首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
To elucidate the details of pH-induced conformational transformation of ricin [I] in the region surrounding tryptophan residues, we studied parameters of fluorescence of the native toxin and its isolated A- and B-subunits at pH 4.0, 5.0 and 7.4. The studies were carried out using resolution of fluorescence spectra according to different degree of tryptophan accessibility to ionic (iodide) and non-ionic organic (acrylamide) quenchers. Application of the new method allowed to reveal three classes of tryptophan residues differing in their accessibility to quenchers alpha-residues are accessible neither to ions nor to organic molecules; beta-residues are accessible only to organic molecules; while surface gamma-residues are accessible to both types of quenchers. The fluorescence spectra were assessed for each class of tryptophan residues. The major part of them was shown to be localized in apolar rigid microenvironment. Fluorescence of ricin and especially of its isolated subunits proved to be strongly dependent on the pH value. At pH less than 5 the structure of B-chain loosens, this process being reflected by an increase in accessibility of tryptophan residues to quenchers. In acidic solution at least one out of seven tryptophan residues in the ricin molecule undergoes conformational transformation. Positive charge prevails in the regions surrounding quencher-accessible tryptophan residues. Binding of lactose leads to a slight compactization of the toxin structure that causes, in its turn, short-wave shifts of the fluorescence spectra and reduction of Stern-Volmer constants for intraglobular tryptophan residues.  相似文献   

2.
C Talussot  G Ponsin 《Biochimie》1991,73(9):1173-1178
Recent reports have shown that apolipoprotein A-I (apo A-I), the major protein of high density lipoprotein (HDL) may exist in different conformational states. We studied the effects of apolipoprotein A-II and/or cholesterol on the conformation of apo A-I in reassembled HDL. Analysis of tryptophan fluorescence quenching in the presence of iodine suggested that cholesterol increased the number of apo A-I tryptophan residues accessible to the aqueous phase, but decreased their mean degree of hydration. These observations cannot be totally explained on the basis of the effect of cholesterol on phospholipid viscosity as determined by fluorescence anisotropy of diphenyl hexatriene. We did not observe any effect of apo A-II on the conformation of apo A-I.  相似文献   

3.
Spectrofluorimetric studies on C-terminal 34 kDa fragment of caldesmon   总被引:1,自引:0,他引:1  
Analysis of the tryptophan fluorescence emission spectra of caldesmon and its 34 kDa C-terminal fragment indicates that all tryptophan residues are located on the surface of the molecule, accessible to solvent. All three tryptophan residues of the 34 kDa fragment and four of the five tryptophan residues of intact protein are accessible to free water, whereas one located in the N-terminal region of molecule is accessible only to bound water molecules. The temperature dependence of the fluorescence parameters indicates higher thermal stability of the 34 kDa fragment than the whole caldesmon molecule. The interaction of the 34 kDa fragment of caldesmon (like that of the intact molecule) with calmodulin is accompanied by a blue shift of the fluorescence emission maximum and an increase in the relative quantum yield. Computer-calculated binding constants show that the binding of calmodulin to the 34 kDa fragment (K = 2.5 x 10(5) M-1) is of two orders of magnitude weaker than that to intact caldesmon (K = 1.4 x 10(7) M-1). The interaction with tropomyosin results in a blue shift of the spectrum of the 34 kDa fragment, yet there is no effect on the spectrum of intact caldesmon. Binding constants of tropomyosin to caldesmon (K = 3.8 x 10(5) M-1) and its 34 kDa fragment (K = 2.3 x 10(5) M-1) are similar. Binding of calmodulin to caldesmon and to the 34 kDa fragment affects their interaction with tropomyosin.  相似文献   

4.
Complexes of Salmonella typhimurium lipopolysaccharide toxin (LPS) with low density lipoproteins (LDL) prepared in vitro have been analyzed. LPS-LDL complexes were found to comprise approx. 0.24 mg LPS/mg LDL protein. The major protein of complexes was apolipoprotein apoB-100 (greater than or equal to 90-95%). Incorporation of LPS molecules into LDL was accompanied by small changes in lipid composition, i.e. the phosphatidylcholine content was diminished by approx. 11% and the free fatty acid concentration was raised 2-fold. Analytical ultracentrifugation showed that insertion of LPS into LDL results in the increase of a portion of particles with higher density (lower flotation coefficient) compared to initial LDL. As was evidenced by ESR, in LPS-LDL complexes, the phospholipid hydrocarbon chains are more ordered than in LDL. 31P-NMR spectra indicated that in LPS-LDL complexes the mobility of phospholipid polar headgroups is restricted in comparison with LDL. Application of the shift reagent (Pr3+) revealed that phospholipid molecules form a monolayer structure on the surface of complexes. Upon binding of LPS to LDL, a maximum of the apoB intrinsic fluorescence was slightly red-shifted (1-2 nm) which may testify that the localization of apoB remains nearly unchanged. For LPS-LDL complexes, the accessibility of apoB fluorophores to quenchers (I-, Cs+, acrylamide) did not dramatically differ from that of LDL. It is concluded that rather large amounts of LPS (about 9-10 molecules) can accommodate in one LDL particle without severely perturbing its original composition and structure. Moreover, in the LPS-LDL complexes, oligosaccharide chains of LPS screen notably neither phospholipid polar headgroups nor, what is very important, apoB. LPS-LDL complexes are suggested to be able in vivo to bind to cellular apoB/E receptors, possible LPS receptors and scavenger-receptors of macrophages (monocytes).  相似文献   

5.
Quenching of tryptophan fluorescence of Luciola mingrelica (single tryptophan residue, Trp-419) and Photinus pyralis (two tryptophan residues, Trp-417 and Trp-426) luciferases with different quenchers (I-, Cs+, acrylamide) was studied. The conserved Trp-417(419) residue was shown to be not accessible to charged particles, and positively and negatively charged amino acid residues are located in close vicinity to it. We found previously unreported effective energy transfer from this tryptophan to luciferin during the quenching of the tryptophan fluorescence. The distance between the luciferin molecule and Trp-417(419) was calculated: 11-15 and 12-17 A for P. pyralis and L. mingrelica luciferases, respectively. The role of the conserved Trp residue in the catalysis is discussed. ATP and AMP are also quenchers of the tryptophan fluorescence of the luciferases. In this case, an allosteric mechanism of the interaction of Trp-417(419) with an excess of ATP (AMP) is proposed.  相似文献   

6.
The membrane insertion of urea-denatured colicin E1 was studied by using fluorescence spectroscopy, circular dichroism and monolayer techniques. The results showed that the denatured colicin E1 taking mainly the 'random coil' conformation may recover its orderliness to a certain extent under the induction of the phospholipid membrane and insert spontaneously into phospholipid membrane, indicating that unfolding of colicin E1 does not inhibit its membrane insertion. Among the four tryptophan residues of the membrane-bound colicin E1 molecules, at least two were accessible by the quenchers, i.e. not inserted into the membranes. Although urea-denatured colicin E1 interacted preferentially with negatively charged phospholipids, it seems less dependent on the negatively charged lipid than colicin A. The addition of urea increased the speed of the adsorption of colicin E1 to the membrane, but did not affect obviously its membrane insertion ability.  相似文献   

7.
Fluorescence of human liver alanine aminopeptidase has been attributed to tryptophan fluorescence. The fluorescence maximum is at 330 nm, 20 nm lower than that for free tryptophan, suggesting that most of the enzyme tryptophans are in a nonpolar environment and are shielded from solvent. Quenching of enzyme fluorescence by iodide, pyridine, and N-methyl nicotinamide also demonstrates that enzyme tryptophan residues are largely buried and inaccessible to solvent. Those accessible are in negatively charged environments. 8-(1'-dimethylaminonaphthalene-5'-sulfonylamido-octanoic acid (8-DNS-octanoic acid) and epsilon-DNS-L-Lys inhibit aminopeptidase. One molecule of inhibitor when bound to the enzyme quenched 57% and 63% of enzyme fluorescence, respectively. Such efficient quenching may indicate a degree of segregation of tryptophan toward the active center.  相似文献   

8.
Sardar PS  Maity SS  Das L  Ghosh S 《Biochemistry》2007,46(50):14544-14556
Tubulin, a heterodimeric (alphabeta) protein, the main constituent of microtubules, binds efficiently with colchicine (consisting of a trimethoxybenzene ring, a seven-member ring and methoxy tropone moiety) and its analogues, viz., demecolcine and AC [2-methoxy-5-(2',3',4'-trimethoxyphenyl)tropone]. Tubulin contains eight tryptophan (Trp) residues at A21, A346, A388, A407, B21, B103, B346, and B407 in the two subunits. The role of these eight Trp residues in this interaction and also their perturbation due to binding have been explored via time-resolved fluorescence at room temperature and low-temperature (77 K) phosphorescence in a suitable cryosolvent. Both the time-resolved fluorescence data and 77 K phosphorescence spectra indicate that the emitting residues move toward a more hydrophobic and less polar environment after complex formation. The environment of emitting Trps in the complex also becomes slightly more heterogeneous. Our analysis using the experimental results, the calculation of the accessible surface area (ASA) of all the Trps in the wild type and tubulin-colchicine complex [Ravelli, R. B. G., et al. (2004) Nature 428, 198-202], the distance of the Trp residues from the different moieties of the colchicine molecule, the knowledge of the nature of the immediate residues (<5 A) present near each Trp residue, and the calculation of the intramolecular Trp-Trp energy transfer efficiencies indicate that Trp A346, Trp A407, Trp B21, and Trp B407 are the major contributors to the emission in the free protein, while Trp B21 and Trp B103 are mainly responsible for the emission of the complexes. A comparative account of the photophysical aspects of the drug molecules bound to protein in aqueous buffer and in buffer containing 40% ethylene glycol has been presented. The quantum yield and average lifetime of fluorescence in tubulin and its complexes with colchicine are used to predict the possible donors and the energy transfer (ET) efficiency in the ET process from Trps to colchicine in the complex. This study is a unique attempt to identify the Trp residues contributing to the emission in the free protein and in a complex of a multi-Trp protein with a drug molecule without performing the mutation of the protein.  相似文献   

9.
Acrylamide is a fluorescence quencher frequently applied for analysis of protein fluorophores exposure with the silent assumption that it does not affect the native structure of protein. In this report, it is shown that quenching of tryptophan residues in aldolase is a time-dependent process. The Stern-Volmer constant increases from 1.32 to 2.01 M-1 during the first 100 s of incubation of aldolase with acrylamide. Two tryptophan residues/subunit are accessible to quenching after 100 s of aldolase interaction with acrylamide. Up to about 1.2 M acrylamide concentration enzyme inactivation is reversible. Independent analyses of the changes of enzyme activity, 1ANS fluorescence during its displacement from aldolase active-site, UV-difference spectra and near-UV CD spectra were carried out to monitor the transition of aldolase structure. From these measurements a stepwise transformation of aldolase molecules from native state (N) through intermediates: I1, T, I2, to denatured (D) state is concluded. The maxima of I1, T, I2 and D states populations occur at 0.2, 1.0, 2.0 and above 3.0 M of acrylamide concentration, respectively. Above 3.5 M, acrylamide aldolase molecules become irreversibly inactivated.  相似文献   

10.
Rotational freedom of the single tryptophan residue in human plasma apolipoproteins C-I (apo C-I) and C-II (apo C-II) was investigated by oxygen quenching and lifetime-resolved anisotropies. The tryptophan in both apo C-I and C-II was highly accessible to oxygen quenching. The tryptophan residue in both apo C-I and C-II and their sodium dodecyl sulfate (SDS) or dimyristoylphosphatidylcholine (DMPC) complexes displayed significant motional freedom on the nanosecond time scale. Lifetime-resolved anisotropies of tryptophan residues under conditions of oxygen quenching revealed an increase in the amplitude of the segmental motions at 40 degrees C as compared to that at 5 degrees C. It was concluded from these studies that both the apoprotein C-I and C-II are highly flexible molecules, and that the nanosecond motions of the tryptophan residue are sensitive to the fluidity of its environment in both SDS and DMPC complexes.  相似文献   

11.
The intrinsic fluorescence of the exonuclease isolated from Crotalus adamanteus venom, was studied. The position of its maximum at 335 nm and half-width of the emission band 55 nm (lambda exc. 295 nm) suggested the existence of at least two types of tryptophan residues in the enzyme molecule. Differential analysis of the fluorescence spectra obtained by excitation at 280 and 295 nm revealed about 12.5% contribution of the tyrosine fluorescence in the overall emission excited at 280 nm. The environment of the tryptophan residues in the exonuclease was studied by quenching of their fluorescence with various ionic (NO3-, NO2-, I-, Br- and Cs+) and non-ionic agents (acrylamide, chloroform-methanol). On this basis, fractions of inner (non-polar) and surface tryptophan residues located in charged and neutral regions of the enzyme molecule were evaluated. More than half of the residues (60%) was found in the inner part of the exonuclease while most of its surface tryptophans--in a neutral region(s).  相似文献   

12.
Low-density lipoprotein (LDL) oxidation is stimulated by copper. Addition of a recombinant form of apolipoprotein(a) (apo(a); the distinguishing protein component of lipoprotein(a)) containing 17 plasminogen kringle IV-like domains (17K r-apo(a)) protects LDL against oxidation by copper. Protection is specific to apo(a) and is not achieved by plasminogen or serum albumin. When Cu(2+) is added to 17K r-apo(a), its intrinsic fluorescence is quenched in a concentration-dependent and saturable manner. Quenching is unchanged whether performed aerobically or anaerobically and is reversible by ethylenediaminetetraacetate, suggesting that it is due to equilibrium binding of Cu(2+) and not to oxidative destruction of tryptophan residues. The fluorescence change exhibits a sigmoid dependence on copper concentration, and time courses of quenching are complex. At copper concentrations below 10 microM there is little quenching, whereas above 10 microM quenching proceeds immediately as a double-exponential decay. The affinity and kinetics of copper binding to 17K r-apo(a) are diminished in the presence of the lysine analogue epsilon -aminocaproic acid. We propose that copper binding to the kringle domains of 17K is mediated by a His-X-His sequence that is located about 5A from the closest tryptophan residue of the lysine binding pocket. Copper binding may account for the natural resistance to copper-mediated oxidation of lipoprotein(a) relative to LDL that has been previously reported and for the protection afforded by apo(a) from copper-mediated oxidation of LDL that we describe in the present study.  相似文献   

13.
The Myb oncoprotein specifically binds DNA by a domain composed of three imperfect repeats, R1, R2, and R3, each containing 3 tryptophans. The tryptophan fluorescence of the minimal binding domain, R2R3, of c-Myb was used to monitor structural flexibility changes occurring upon DNA binding to R2R3. The quenching of the Trp fluorescence by DNA titration shows that four out of the six tryptophans are involved in the formation of the specific R2R3-DNA complex and the environment of the tryptophan residues becomes more hydrophobic in the complex. The fluorescence intensity quenching of the tryptophans by binding of R2R3 to DNA is consistent with the decrease of the decay time: 1.46 ns for free R2R3 to 0.71 ns for the complexed protein. In the free R2R3, the six tryptophans are equally accessible to the iodide and acrylamide quenchers with a high collisional rate constant (4 x 10(9) and 3 x 10(9) M-1 s-1, respectively), indicating that R2R3 in solution is very flexible. In the R2R3-DNA complex, no Trp fluorescence quenching is observed with iodide whereas all tryptophan residues remain accessible to acrylamide with a collisional rate constant slightly slower than that in the free state. These results indicate that (i) a protein structural change occurs and (ii) the R2R3 molecule keeps a high mobility in the complex.The complex formation presents a two-step kinetics: a fast step corresponding to the R2R3-DNA association (7 x 10(5) M-1 s-1) and a slower one (0.004 s-1), which should correspond to a structural reorganization of the protein including a reordering of the water molecules at the protein-DNA interface.  相似文献   

14.
Fluorescence quenching of tryptophan residues in egg-white riboflavin-binding protein by two typical quenchers (charged iodide and uncharged acrylamide) reveals acid-induced changes of protein conformation. At neutralpH, acrylamide flow in macromolecule, (i.e., the quenching effect) is decisive; tryptophan residue accessibility for iodide is small. At lowpH, some tryptophan residues are exposed to the protein surface and become more accessible to iodide. In contrast, acrylamide is less able to permeate this conformational state of RBP. Fluorescence of tryptophan residues in riboflavin-RBP complex and chemically N-bromosucinimide-modified RBP was quenched by iodide and acrylamide.  相似文献   

15.
Fluorescence-quenching-resolved spectra of melittin in lipid bilayers   总被引:1,自引:0,他引:1  
The interaction of bee venom melittin with dimyristoylphosphatidylcholine (DMPC) unilamellar vesicles has been studied by means of fluorescence quenching of the single tryptophan residue of the protein, at lipid-to-peptide ratio, Ri = 50 and at high ionic strength (2 M NaCl). The method of fluorescence-quenching-resolved spectra (FQRS), applied in this study with potassium iodide as a quencher, enabled us to decompose the tryptophan emission spectrum of liposome-bound melittin into components, at temperatures above as well as below the main phase transition temperature (Tt) of DMPC. One of the two resolved spectra exhibits maximum at 342 and 338 nm for experiments above and below Tt, respectively, and is similar to the maximum of tryptophan emission found for tetrameric melittin in solution (340 nm). This spectrum is characterized by the Stern-Volmer quenching constant, Ksv, of about 4 M-1 and it represents the fraction of melittin molecules whose tryptophan residues are exposed to the solvent to a degree comparable with tetrameric species in solution. The other spectrum component, corresponding to the quencher-inaccessible fraction of tryptophan molecules (Ksv = 0 M-1) has its maximum blue-shifted up to 15 nm, indicating a decrease in polarity of the environment. For experiments above Tt, the blue spectrum component revealed the excitation-wavelength dependence, originating probably from the relaxation processes between the excited tryptophan molecules and lipid polar head groups. We conclude that melittin bound to DMPC liposomes exists in two lipid-associated forms; one, with tryptophan residues exposed to the solvent and the other, penetrating the membrane interior, with tryptophan residues located in close proximity to the phospholipid polar head groups of the outer vesicle lipid layer. We also discuss our data with current models of melittin-bilayer interactions.  相似文献   

16.
The fatty acid synthetase complex from the insect Ceratitis capitata forms a stable lipoprotein complex. The intrinsic fluorescence of the complex was studied by observing the emission spectra with different excitation wavelengths, both in the native complex and after temperature with sodium cholate and sodium dodecyl sulfate. The excitation spectrum of the native form also was recorded. The fluorescence behavior of the native enzyme showed two families of tryptophan residues. Cholate influenced the fluorescence, suggesting that phospholipids are the conformational support at this level. The two families of fluorescing tryptophan residues were similarly accessible to quenching by acrylamide. Thermal changes in the fluorescence characteristics were observed; warming caused a decrease in the quantum yield as well as a red shift in the emission maximum. The high fluorescence remaining after the thermal transition suggested that the lipid-protein interaction was affected but maintained shielding of the fluorophore by the lipids. Fluorescent probe molecules 1,6-diphenyl-hexa-1,3,5-triene (DPH) and dansylphosphatidylethanolamine (DPE) also were used. DPH uptake was temperature dependent, with a middle point consistent with the thermal conformation transition, indicating that internal lipids are nonrandomly distributed within the complex. DPE uptake did not reach the saturation of the complex, suggesting that its solubilization sites would be located on the lipoprotein surface.  相似文献   

17.
To study the effect of triglyceride content of low density lipoprotein (LDL) on its physicochemical and biological properties, we have depleted the triglyceride by incubation with hepatic lipase (HL-LDL) and raised the triglyceride by incubation of HL-LDL with very low density lipoprotein and lipoprotein-deficient serum. HL-LDL was taken up by human monocyte-derived macrophages and by human skin fibroblasts at an increased rate compared to untreated LDL. Incubation of the various LDL preparations revealed that cellular LDL degradation as well as LDL-mediated cholesterol esterification were inversely related to the triglyceride content of the LDL preparation. Modification of the triglyceride content of LDL also was associated with changes in the free fatty acid content, but the interaction of the LDL with cells was unaffected by the level of this component. The triglyceride content of LDL was found to be reciprocally related to the number of free lysine amino groups of LDL apolipoprotein B (apoB) which could be labeled with trinitrobenzenesulfonic acid. 13C-Nuclear magnetic resonance (NMR) spectra of native LDL and HL-LDL samples containing [13CH3]2 lysine residues formed by reductive methylation (11-13% modification) showed that the arrangement of apoB lysines is perturbed by the exposure to hepatic lipase. The ratio of labeled lysines with pK 8.9 to those with pK 10.5 exposed on the surface of LDL particles was decreased by about 40% by lipase treatment. These effects are apparently due to changes in local apoB conformation because circular dichroism spectra revealed that the average secondary structure of the entire apoB molecule is the same in native LDL and HL-LDL. The triglyceride content of LDL reciprocally affected its binding to a monoclonal antibody which recognizes epitopes around the LDL receptor binding domain of apoB. The above evidence indicates that modulation of the core triglyceride and possibly also surface phospholipid content of LDL can alter the conformation of apoB on the surface of the particle, thereby influencing the interaction with cell surface LDL receptors.  相似文献   

18.
The conformation of native pertussis toxin has been investigated by secondary structure prediction and by circular dichroism, fluorescence and second-derivative ultraviolet absorption spectroscopy. The far-ultraviolet circular dichroic spectrum is characteristic of a protein of high beta-sheet and low alpha-helix content. This is also shown by an analysis of the circular dichroic spectrum with the Contin programme which indicates that the toxin possesses 53% beta-sheet, 10% alpha-helix and 37% beta-turn/loop secondary structure. Second-derivative ultraviolet absorption spectroscopy suggests that 34 tyrosine residues are solvent-exposed and quenching of tryptophan fluorescence emission has shown that 4 tryptophan residues are accessible to iodide ions. One of these tryptophans appears to be in close proximity to a positively charged side-chain, since only 3 tryptophans are accessible to caesium ion fluorescence quenching. When excited at 280 nm, the emission spectrum contains a significant contribution from tyrosine fluorescence, which may be a consequence of the high proportion (55%) of surface-exposed tyrosines. No changes in the circular dichroic spectra of the toxin were found in the presence of the substrate NAD. However, NAD did quench both tyrosine and tryptophan fluorescence emission but did not change the shape of the emission spectrum, or the accessibility of the tryptophans to either the ionic fluorescence quenchers or the neutral quencher acrylamide.  相似文献   

19.
In an effort to identify the anticoagulant region of venom phospholipases A2, we have systematically compared the amino acid sequences of strong, weak and non-anticoagulant phospholipases. The comparison disclosed several significant substitutions in the region between residues 54 and 77 (homology numbers). This proposed anticoagulant region is positively charged in strong, but negatively charged in weak and non-anticoagulant phospholipases. The microenvironment of a tryptophan residue falls within the proposed region, accounting for the differential characteristics of intrinsic fluorescence changes observed at 335 nm after the binding of phospholipid vesicles to strong and weak anticoagulants. Four lysine residues are located in specific positions in the "anticoagulant" region of strong anticoagulants, and should form a cationic surface, based on analogy with the available crystallographic structures. The chemical modification of lysine, arginine, tyrosine, and tryptophan residues and carboxylate groups, performed by other investigators, not only provides added support for the predicted site, but also confirms the essentiality of the positive charges in the site. This region may participate in the formation of a specific preferential hydrolytic complex leading to the strong anticoagulant effect. The anticoagulant region is distinct and separate from the predicted neurotoxic and myotoxic sites, and is located on the opposite surface of the phospholipase molecule.  相似文献   

20.
The tryptophan intrinsic fluorescence of mitochondrial complex III reconstituted in phosphatidylcholine bilayers was examined at different temperatures. Absorption and emission maxima occur at 277 and 332 nm, irrespective of temperature or lipid:protein ratio even if there are indications (from fluorescence quenching) of protein conformational changes as a function of lipid:protein ratio. Low values of Trp fluorescence quantum yield in complex III (0.008-0.010) are probably due to the neighborhood of the heme groups. The temperature-dependent decrease of fluorescence intensity is nonlinear; the corresponding Arrhenius plots show "breaks" or discontinuities that could be interpreted as thermally dependent changes in protein conformation. However, no temperature-dependent changes in fluorescence quenching have been observed that may be related to protein conformational changes. In addition, Arrhenius plots of the fluorescence intensity of simple molecules, such as Trp or 1-anilino-8-naphthalene sulfonate in the presence of aqueous phospholipid dispersions, also show breaks in the same temperature range. Stern-Volmer plots of acrylamide and iodide quenching were also nonlinear, indicating large differences in quenching constants for the various tryptophanyl residues. The quenching results also suggest that, at high lipid:protein ratios, the microviscosity of the protein matrix is higher than that in lipid-poor systems. Comparison of quenching efficiencies of iodide and acrylamide suggest that no significant fraction of the fluorophores occurs in the neighborhood of charged residues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号