首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
One of the challenges in tissue engineering is to provide adequate supplies of oxygen and nutrients to cells within the engineered tissue construct. Soft‐lithographic techniques have allowed the generation of hydrogel scaffolds containing a network of fluidic channels, but at the cost of complicated and often time‐consuming manufacturing steps. We report a three‐dimensional (3D) direct printing technique to construct hydrogel scaffolds containing fluidic channels. Cells can also be printed on to and embedded in the scaffold with this technique. Collagen hydrogel precursor was printed and subsequently crosslinked via nebulized sodium bicarbonate solution. A heated gelatin solution, which served as a sacrificial element for the fluidic channels, was printed between the collagen layers. The process was repeated layer‐by‐layer to form a 3D hydrogel block. The printed hydrogel block was heated to 37°C, which allowed the gelatin to be selectively liquefied and drained, generating a hollow channel within the collagen scaffold. The dermal fibroblasts grown in a scaffold containing fluidic channels showed significantly elevated cell viability compared to the ones without any channels. The on‐demand capability to print fluidic channel structures and cells in a 3D hydrogel scaffold offers flexibility in generating perfusable 3D artificial tissue composites. Biotechnol. Bioeng. 2010;105: 1178–1186. © 2009 Wiley Periodicals, Inc.  相似文献   

2.
A 3D printing approach is first developed to fabricate quasi‐solid‐state asymmetric micro‐supercapacitors to simultaneously realize the efficient patterning and ultrahigh areal energy density. Typically, cathode, anode, and electrolyte inks with high viscosities and shear‐thinning rheological behaviors are first prepared and 3D printed individually on the substrates. The 3D printed asymmetric micro‐supercapacitor with interdigitated electrodes exhibits excellent structural integrity, a large areal mass loading of 3.1 mg cm?2, and a wide electrochemical potential window of 1.6 V. Consequently, this 3D printed asymmetric micro‐supercapacitor displays an ultrahigh areal capacitance of 207.9 mF cm?2. More importantly, an areal energy density of 73.9 µWh cm?2 is obtained, superior to most reported interdigitated micro‐supercapacitors. It is believed that the efficient 3D printing strategy can be used to construct various asymmetric micro‐supercapacitors to promote the integration in on‐chip energy storage systems.  相似文献   

3.
Accurate representation of temperature sensitivity (Q10) of soil microbial activity across time is critical for projecting soil CO2 efflux. As microorganisms mediate soil carbon (C) loss via exo‐enzyme activity and respiration, we explore temperature sensitivities of microbial exo‐enzyme activity and respiratory CO2 loss across time and assess mechanisms associated with these potential changes in microbial temperature responses. We collected soils along a latitudinal boreal forest transect with different temperature regimes (long‐term timescale) and exposed these soils to laboratory temperature manipulations at 5, 15, and 25°C for 84 days (short‐term timescale). We quantified temperature sensitivity of microbial activity per g soil and per g microbial biomass at days 9, 34, 55, and 84, and determined bacterial and fungal community structure before the incubation and at days 9 and 84. All biomass‐specific rates exhibited temperature sensitivities resistant to change across short‐ and long‐term timescales (mean Q10 = 2.77 ± 0.25, 2.63 ± 0.26, 1.78 ± 0.26, 2.27 ± 0.25, 3.28 ± 0.44, 2.89 ± 0.55 for β‐glucosidase, N‐acetyl‐β‐d ‐glucosaminidase, leucine amino peptidase, acid phosphatase, cellobiohydrolase, and CO2 efflux, respectively). In contrast, temperature sensitivity of soil mass‐specific rates exhibited either resilience (the Q10 value changed and returned to the original value over time) or resistance to change. Regardless of the microbial flux responses, bacterial and fungal community structure was susceptible to change with temperature, significantly differing with short‐ and long‐term exposure to different temperature regimes. Our results highlight that temperature responses of microbial resource allocation to exo‐enzyme production and associated respiratory CO2 loss per unit biomass can remain invariant across time, and thus, that vulnerability of soil organic C stocks to rising temperatures may persist in the long term. Furthermore, resistant temperature sensitivities of biomass‐specific rates in spite of different community structures imply decoupling of community constituents and the temperature responses of soil microbial activities.  相似文献   

4.
Temperate forest ecosystems have experienced mounting negative effects due to increasing levels of nitrogen (N) deposition. We examined the effects of experimental N addition on plant diversity in an old‐growth temperate forest to test the following hypothesis: Long‐term excessive N addition decreases plant diversity by affecting the growth of plants, which results from changes in the soil nutrient content and a decrease in the soil pH in temperate forests. Experimental N additions were administered at the following levels since 2008: control (0 kg N ha?1 year?1), low N (30 kg N ha?1 year?1), medium N (60 kg N ha?1 year?1), and high N (120 kg N ha?1 year?1). Additionally, plant diversity was studied from 2014 to 2016. The results showed that the experimental N additions had significant effects on plant diversity and soil properties in an old‐growth temperate forest. The high‐N treatment decreased the density, cover, and diversity of understory plants, and some herbs even appeared to undergo premature aging, whereas the species diversity of herbs and ferns in the low‐N treatment plots showed a slight increasing tendency. This may have been because the old‐growth temperate forest is an N‐limited ecosystem, so the moderate N input did not show a large influence on plant diversity. However, the long‐term high‐N treatment ultimately reduced plant diversity by changing the soil nutrient contents, decreasing the pH values, and damaging plant growth. Our results suggested that the long‐term excessive N addition negatively affected the forest ecosystem in an N‐limited temperature forest.  相似文献   

5.
Young‐onset calorie restriction (CR) in rodents decreases serum IGF‐1 concentration and increases serum corticosterone levels, which have been hypothesized to play major roles in mediating its anticancer and anti‐aging effects. However, little is known on the effects of CR on the IGF‐1 system and cortisol in humans. To test the sustained effects of CR on these key hormonal adaptations, we performed a multicenter randomized trial of a 2‐year 25% CR intervention in 218 nonobese (body mass index between 22 and 27.8 kg m?2) young and middle‐aged (20–50 years age range) men and women. Average CR during the first 6 months was 19.5 ± 0.8% and 9.1 ± 0.7% over the next 18 months of the study. Weight loss averaged 7.6 ± 0.3 kg over the 2‐years period of which 71% was fat mass loss (P < 0.0001). Average CR during the CR caused a significant 21% increase in serum IGFBP‐1 and a 42% reduction in IGF‐1:IGFBP‐1 ratio at 2 years (P < 0.008), but did not change IGF‐1 and IGF‐1:IGFBP‐3 ratio levels. Serum cortisol concentrations were slightly but significantly increased by CR at 1 year only (P = 0.003). Calorie restriction had no effect on serum concentrations of PDGF‐AB and TGFβ‐1. We conclude, on the basis of the present and previous findings, that, in contrast to rodents, humans do not respond to CR with a decrease in serum IGF‐1 concentration or with a sustained and biological relevant increase in serum cortisol. However, long‐term CR in humans significantly and persistently increases serum IGFBP‐1 concentration.  相似文献   

6.
The fabrication of fully printable, flexible micro‐supercapacitors (MSCs) with high energy and power density remains a significant technological hurdle. To overcome this grand challenge, the 2D material MXene has garnered significant attention for its application, among others, as a printable electrode material for high performing electrochemical energy storage devices. Herein, a facile and in situ process is proposed to homogeneously anchor hydrous ruthenium oxide (RuO2) nanoparticles on Ti3C2Tx MXene nanosheets. The resulting RuO2@MXene nanosheets can associate with silver nanowires (AgNWs) to serve as a printable electrode with micrometer‐scale resolution for high performing, fully printed MSCs. In this printed nanocomposite electrode, the RuO2 nanoparticles contribute high pseudocapacitance while preventing the MXene nanosheets from restacking, ensuring an effective ion highway for electrolyte ions. The AgNWs coordinate with the RuO2@MXene to guarantee the rheological property of the electrode ink, and provide a highly conductive network architecture for rapid charge transport. As a result, MSCs printed from the nanocomposite inks demonstrate volumetric capacitances of 864.2 F cm?3 at 1 mV s?1, long‐term cycling performance (90% retention after 10 000 cycles), good rate capability (304.0 F cm?3 at 2000 mV s?1), outstanding flexibility, remarkable energy (13.5 mWh cm?3) and power density (48.5 W cm?3).  相似文献   

7.
Herein, a facile, one‐step hydrothermal route to synthesize novel all‐carbon‐based composites composed of B‐doped graphene quantum dots anchored on a graphene hydrogel (GH‐BGQD) is demonstrated. The obtained GH‐BGQD material has a unique 3D architecture with high porosity and large specific surface area, exhibiting abundant catalytic active sites of B‐GQDs as well as enhanced electrolyte mass transport and ion diffusion. Therefore, the prepared GH‐BGQD composites exhibit a superior trifunctional electrocatalytic activity toward the oxygen reduction reaction, oxygen evolution reaction, and hydrogen evolution reaction with excellent long‐term stability and durability comparable to those of commercial Pt/C and Ir/C catalysts. A flexible solid‐state Zn–air battery using a GH‐BGQD air electrode achieves an open‐circuit voltage of 1.40 V, a stable discharge voltage of 1.23 V for 100 h, a specific capacity of 687 mAh g?1, and a peak power density of 112 mW cm?2. Also, a water electrolysis cell using GH‐BGQD electrodes delivers a current density of 10 mA cm?2 at cell voltage of 1.61 V, with remarkable stability during 70 h of operation. Finally, the trifunctional GH‐BGQD catalyst is employed for water electrolysis cell powered by the prepared Zn–air batteries, providing a new strategy for the carbon‐based multifunctional electrocatalysts for electrochemical energy devices.  相似文献   

8.
ReS2 (rhenium disulfide) is a new transition‐metal dichalcogenide that exhibits 1T′ phase and extremely weak interlayer van der Waals interactions. This makes it promising as an anode material for sodium‐ion batteries. However, achieving both a high‐rate capability and a long‐life has remained a major research challenge. Here, a new composite is reported, in which both are realized for the first time. 1T′‐ReS2 is confined through strong interfacial interaction in a 2D‐honeycombed carbon nanosheets that comprise an rGO inter‐layer and a N‐doped carbon coating‐layer (rGO@ReS2@N‐C). The strong interfacial interaction between carbon and ReS2 increases overall conductivity and decreases Na+ diffusion resistance, whilst the intended 2D‐honeycombed carbon protective layer maintains structural morphology and electrochemical activity during long‐term cycling. These findings are confirmed by advanced characterization techniques, electrochemical measurement, and density functional theory calculation. The new rGO@ReS2@N‐C exhibits the greatest rate performance reported so far for ReS2 of 231 mAh g?1 at 10 A g?1. Significantly, this is together with ultra‐stable long‐term cycling of 192 mAh g?1 at 2 A g?1 after 4000 cycles.  相似文献   

9.
Printing is regarded as a revolutionary and feasible technique to guide the fabrication of versatile functional systems with designed architectures. 2D MXenes are nowadays attractive in printed energy storage devices. However, owing to the van der Waals interaction between the MXene layers, the restacking issues within the printed electrodes can significantly impede the ion/electrolyte transport and hence handicap the electrochemical performances. Herein, a melamine formaldehyde templating method is demonstrated to develop crumpled nitrogen‐doped MXene (MXene‐N) nanosheets. The nitrogen doping boosts the electrochemical performances of MXene via enhanced conductivity and redox activity. Accordingly, two types of MXene‐N inks are prepared throughout the optimization of the ink viscosity to fit the 2D screen printing and 3D extrusion printing, respectively. As a result, the screen printed MXene‐N microsupercapacitor delivers an areal capacitance of 70.1 mF cm?2 and outstanding mechanical robustness. Furthermore, the 3D‐printed MXene‐N based supercapacitor manifests an areal capacitance of 8.2 F cm?2 for a three‐layered electrode and readily stores a high areal energy density of 0.42 mWh cm?2. The approach to harnessing such versatile MXene‐N inks offers distinctive insights into the printed energy storage systems with high areal energy density and large scalability.  相似文献   

10.
Antimony (Sb) has emerged as an attractive anode material for both lithium and sodium ion batteries due to its high theoretical capacity of 660 mA h g?1. In this work, a novel peapod‐like N‐doped carbon hollow nanotube encapsulated Sb nanorod composite, the so‐called nanorod‐in‐nanotube structured Sb@N‐C, via a bottom‐up confinement approach is designed and fabricated. The N‐doped‐carbon coating and thermal‐reduction process is monitored by in situ high‐temperature X‐ray diffraction characterization. Due to its advanced structural merits, such as sufficient N‐doping, 1D conductive carbon coating, and substantial inner void space, the Sb@N‐C demonstrates superior lithium/sodium storage performance. For lithium storage, the Sb@N‐C exhibits a high reversible capacity (650.8 mA h g?1 at 0.2 A g?1), excellent long‐term cycling stability (a capacity decay of only 0.022% per cycle for 3000 cycles at 2 A g?1), and ultrahigh rate capability (343.3 mA h g?1 at 20 A g?1). For sodium storage, the Sb@N‐C nanocomposite displays the best long‐term cycle performance among the reported Sb‐based anode materials (a capacity of 345.6 mA h g?1 after 3000 cycles at 2 A g?1) and an impressive rate capability of up to 10 A g?1. The results demonstrate that the Sb@N‐C nanocomposite is a promising anode material for high‐performance lithium/sodium storage.  相似文献   

11.
1D nanostructures of soft ferroelectric materials exert promising potential in the fields of energy harvesting and flexible and printed nanoelectronics. Here, improved piezoelectric properties, energy‐harvesting performance, lower coercive fields, and the polarization orientation of poly(vinylidene fluoride–trifluoroethylene) (PVDF‐TrFE) nanotubes synthesized with nanoconfinement effect are reported. X‐ray diffraction (XRD) patterns of the nanotubes show the peak corresponding to the planes of (110)/(200), which is a signature of ferroelectric beta phase formation. Piezoforce spectroscopy measurements on the free‐standing horizontal nanotubes bundles reveal that the effective polarization direction is oriented at an inclination to the long axis of the nanotubes. The nanotubes exhibit a coercive field of 18.6 MV m?1 along the long axis and 40 MV m?1 (13.2 MV m?1 considering the air gap) in a direction perpendicular to the long axis, which is lower than the film counterpart of 50 MV m?1. The poled 200 nm nanotubes, with 40% reduction in poling field, give larger piezoelectric d33 coefficient values of 44 pm V?1, compared to poled films (≈20 pm V?1). The ferroelectric nanotubes deliver superior energy harvesting performance with an output voltage of ≈4.8 V and power of 2.2 μW cm?2, under a dynamic compression pressure of 0.075 MPa at 1 Hz.  相似文献   

12.
We performed a detailed study on the carbon build‐up over the 140‐year‐long chronosequence of the Damma glacier forefield, Switzerland, to gain insights into the organic carbon dynamics during the initial stage of soil formation and ecosystem development. We determined soil carbon and nitrogen contents and their stable isotopic compositions, as well as molecular‐level composition of the bulk soils, and recalcitrance parameters of carbon in different fractions. The chronosequence was divided into three age groups, separated by small end moraines that resulted from two glacier re‐advances. The net ecosystem carbon balance (NECB) showed an exponential increase over the last decades, with mean annual values that range from 100 g C m?2 yr?1 in the youngest part to over 300 g C m?2 yr?1 in a 60–80 years old part. However, over the entire 140‐year chronosequence, the NECB is only 20 g C m?2 yr?1, similar to results of other glacier forefield studies. The difference between the short‐ and long‐term NECB appears to be caused by reductions in ecosystem carbon (EC) accumulation during periods with a colder climate. We propose that two complementary mechanisms have been responsible: 1) Reductions in net primary productivity down to 50% below the long‐term mean, which we estimated using reconstructed effective temperature sums. 2) Disturbance of sites near the terminus of the re‐advanced glacier front. Stabilization of soil organic matter appeared to play only a minor role in the coarse‐grained forefield. We conclude that the forefield ecosystem, especially primary productivity, reacts rapidly to climate changes. The EC gained at warm periods is easily lost again in a cooling climate. Our conclusions may also be valid for other high mountain ecosystems and possibly arctic ecosystems.  相似文献   

13.
The first entirely AM/3D‐printed sodium‐ion (full‐cell) battery is reported herein, presenting a paradigm shift in the design and prototyping of energy‐storage architectures. AM/3D‐printing compatible composite materials are developed for the first time, integrating the active materials NaMnO2 and TiO2 within a porous supporting material, before being AM/3D‐printed into a proof‐of‐concept model based upon the basic geometry of commercially existing AA battery designs. The freestanding and completely AM/3D‐fabricated device demonstrates a respectable performance of 84.3 mAh g?1 with a current density of 8.43 mA g?1; note that the structure is typically comprised of 80% thermoplastic, but yet, still works and functions as an energy‐storage platform. The AM/3D‐fabricated device is critically benchmarked against a battery developed using the same active materials, but fabricated via a traditional manufacturing method utilizing an ink‐based/doctor‐bladed methodology, which is found to exhibit a specific capacity of 98.9 mAh m?2 (116.35 mAh g?1). The fabrication of fully AM/3D‐printed energy‐storage architectures compares favorably with traditional approaches, with the former providing a new direction in battery manufacturing. This work represents a paradigm shift in the technological and design considerations in battery and energy‐storage architectures.  相似文献   

14.
15.
Enantiopure L‐glyceraldehyde‐3‐phosphate (L‐GAP) is a useful building block in natural biological and synthetic processes. A biocatalytic process using glycerol kinase from Cellulomonas sp. (EC 2.7.1.30) catalyzed phosphorylation of L‐glyceraldehyde (L‐GA) by ATP is used for the synthesis of L‐GAP. L‐GAP has a half‐life of 6.86 h under reaction conditions. The activity of this enzyme depends on the Mg2+ to ATP molar ratio showing maximum activity at the optimum molar ratio of 0.7. A kinetic model is developed and validated showing a 2D correlation of 99.9% between experimental and numerical data matrices. The enzyme exhibits inhibition by ADP, AMP, methylglyoxal and Ca2+, but not by L‐GAP and inorganic orthophosphate. Moreover, equal amount of Ca2+ exerts a different degree of inhibition relative to the activity without the addition of Ca2+ depending on the Mg2+ to ATP molar ratio. If the Mg2+ to ATP molar ratio is set to be at the optimum value or less, inorganic hexametaphosphate (PPi6) suppresses the enzyme activity; otherwise PPi6 enhances the enzyme activity. Based on reaction engineering parameters such as conversion, selectivity and specific productivity, evaluation of different reactor types reveals that batchwise operation via stirred‐tank reactor is the most efficient process for the synthesis of L‐GAP.  相似文献   

16.
To replace fossil fuel and thereby mitigate climate change, harvesting of wood such as stumps for bioenergy will likely increase. Coarse deadwood is an important resource for biodiversity and stumps comprise the main part of the coarse deadwood in managed forests. We provide the first integrated analysis of the long‐term climate and biodiversity impacts of a whole landscape. We simultaneously project climate and biodiversity impacts of harvesting stumps to substitute for fossil coal, assuming scenarios with different proportions of the landscape with stump harvest (10, 50, 80%) the coming 50 years. A life cycle approach was used to calculate future global temperature changes and future metapopulation changes in six epixylic lichens. Metapopulation dynamics were projected using colonization and extinction models based on times series data. Harvesting stumps from ≥50% of the clear‐cut forest land benefits climate with a net global temperature reduction >0.5·10?9 K ha?1 after 50 years if assuming substitution of fossil coal. For all scenarios, using stump bioenergy leads to immediate (within 1 year) reductions in temperature of 50% compared to using fossil coal, increasing to 70% reduction after 50 years. However, large‐scale stump harvest inflicted substantial metapopulation declines for five of six lichens. High stump harvest levels (≥50%) put common lichens at risk of becoming red‐listed following the IUCN criteria. The net temperature reduction (cooling effect) from substituting fossil coal with stumps harvested for bioenergy increased over time, while lichen metapopulations stabilized at lower equilibria after two to three decades. This indicates that trade‐offs between climate and metapopulations of commons species are transient, where climate benefits become more prevalent in the long term. As both objectives are important for meeting (inter‐)national climate and biodiversity targets, integrated analyses such as this should be encouraged and urged to guide policymaking about large‐scale implementation of stump harvest.  相似文献   

17.
A 3D‐printing technology and printed 3D lithium‐ion batteries (3D‐printed LIBs) based on LiMn0.21Fe0.79PO4@C (LMFP) nanocrystal cathodes are developed to achieve both ultrahigh rate and high capacity. Coin cells with 3D‐printed cathodes show impressive electrochemical performance: a capacity of 108.45 mAh g?1 at 100 C and a reversible capacity of 150.21 mAh g?1 at 10 C after 1000 cycles. In combination with simulation using a pseudo 2D hidden Markov model and experimental data of 3D‐printed and traditional electrodes, for the first time deep insight into how to achieve the ultrahigh rate performance for a cathode with LMFP nanocrystals is obtained. It is estimated that the Li‐ion diffusion in LMFP nanocrystal is not the rate‐limitation step for the rate to 100 C, however, that the electrolyte diffusion factors, such as solution intrinsic diffusion coefficient, efficiency porosity, and electrode thickness, will dominate ultrahigh rate performance of the cathode. Furthermore, the calculations indicate that the above factors play important roles in the equivalent diffusion coefficient with the electrode beyond a certain thickness, which determines the whole kinetic process in LIBs. This fundamental study should provide helpful guidance for future design of LIBs with superior electrochemical performance.  相似文献   

18.
The design of an optimal process is particularly crucial when the reactants deactivate the biocatalyst. The reaction cascades of the chemo‐enzymatic epoxidation where the intermediate peroxy acid is produced by an enzyme are still limited by enzyme inhibition and deactivation by hydrogen peroxide. To avoid additional effects caused by interfaces (aq/org) and to reduce the process limiting deactivation by the substrate hydrogen peroxide, a single‐phase concept was applied in a fed‐batch and a continuous process (stirred tank), without the commonly applied addition of a carrier solvent. The synthesis of peroxyoctanoic acid catalyzed by Candida antarctica lipase B was chosen as the model reaction. Here, the feasibility of this biocatalytic reaction in a single‐phase system was shown for the first time. The work shows the economic superiority of the continuous process compared to the fed‐batch process. Employing the fed‐batch process reaction rates up to 36 mmol h?1 per gramcat, and a maximum yield of 96 % was achieved, but activity dropped quickly. In contrast, continuous operation can maintain long‐term enzyme activity. For the first time, the continuous enzymatic reaction could be performed for 55 h without any loss of activity and with a space‐time yield of 154 mmol L?1 h?1, which is three times higher than in the fed‐batch process. The higher catalytic productivity compared to the fed‐batch process (34 vs. 18 gProd g?1cat) shows the increased enzyme stability in the continuous process.  相似文献   

19.
Lithium‐oxygen batteries represent a significant scientific challenge for high‐rate and long‐term cycling using oxygen electrodes that contain efficient electrocatalysts. The mixed transition metal oxide catalysts provide the most efficient catalytic activity for partial heterogeneous surface cations with oxygen vacancies as the active phase. They include multiple oxidation states and oxygen vacancies. Here, using a combination of transmission electron microscopy, differential electrochemical mass spectrometry, X‐ray photoelectron spectroscopy, and electrochemical properties to probe the surface of the MnMoO4 nanowires, it is shown that the intrinsic MnMoO4 oxygen vacancies on the oxygen electrode are an effective strategy to achieve a high reversibility and high efficiency for lithium‐oxygen (Li‐O2) batteries. The modified MnMoO4 nanowires exhibit a highly stable capacity at a fixed capacity of 5000 mA h gsp?1 (calculated weight of Super P carbon black) during 50 cycles, a high‐rate capability at a current rate of 3000 mA gsp?1 during 70 cycles, and a long‐term reversible capacity during 188 cycles at a fixed capacity of 1000 mA h gsp?1. It is demonstrated that this strategy for creating mixed transition metal oxides (e.g., MnMoO4) may pave the way for the new structural design of electrocatalysts for Li‐O2 batteries.  相似文献   

20.
At the southern margin of permafrost in North America, climate change causes widespread permafrost thaw. In boreal lowlands, thawing forested permafrost peat plateaus (‘forest’) lead to expansion of permafrost‐free wetlands (‘wetland’). Expanding wetland area with saturated and warmer organic soils is expected to increase landscape methane (CH4) emissions. Here, we quantify the thaw‐induced increase in CH4 emissions for a boreal forest‐wetland landscape in the southern Taiga Plains, Canada, and evaluate its impact on net radiative forcing relative to potential long‐term net carbon dioxide (CO2) exchange. Using nested wetland and landscape eddy covariance net CH4 flux measurements in combination with flux footprint modeling, we find that landscape CH4 emissions increase with increasing wetland‐to‐forest ratio. Landscape CH4 emissions are most sensitive to this ratio during peak emission periods, when wetland soils are up to 10 °C warmer than forest soils. The cumulative growing season (May–October) wetland CH4 emission of ~13 g CH4 m?2 is the dominating contribution to the landscape CH4 emission of ~7 g CH4 m?2. In contrast, forest contributions to landscape CH4 emissions appear to be negligible. The rapid wetland expansion of 0.26 ± 0.05% yr?1 in this region causes an estimated growing season increase of 0.034 ± 0.007 g CH4 m?2 yr?1 in landscape CH4 emissions. A long‐term net CO2 uptake of >200 g CO2 m?2 yr?1 is required to offset the positive radiative forcing of increasing CH4 emissions until the end of the 21st century as indicated by an atmospheric CH4 and CO2 concentration model. However, long‐term apparent carbon accumulation rates in similar boreal forest‐wetland landscapes and eddy covariance landscape net CO2 flux measurements suggest a long‐term net CO2 uptake between 49 and 157 g CO2 m?2 yr?1. Thus, thaw‐induced CH4 emission increases likely exert a positive net radiative greenhouse gas forcing through the 21st century.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号