of this study was to fill this gap by presenting successful attempts of marking those eels with alizarin red S (ARS). An ARS concentration of 150 mg L?1 buffered with 150 mg L?1 Tris(hydroxymethyl)aminomethane applied as an immersion bath over 9 h was sufficient to mark a total of 3572 kg of farmed eels (6.5–8.0 g mean body weight). The marking success was 100% on otoliths and highest stocking density of up to 67.1 kg m?3 (corresponding 54.0 kg m?2) turned out to have no effect on mortality which was consistently below 1%.  相似文献   

12.
Quantifying changes in stocks of C, N, P, and S in agricultural soils is important not only for managing these soils sustainably as required to feed a growing human population, but for C and N, they are also important for understanding fluxes of greenhouse gases from the soil environment. In a global meta‐analysis, 102 studies were examined to investigate changes in soil stocks of organic C, total N, total P, and total S associated with long‐term land‐use changes. Conversion of native vegetation to cropping resulted in substantial losses of C (?1.6 kg m?2, ?43%), N (?0.15 kg m?2, ?42%), P (?0.029 kg m?2, ?27%), and S (?0.015 kg m?2, ?33%). The subsequent conversion of conventional cropping systems to no‐till, organic agriculture, or organic amendment systems subsequently increased stocks, but the magnitude of this increase (average of +0.47 kg m?2 for C and +0.051 kg m?2 for N) was small relative to the initial decrease. We also examined the conversion of native vegetation to pasture, with changes in C (?11%), N (+4.1%), and P (+25%) generally being modest relative to changes caused by conversion to cropping. The C:N ratio remained relatively constant irrespective of changes in land use, whilst in contrast, the C:S ratio decreased by 21% in soils converted to cropping – this suggesting that biochemical mineralization is of importance for S. The data presented here will assist in the assessment of different agricultural production systems on soil stocks of C, N, P, and S – this information assisting not only in quantifying the effects of existing agricultural production on these stocks, but also allowing for informed decision‐making regarding the potential effects of future land‐use changes.  相似文献   

13.
Climate warming at high northern latitudes has caused substantial increases in plant productivity of tundra vegetation and an expansion of the range of deciduous shrub species. However significant the increase in carbon (C) contained within above‐ground shrub biomass, it is modest in comparison with the amount of C stored in the soil in tundra ecosystems. Here, we use a ‘space‐for‐time’ approach to test the hypothesis that a shift from lower‐productivity tundra heath to higher‐productivity deciduous shrub vegetation in the sub‐Arctic may lead to a loss of soil C that out‐weighs the increase in above‐ground shrub biomass. We further hypothesize that a shift from ericoid to ectomycorrhizal systems coincident with this vegetation change provides a mechanism for the loss of soil C. We sampled soil C stocks, soil surface CO2 flux rates and fungal growth rates along replicated natural transitions from birch forest (Betula pubescens), through deciduous shrub tundra (Betula nana) to tundra heaths (Empetrum nigrum) near Abisko, Swedish Lapland. We demonstrate that organic horizon soil organic C (SOCorg) is significantly lower at shrub (2.98 ± 0.48 kg m?2) and forest (2.04 ± 0.25 kg m?2) plots than at heath plots (7.03 ± 0.79 kg m?2). Shrub vegetation had the highest respiration rates, suggesting that despite higher rates of C assimilation, C turnover was also very high and less C is sequestered in the ecosystem. Growth rates of fungal hyphae increased across the transition from heath to shrub, suggesting that the action of ectomycorrhizal symbionts in the scavenging of organically bound nutrients is an important pathway by which soil C is made available to microbial degradation. The expansion of deciduous shrubs onto potentially vulnerable arctic soils with large stores of C could therefore represent a significant positive feedback to the climate system.  相似文献   

14.
Methane (CH4) is an important greenhouse gas, contributing 0.4–0.5 W m?2 to global warming. Methane emissions originate from several sources, including wetlands, rice paddies, termites and ruminating animals. Previous measurements of methane flux from farm animals have been carried out on animals in unnatural conditions, in laboratory chambers or fitted with cumbersome masks. This study introduces eddy covariance measurements of CH4, using the newly developed LI‐COR LI‐7700 open‐path methane analyser, to measure field‐scale fluxes from sheep grazing freely on pasture. Under summer conditions, fluxes of methane in the morning averaged 30 nmol m?2 s?1, whereas those in the afternoon were above 100 nmol m?2 s?1, and were roughly two orders of magnitude larger than the small methane emissions from the soil. Methane emissions showed no clear relationship with air temperature or photosynthetically active radiation, but some diurnal pattern was apparent, probably linked to sheep grazing behaviour and metabolism. Over the measurement period (days 60–277, year 2010), cumulative methane fluxes were 0.34 mol CH4 m?2, equating to 134.3 g CO2 equivalents m?2. By comparison, a carbon dioxide (CO2) sink of 819 g CO2 equivalents m?2 was measured over the same period, but it is likely that much of this would be released back to the atmosphere during the winter or as off‐site losses (through microbial and animal respiration). By dividing methane fluxes by the number of sheep in the field each day, we calculated CH4 emissions per head of livestock as 7.4 kg CH4 sheep?1 yr?1, close to the published IPCC emission factor of 8 kg CH4 sheep?1 yr?1.  相似文献   

15.
Freshwater marshes are well‐known for their ecological functions in carbon sequestration, but complete carbon budgets that include both methane (CH4) and lateral carbon fluxes for these ecosystems are rarely available. To the best of our knowledge, this is the first full carbon balance for a freshwater marsh where vertical gaseous [carbon dioxide (CO2) and CH4] and lateral hydrologic fluxes (dissolved and particulate organic carbon) have been simultaneously measured for multiple years (2011–2013). Carbon accumulation in the sediments suggested that the marsh was a long‐term carbon sink and accumulated ~96.9 ± 10.3 (±95% CI) g C m?2 yr?1 during the last ~50 years. However, abnormal climate conditions in the last 3 years turned the marsh to a source of carbon (42.7 ± 23.4 g C m?2 yr?1). Gross ecosystem production and ecosystem respiration were the two largest fluxes in the annual carbon budget. Yet, these two fluxes compensated each other to a large extent and led to the marsh being a CO2 sink in 2011 (?78.8 ± 33.6 g C m?2 yr?1), near CO2‐neutral in 2012 (29.7 ± 37.2 g C m?2 yr?1), and a CO2 source in 2013 (92.9 ± 28.0 g C m?2 yr?1). The CH4 emission was consistently high with a three‐year average of 50.8 ± 1.0 g C m?2 yr?1. Considerable hydrologic carbon flowed laterally both into and out of the marsh (108.3 ± 5.4 and 86.2 ± 10.5 g C m?2 yr?1, respectively). In total, hydrologic carbon fluxes contributed ~23 ± 13 g C m?2 yr?1 to the three‐year carbon budget. Our findings highlight the importance of lateral hydrologic inflows/outflows in wetland carbon budgets, especially in those characterized by a flow‐through hydrologic regime. In addition, different carbon fluxes responded unequally to climate variability/anomalies and, thus, the total carbon budgets may vary drastically among years.  相似文献   

16.
We investigated the depositional trends of total particles, carbon and nitrogen in a newly created, 600-km2 hydroelectric reservoir in Northern Québec, and compared the results with those observed in lakes of the surrounding region. We show that particulate fluxes exhibit a large degree of spatial heterogeneity in both the reservoir (68–548 mg POC m?2 d?1 and 5–33 mg PN m?2 d?1) and the natural lakes (30–150 mg POC m?2 d?1 and 3–12 mg PN m?2 d?1) and that on average, settling fluxes of the reservoir (211 ± 46 mg POC m?2 d?1 and 14 ± 3 mg PN m?2 d?1) exceeded lake deposition (79 ± 13 mg POC m?2 d?1 and 7 ± 1 mg PN m?2 d?1) by approximately two-fold. Our results also show that the nature of the organic matter reaching the sediments was significantly different between lakes and the reservoir, which can have consequences for benthic metabolism and the long-term storage. We found that sinking fluxes in the reservoir were mostly regulated by local morphological and hydrological conditions, with higher fluxes along or in the vicinity of the old riverbed (average 400 ± 73 mg POC m?2 d?1 and 24 ± 5 mg PN m?2 d?1) and lower fluxes in calmer zones such as side bays (average 106 ± 10 mg POC m?2 d?1 and 8 ± 1 mg PN m?2 d?1). In lakes, where settling fluxes were not linked to the trophy, or dissolved organic carbon, the actual nature of the sedimenting organic material was influenced by lake morphometry and the relative contribution of algal versus terrestrial sources. We conclude that re-suspension and erosion play a major role in shaping the reservoir sinking fluxes which explain both, the higher reservoir deposition and also some of the qualitative differences between the two systems. Despite all these differences, sinking particulate organic carbon fluxes were small and surprisingly similar relative to the surface carbon dioxide emissions in both the reservoir and lakes, representing approximately 16–17 % of the carbon efflux estimated for these same systems in 2008.  相似文献   

17.
The net carbon uptake rate and net production rate of mycosporine‐like amino acids (MAAs) were measured in phytoplankton from 2 different melt ponds (MPs; closed and open type pond) in the western Arctic Ocean using a 13C stable isotope tracer technique. The Research Vessel Araon visited ice‐covered western‐central basins situated at 82°N and 173°E in the summer of 2012, when Arctic sea ice declined to a record minimum. The average net carbon uptake rate of the phytoplankton in polycarbonate (PC) bottles in the closed MP was 3.24 mg C · m?3 · h?1 (SD = ±1.12 mg C · m?3 · h?1), while that in the open MP was 1.3 mg C · m?3 · h?1 (SD = ±0.05 mg C · m?3 · h?1). The net production rate of total MAAs in incubated PC bottles was highest (1.44 (SD = ±0.24) ng C · L?1 · h?1) in the open MP and lowest (0.05 (SD = ±0.003) ng C · L?1 · h?1) in the closed MP. The net production rate of shinorine and palythine in incubated PC bottles at the open MP presented significantly high values 0.76 (SD = ±0.12) ng C · L?1 · h?1and 0.53 (SD = ±0.06) ng C · L?1 · h?1. Our results showed that high net production rate of MAAs in the open MP was enhanced by a combination of osmotic and UVR stress and that in situ net production rates of individual MAA can be determined using 13C tracer in MPs in Arctic sea ice.  相似文献   

18.
Controls on carbon consumption during Alaskan wildland fires   总被引:1,自引:0,他引:1  
A method was developed to estimate carbon consumed during wildland fires in interior Alaska based on medium‐spatial scale data (60 m cell size) generated on a daily basis. Carbon consumption estimates were developed for 41 fire events in the large fire year of 2004 and 34 fire events from the small fire years of 2006–2008. Total carbon consumed during the large fire year (2.72 × 106 ha burned) was 64.7 Tg C, and the average carbon consumption during the small fire years (0.09 × 106 ha burned) was 1.3 Tg C. Uncertainties for the annual carbon emissions ranged from 13% to 21%. Carbon consumed from burning of black spruce forests represented 76% of the total during large fire years and 57% during small fire years. This was the result of the widespread distribution of black spruce forests across the landscape and the deep burning of the surface organic layers common to these ecosystems. Average carbon consumed was 3.01 kg m?2 during the large fire year and 1.69 kg m?2 during the small fire years. Most of the carbon consumption was from burning of ground layer fuels (85% in the large fire year and 78% in small fire years). Most of the difference in average carbon consumption between large and small fire years was in the consumption of ground layer fuels (2.60 vs. 1.31 kg m?2 during large and small fire years, respectively). There was great variation in average fuel consumption between individual fire events (0.56–5.06 kg m?2) controlled by variations in fuel types and topography, timing of the fires during the fire season, and variations in fuel moisture at the time of burning.  相似文献   

19.
Biogas production from nitrogen‐rich feedstock results in release of ammonia (NH3), causing inhibition of the microbial process. The reported threshold ammonia value for stable biogas production varies greatly between studies, probably because of differences in operating conditions. Moreover, it is often difficult to separate the effect of ammonia inhibition from that of organic loading rate (OLR), as these two factors are often interrelated. This study attempted to distinguish the effects of ammonia and OLR by analysis of two laboratory‐scale biogas reactors operating with thin stillage and subjected to an increase in free ammonia (from 0.30 to 1.1 g L?1) either by addition of an external nitrogen source (urea) or by increasing the OLR (3.2–6.0 g volatile solids L?1 d?1). The results showed that ammonia concentration was detrimental for process performance, with the threshold for stability in both processes identified as being about 1 g NH3‐N L?1, irrespective of OLR. Analysis of the methanogenic community showed limited differences between the two reactors on order level and a clear increase in the abundance of Methanomicrobiales, particularly Methanoculleus sp., in response to increasing ammonia concentration. Further comprehensive molecular analysis revealed that diverse Methanoculleus species dominated in the reactors at a given ammonia level at different OLR. The acetogenic community was clearly affected by both ammonia concentration and OLR, suggesting that the volatile fatty acid load in relation to the higher OLR was important for the dynamics of this community.  相似文献   

20.
High productivity and waterlogged conditions make many freshwater wetlands significant carbon sinks. Most wetland carbon studies focus on boreal peatlands, however, with less attention paid to other climates and to the effects of hydrogeomorphic settings and the importance of wetland vegetation communities on carbon sequestration. This study compares six temperate wetland communities in Ohio that belong to two distinct hydrogeomorphic types: an isolated depressional wetland site connected to the groundwater table, and a riverine flow‐through wetland site that receives water from an agricultural watershed. Three cores were extracted in each community and analyzed for total carbon content to determine the soil carbon pool. Sequestration rates were determined by radiometric dating with 137Cs and 210Pb on a set of composite cores extracted in each of the six communities. Cores were also extracted in uplands adjacent to the wetlands at each site. Wetland communities had accretion rates ranging from 3.0 to 6.2 mm yr?1. The depressional wetland sites had higher (P < 0.001) organic content (146 ± 4.2 gC kg?1) and lower (P < 0.001) bulk density (0.55 ± 0.01 Mg m?3) than the riverine ones (50.1 ± 6.9 gC kg?1 and 0.74 ± 0.06 Mg m?3). The soil carbon was 98–99% organic in the isolated depressional wetland communities and 85–98% organic in the riverine ones. The depressional wetland communities sequestered 317 ± 93 gC m?2 yr?1, more (P < 0.01) than the riverine communities that sequestered 140 ± 16 gC m?2 yr?1. The highest sequestration rate was found in the Quercus palustris forested wetland community (473 gC m?2 yr?1), while the wetland community dominated by water lotus (Nelumbo lutea) was the most efficient of the riverine communities, sequestering 160 gC m?2 yr?1. These differences in sequestration suggest the importance of addressing wetland types and communities in more detail when assessing the role of wetlands as carbon sequestering systems in global carbon budgets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号