首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The fate of carbon in pulse-labelled crops of barley and wheat   总被引:11,自引:0,他引:11  
Wheat (cv. Gutha) and barley (cv. O'Connor) were grown as field crops on a shallow duplex soil (sand over clay) in Western Australia with their root systems contained within pvc columns. At four stages during growth, the shoots were pulse-labelled for 1.5h with14CO2; immediately prior to labelling, the soil was isolated from the shoot atmosphere by pvc sheets. After labelling, the soil atmosphere was pumped through NaOH to trap respired CO2 and after 2.5, 5, 7.5 and 24 h from the start of labelling, columns were destructively sampled to recover14C from the roots, soil and shoot.Both species showed similar patterns of14C distribution and changes in distribution through the growing season. During early tillering, 15–25% of the14C recovered after 24 h had been respired by the roots and rhizosphere, 17–27% was retained in the roots, 0.4–1.8% was recovered as water-soluble14C in the soil and the remainder (45–67%) was present in the shoot. These percentages changed during growth so that during grain filling only 2–3% of the14C recovered after 24 h was as respired CO2, 2–6% was in the roots, 0.2% was in the soil and over 90% was in the shoot.The distribution of14C in components of the soil-plant system changed during the 24 h after labelling with the most rapid changes occurring generally during the first 7.5 h after labelling.Using growth measurements from adjacent plots, the amounts of C added to the soil were estimated for the whole season. Carbon input to the soil was about 48 gC m–2 for wheat and 58 gC m–2 for barley; the crops produced total shoot dry matter of 494 (wheat) and 735 g m–2 (barley). Of the C input to the soil, 27.8% (wheat) and 40.3% (barley) was as respired C and only 3.3 (wheat) and 4.1% (barley) was collected as exudate (water-soluble material).  相似文献   

2.
Stimulated plant production and often even larger stimulation of photosynthesis at elevated CO2 raise the possibility of increased C storage in plants and soils. We analysed ecosystem C partitioning and soil C fluxes in calcareous grassland exposed to elevated CO2 for 6 years. At elevated CO2, C pools increased in plants (+23%) and surface litter (+24%), but were not altered in microbes and soil organic matter. Soils were fractionated into particle size and density separates. The amount of low-density macroorganic C, an indicator of particulate soil C inputs from root litter, was not affected by elevated CO2. Incorporation of C fixed during the experiment (Cnew) was tracked by C isotopic analysis of soil fractions which were labelled due to 13C depletion of the commercial CO2 used for atmospheric enrichment. This data constrains estimates of C sequestration (absolute upper bound) and indicates where in soils potentially sequestered C is stored. Cnew entered soils at an initial rate of 210±42 g C m–2 year–1, but only 554±39 g Cnew m–2 were recovered after 6 years due to the low mean residence time of 1.8 years. Previous process-oriented measurements did not indicate increased plant–soil C fluxes at elevated CO2 in the same system (13C kinetics in soil microbes and fine roots after pulse labelling, and minirhizotron observations). Overall experimental evidence suggests that C storage under elevated CO2 occurred only in rapidly turned-over fractions such as plants and detritus, and that potential extra soil C inputs were rapidly re-mineralised. We argue that this inference does not conflict with the observed increases in photosynthetic fixation at elevated CO2, because these are not good predictors of plant growth and soil C fluxes for allometric reasons. C sequestration in this natural system may also be lower than suggested by plant biomass responses to elevated CO2 because C storage may be limited by stabilisation of Cnew in slowly turned-over soil fractions (a prerequisite for long-term storage) rather than by the magnitude of C inputs per se.  相似文献   

3.
Plant materials labelled with 13C can be used to trace litter decomposition and root carbon flow, but only if the isotope is uniformly distributed in the plant. We postulated that if 13CO2 were applied at regular intervals, in direct proportion to the rate of photosynthesis, then the abundance of 13C would be uniform among plant parts. To test this hypothesis, wheat plants were grown in the greenhouse, and exposed weekly to 13CO2 for six hours in a closed chamber. A constant dose of 13CO2 (about 33 atom%) was injected whenever CO2 concentration fell below a prescribed limit, so that 13CO2 was added in proportion to photosynthetic rate. Wheat exposed for 13 weeks (starting 11 days after seeding) had reasonably consistent 13C abundance among plant parts: grain = 3.41, chaff = 3.41, stem = 3.65, and root = 3.50 atom%. The `leaf' fraction had slightly higher abundance (3.99 atom%), perhaps because recently-fixed 13C was not translocated from senescing tissue. Exposing plants only during early stages of the growing season increased differences among plant parts. The approach offers a practical way to label plants with 13C.  相似文献   

4.
The allocation of carbon to shoots, roots, soil and rhizosphere respiration in barrel medic (Medicago truncatulaGaertn.) before and after defoliation was determined by growing plants in pots in a labelled atmosphere in a growth cabinet. Plants were grown in a 14CO2-labelled atmosphere for 30 days, defoliated and then grown in a 13CO2-labelled atmosphere for 19 days. Allocation of 14C-labelled C to shoots, roots, soil and rhizosphere respiration was determined before defoliation and the allocation of 14C and 13C was determined for the period after defoliation. Before defoliation, 38.4% of assimilated C was allocated below ground, whereas after defoliation it was 19.9%. Over the entire length of the experiment, the proportion of net assimilated carbon allocated below ground was 30.3%. Of this, 46% was found in the roots, 22% in the soil and 32% was recovered as rhizosphere respiration. There was no net translocation of assimilate from roots to new shoot tissue after defoliation, indicating that all new shoot growth arose from above-ground stores and newly assimilated carbon. The rate of rhizosphere respiration decreased immediately after defoliation, but after 8 days, was at comparable levels to those before defoliation. It was not until 14 days after defoliation that the amount of respiration from newly assimilated C (13C) exceeded that of C assimilated before defoliation (14C). This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

5.
A GC/EIMS/SIM methodology has been developed to re-examine the path of carbon in photosynthesis. Exposing isolated spinach chloroplasts to 13CO2 on a solid support for a defined period followed by quenching and work-up provided a mixture of labelled sugar phosphates. After enzymatic dephosphorylation and derivatization, the Mox-TMS sugars were analysed using the above method. The purpose of the study was to try to calculate the atom% enrichment of 13C in as many of the individual carbons in each of the derivatized sugars as was practical using diagnostic fragment ions. In the event, only one 45 s experiment provided sufficient data to enable a range of enrichment values to be calculated. This confirmed that D-glycero-D-altro-octulose phosphate was present in the chloroplasts and was heavily labelled in the C4, C5 and C6 positions, in keeping with the hypothesis that it had an inclusive role and a labelling pattern consistent with a new modified pathway of carbon in photosynthesis.  相似文献   

6.
M. Werth  Y. Kuzyakov 《Plant and Soil》2006,284(1-2):319-333
Coupling 13C natural abundance and 14C pulse labelling enabled us to investigate the dependence of 13C fractionation on assimilate partitioning between shoots, roots, exudates, and CO2 respired by maize roots. The amount of recently assimilated C in these four pools was controlled by three levels of nutrient supply: full nutrient supply (NS), 10 times diluted nutrient supply (DNS), and deionised water (DW). After pulse labelling of maize shoots in a 14CO2 atmosphere, 14C was traced to determine the amounts of recently assimilated C in the four pools and the δ13C values of the four pools were measured. Increasing amounts of recently assimilated C in the roots (from 8% to 10% of recovered 14C in NS and DNS treatments) led to a 0.3‰ 13C enrichment from NS to DNS treatments. A further increase of C allocation in the roots (from 10% to 13% of recovered 14C in DNS and DW treatments) resulted in an additional enrichment of the roots from DNS to DW treatments by 0.3‰. These findings support the hypothesis that 13C enrichment in a pool increases with an increasing amount of C transferred into that pool. δ13C of CO2 evolved by root respiration was similar to that of the roots in DNS and DW treatments. However, if the amount of recently assimilated C in root respiration was reduced (NS treatment), the respired CO2 became 0.7‰ 13C depleted compared to roots. Increasing amounts of recently assimilated C in the CO2 from NS via DNS to DW treatments resulted in a 1.6‰ δ13C increase of root respired CO2 from NS to DW treatments. Thus, for both pools, i.e. roots and root respiration, increasing amounts of recently assimilated C in the pool led to a δ13C increase. In DW and DNS plants there was no 13C fractionation between roots and exudates. However, high nutrient supply decreased the amount of recently assimilated C in exudates compared to the other two treatments and led to a 5.3‰ 13C enrichment in exudates compared to roots. We conclude that 13C discrimination between plant pools and within processes such as exudation and root respiration is not constant but strongly depends on the amount of C in the respective pool and on partitioning of recently assimilated C between plant pools. Section Editor: H. Lambers  相似文献   

7.
Knowledge of the fate of plant assimilate is fundamental to our understanding of the terrestrial carbon cycle, particularly if we are to predict the effects of changes in climate and land management practices on agroecosystems. Pulse-labelling experiments have revealed that some of the carbon fixed by plants is rapidly allocated below-ground and released back into the atmosphere in respiration. However, little is known about the fate of plant assimilate, not accounted for in soil respiration, in the longer term and how current management practices such as liming may affect this. In southern Scotland, UK, limed and unlimed acid grassland plots were pulse-labelled with 13CO2 and the turnover of 13C was studied one and two years after labelling. In this study the amount of labelled carbon remaining in shoot, root, and bulk soil pools, and how this differed between limed and unlimed plots was investigated. The results indicated that plant-root turnover was faster, and plants invested less nitrogen in the roots in the limed plots than in the unlimed plots. More 13C remained in the soil in the unlimed treatment compared to the limed treatment, but the main difference was found in the particulate organic matter, which turned over relatively quickly. The label was still above natural abundance one and two years after labelling in many cases. In addition, the results demonstrate that a 13CO2 pulse-label administered for only a few hours can be a useful approach for investigating turnover of carbon several years later.  相似文献   

8.
9.
The allocation of carbon (C) to plant roots and conversion to soil organic matter is a major determinant of the size of the terrestrial C pool in pastoral ecosystems. The aim was to quantify C allocation to roots in contrasting pastoral ecosystems. Pastures on long-term research sites in Canterbury, New Zealand were pulse-labelled using 13CO2 within portable gas-tight enclosures. Sites included Winchmore (with or without superphosphate fertiliser, and with or without irrigation) and Tara Hills (low, medium or high grazing intensity with continuous or alternating grazing). Separate micro-plots were labelled in late spring, summer and autumn at Winchmore and in spring at Tara Hills. Herbage label 13C recoveries were greatest one hour after pulse labelling and declined by 21 days, whereas in roots they were initially lower but generally continued to increase until 21 days. The greatest recoveries of 13C in roots, one hour and 21 days after labelling, were in summer and autumn respectively. The proportion of label 13C allocated to roots by 21 days was 0.50 in the absence of superphosphate and 0.41 in the superphosphate treatment, and was 0.39, 0.43 and 0.51 respectively in spring, summer and autumn. Irrigation had no significant effect on root allocation. The low stocking rate at Tara Hills, which had the greatest herbage biomass, also had greater total 13C, tussock herbage 13C and root 13C recoveries than the higher stocking rate treatments. Inter-tussock root recovery and allocation of 13C to roots increased with increasing stocking rate, whereas tussock root allocation was greatest in the high and least in the medium stocking rate treatment. By 21 days there was a greater inter-tussock and tussock root recovery and lower inter-tussock herbage recovery in the continuous than in the alternating grazing management treatment. The root allocation was generally greater in the continuous than in alternating grazed treatments, except for tussocks one hour after labelling where the reverse was the case. In conclusion the 13C pulse labelling showed pasture plants allocate more C to roots with low soil fertility, high grazing intensity, continuous grazing, and in autumn.  相似文献   

10.
Carbon autonomy of current-year shoots in flowering, and of current-year shoots plus 1-year-old shoots (1-year-old shoot system) in fruiting of Siberian alder (Alnus hirsuta var. sibirica) was investigated using a stable isotope of carbon, 13C. The current-year shoot and 1-year-old shoot systems were fed 13CO2 and the atom% excess of 13C in flowers and fruits was determined. The majority of photosynthate allocated to flower buds was originally assimilated in the leaves of the flowering current-year shoots. Of all the current-year shoots on fruiting 1-year-old shoots, only those nearest to the fruits allocated the assimilated photosynthate to fruit maturation. These results indicate that the current-year shoots and 1-year-old shoot systems are carbon-autonomous units for producing flowers and maturing fruits, respectively.  相似文献   

11.
Roots of annual crop plants are a major sink for carbon particularly during early, vegetative growth when up to one-half of all assimilated carbon may be translocated belowground. Flowering marks a particularly important change in resource allocation, especially in determinate species, with considerably less allocation to roots and, depending on environmental conditions, there may be insufficient for maintenance. Studies with 14C indicate the rapid transfer belowground of assimilates with typically 50% translocated in young cereal plants of which 50% is respired; exudation/rhizodeposition is generally <5% of the fixed carbon. Root: total plant mass decreases through the season and is affected by soil and atmospheric conditions. Limited water availability increased the allocation of 13C to roots of wheat grown in columns so that at booting 0.38 of shoot C (ignoring shoot respiration) was belowground compared to 0.31 in well-watered plants. Elevated CO2 (700 mol CO2 mol–1 air) increased the proportion of root:total mass by 55% compared with normal concentration, while increasing the air temperature by a mean of 3 °C decreased the proportion from 0.093 in the cool treatment to 0.055 in the warm treatment.  相似文献   

12.
Willow is often used in bio-energy plantations for its potential to function as a renewable energy source, but knowledge about its effect on soil carbon dynamics is limited. Therefore, we investigated the temporal variation in carbon dynamics in willow, focusing on below-ground allocation and sequestration to soil carbon pools. Basket willow plants (Salix viminalis L.) in their second year of growth were grown in pots in a greenhouse. At five times during the plants growth, namely 0, 1, 2, 3 and 4 months after breaking winter dormancy, a subset of the plants were continuously labelled with 14CO2 in an ESPAS growth chamber for 28 days. After the labelling, the plants were harvested and separated into leaves, first and second year stems and roots. The soil was analysed for total C and 14C content as well as soil microbial biomass. Immediately after breaking dormancy, carbon stored in the first year stems was relocated to developing roots and leaves. Almost half the newly assimilated C was used for leaf development the first month of growth, dropping to below 15% in the older plants. Within the second month of growth, secondary growth of the stem became the largest carbon sink in the system, and remained so for the older age classes. Between 31 and 41% of the recovered 14C was allocated to below-ground pools. While the fraction of assimilated 14C in roots and root+soil respiration did not vary with plant age, the amount allocated to soil and soil microbial biomass increased in the older plants, indicating an increasing rhizodeposition. The total amount of soil microbial biomass was 30% larger in the oldest age class than in an unplanted control soil. The results demonstrate a close linkage between photosynthesis and below-ground carbon dynamics. Up to 13% of the microbial biomass consisted of carbon assimilated by the willows within the past 4 weeks, up to 11% of the recovered 14C was found as soil organic matter.  相似文献   

13.
Carbon dioxide is released from the soil to the atmosphere in heterotrophic respiration when the dead organic matter is used for substrates for soil micro-organisms and soil animals. Respiration of roots and mycorrhiza is another major source of carbon dioxide in soil CO2 efflux. The partitioning of these two fluxes is essential for understanding the carbon balance of forest ecosystems and for modelling the carbon cycle within these ecosystems. In this study, we determined the carbon balance of three common tree species in boreal forest zone, Scots pine, Norway spruce, and Silver birch with gas exchange measurements conducted in laboratory in controlled temperature and light conditions. We also studied the allocation pattern of assimilated carbon with 14C pulse labelling experiment. The photosynthetic light responses of the tree species were substantially different. The maximum photosynthetic capacity (P max) was 2.21 μg CO2 s−1 g−1 in Scots pine, 1.22 μg CO2 s−1 g−1 in Norway spruce and 3.01 μg CO2 s−1 g−1 in Silver birch seedlings. According to the pulse labelling experiments, 43–75% of the assimilated carbon remained in the aboveground parts of the seedlings. The amount of carbon allocated to root and rhizosphere respiration was about 9–26%, and the amount of carbon allocated to root and ectomycorrhizal biomass about 13–21% of the total assimilated CO2. The 14CO2 pulse reached the root system within few hours after the labelling and most of the pulse had passed the root system after 48 h. The transport rate of carbon from shoot to roots was fastest in Silver birch seedlings.  相似文献   

14.
Photosynthesis controls of CO2 efflux from maize rhizosphere   总被引:4,自引:0,他引:4  
The effects of different shading periods of maize plants on rhizosphere respiration and soil organic matter decomposition were investigated by using a 13C natural abundance and 14C pulse labeling simultaneously. 13C was a tracer for total C assimilated by maize during the whole growth period, and 14C was a tracer for recently assimilated C. CO2 efflux from bare soil was 4 times less than the total CO2 efflux from planted soil under normal lighting. Comparing to the normal lighting control (12/12 h day/night), eight days with reduced photosynthesis (12/36 h day/night period) and strongly reduced photosynthesis (12/84 h day/night period) resulted in 39% and 68% decrease of the total CO2 efflux from soil, respectively. The analysis of 13C natural abundance showed that root-derived CO2 efflux accounted for 82%, 68% and 56% of total CO2 efflux from the planted soil with normal, prolonged and strongly prolonged night periods, respectively. Clear diurnal dynamics of the total CO2 efflux from soil with normal day-night period as well as its strong reduction by prolonged night period indicated tight coupling with plant photosynthetic activity. The light-on events after prolonged dark periods led to increases of root-derived and therefore of total CO2 efflux from soil. Any factor affecting photosynthesis, or substrate supply to roots and rhizosphere microorganisms, is an important determinant of root-derived CO2 efflux, and thereby, total CO2 efflux from soils. 14C labeling of plants before the first light treatment did not show any significant differences in the 14CO2 respired in the rhizosphere between different dark periods because the assimilate level in the plants was high. Second labeling, conducted after prolonged night phases, showed higher contribution of recently assimilated C (14C) to the root-derived CO2 efflux by shaded plants. Results from 13C natural abundance showed that the cultivation of maize on Chromic Luvisol decreased soil organic matter (SOM) mineralization compared to unplanted soil (negative priming effect). A more important finding is the observed tight coupling of the negative rhizosphere effect on SOM decomposition with photosynthesis.  相似文献   

15.
Summary Artemisia tridentata seedlings were grown under carbon dioxide concentrations of 350 and 650 l l–1 and two levels of soil nutrition. In the high nutrient treatment, increasing CO2 led to a doubling of shoot mass, whereas nutrient limitation completely constrained the response to elevated CO2. Root biomass was unaffected by any treatment. Plant root/shoot ratios declined under carbon dioxide enrichment but increased under low nutrient availability, thus the ratio was apparently controlled by changes in carbon allocation to shoot mass alone. Growth under CO2 enrichment increased the starch concentrations of leaves grown under both nutrient regimes, while increased CO2 and low nutrient availability acted in concert to reduce leaf nitrogen concentration and water content. Carbon dioxide enrichment and soil nutrient limitation both acted to increase the balance of leaf storage carbohydrate versus nitrogen (C/N). The two treatment effects were significantly interactive in that nutrient limitation slightly reduced the C/N balance among the high-CO2 plants. Leaf volatile terpene concentration increased only in the nutrient limited plants and did not follow the overall increase in leaf C/N ratio. Grasshopper consumption was significantly greater on host leaves grown under CO2 enrichment but was reduced on leaves grown under low nutrient availability. An overall negative relationship of consumption versus leaf volatile concentration suggests that terpenes may have been one of several important leaf characteristics limiting consumption of the low nutrient hosts. Digestibility of host leaves grown under the high CO2 treatment was significantly increased and was related to high leaf starch content. Grasshopper growth efficiency (ECI) was significantly reduced by the nutrient limitation treatment but co-varied with leaf water content.  相似文献   

16.
During and immediately after labelling of soybeans (Glycine max. L.) in the field by exposure to14CO2, its respiratory deposit into the soil atmosphere, and its liberation from the soil were used in conjunction with estimates of below-ground plant biomass to apportion total soil respiration. Root respiration of soybean plants at stage V6 was estimated at 4 mg CO2.(g root)–1.h–1. Soil biota, during the same time, contributed 35% of total soil respiration.Contribution from the Missouri Agricultural Experiment Station. Journal Series Number 10700. Funded in part by USDA Grant SE 83-CRSR-2-2309.  相似文献   

17.
The mechanisms behind the 13C enrichment of organic matter with increasing soil depth in forests are unclear. To determine if 13C discrimination during respiration could contribute to this pattern, we compared δ13C signatures of respired CO2 from sieved mineral soil, litter layer and litterfall with measurements of δ13C and δ15N of mineral soil, litter layer, litterfall, roots and fungal mycelia sampled from a 68-year-old Norway spruce forest stand planted on previously cultivated land. Because the land was subjected to ploughing before establishment of the forest stand, shifts in δ13C in the top 20 cm reflect processes that have been active since the beginning of the reforestation process. As 13C-depleted organic matter accumulated in the upper soil, a 1.0‰ δ13C gradient from −28.5‰ in the litter layer to −27.6‰ at a depth of 2–6 cm was formed. This can be explained by the 1‰ drop in δ13C of atmospheric CO2 since the beginning of reforestation together with the mixing of new C (forest) and old C (farmland). However, the isotopic change of the atmospheric CO2 explains only a portion of the additional 1.0‰ increase in δ13C below a depth of 20 cm. The δ13C of the respired CO2 was similar to that of the organic matter in the upper soil layers but became increasingly 13C enriched with depth, up to 2.5‰ relative to the organic matter. We hypothesise that this 13C enrichment of the CO2 as well as the residual increase in δ13C of the organic matter below a soil depth of 20 cm results from the increased contribution of 13C-enriched microbially derived C with depth. Our results suggest that 13C discrimination during microbial respiration does not contribute to the 13C enrichment of organic matter in soils. We therefore recommend that these results should be taken into consideration when natural variations in δ13C of respired CO2 are used to separate different components of soil respiration or ecosystem respiration.  相似文献   

18.
Kuzyakov  Y.  Domanski  G. 《Plant and Soil》2002,239(1):87-102
A model for rhizodeposition and root respiration was developed and parameterised based on 14C pulse labelling of Lolium perenne. The plants were grown in a two-compartment chamber on a loamy Haplic Luvisol under controlled laboratory conditions. The dynamics of 14CO2 efflux from the soil and 14C content in shoots, roots, micro-organisms, dissolved organic carbon (DOC) and soil were measured during the first 11 days after labelling. Modelled parameters were estimated by fitting on measured 14C dynamics in the different pools. The model and the measured 14C dynamics in all pools corresponded well (r 2=0.977). The model describes well 14CO2 efflux from the soil and 14C dynamics in shoots, roots and soil, but predicts unsatisfactorily the 14C content in micro-organisms and DOC. The model also allows for division of the total 14CO2 efflux from the soil in 14CO2 derived from root respiration and 14CO2 derived from rhizomicrobial respiration by use of exudates and root residues. Root respiration and rhizomicrobial respiration amounted for 7.6% and 6.0% of total assimilated C, respectively, which accounts for 56% and 44% of root-derived 14CO2 efflux from the soil planted with 43-day-old Lolium perenne, respectively. The sensitivity analysis has shown that root respiration rate affected the curve of 14CO2 efflux from the soil mainly during the first day after labelling. The changes in the exudation rate influenced the 14CO2 efflux later than first 24 h after labelling.  相似文献   

19.
Biomass allocation is an important plant trait that responds plastically to environmental heterogeneities. However, the effects on this trait of pollutants owing to human activities remain largely unknown. In this study, we investigated the response of biomass allocation of Phragmites australis to petroleum pollution by a 13CO2 pulse-labelling technique. Our data show that plant biomass significantly decreased under petroleum pollution, but the root–shoot ratio for both plant biomass and 13C increased with increasing petroleum concentration, suggesting that plants could increase biomass allocation to roots in petroleum-polluted soil. Furthermore, assimilated 13C was found to be significantly higher in soil, microbial biomass and soil respiration after soils were polluted by petroleum. These results suggested that the carbon released from roots is rapidly turned over by soil microbes under petroleum pollution. This study found that plants can modulate biomass allocation in response to petroleum pollution.  相似文献   

20.
Rhizodeposition, i.e. the release of carbon into the soil by growing roots, is an important part of the terrestrial carbon cycle. However thein situ nature and dynamics of root-derived carbon in the soil are still poorly understood. Here we made an investigation of the latter in laboratory experiments using13CO2 pulse chase labelling of wheat (Triticum aestivum L.). We analyzed the kinetics of13C-labelled carbon and more specially13C carbohydrates in the rhizosphere. Wheat seedlings-soil mesocosms were exposed to13CO2 for 5 hours in controlled chambers and sampled repeatedly during two weeks for13C/C analysis of organic carbon. After a two-step separation of the soil from the roots, the amount of total organic13C was determined by isotope ratio mass spectrometry as well as the amounts of13C in arabinose, fructose, fucose, glucose, galactose, mannose, rhamnose and xylose. The amount and isotopic ratio of monosaccharides were obtained by capillary gas chromatography coupled with isotope ratio mass spectrometry (GC/C/IRMS) after trimethyl-silyl derivatization. Two fractions were analyzed : total (hydrolysable) and soluble monomeric (water extractable) soil sugars. The amount of organic13C found in the soil, expressed as a percentage of the total photosynthetically fixed13C at the end of the labelling period, reached 16% in the day following labelling and stabilised at 9% after one week. We concluded that glucose under the form of polymers was the dominant moietie of rhizodeposits. Soluble glucose and fructose were also present. But after 2 days, these soluble sugars had disappeared. Forty percent of the root-derived carbon was in the form of neutral sugars, and exhibited a time-increasing signature of microbial sugars. The composition of rhizospheric sugars rapidly tended towards that of bulk soil organic matter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号