首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This is a study of the effects of monocular deprivation, reverse suturing (opening the deprived eye with closure of the other) and reopening of the deprived eye alone (without closing the other) on the physiological organization of the primary visual cortex in monkeys (Erythrocebus patas). All animals were initially monocularly deprived by suture of the lids of the right eye from soon after birth until about 4 weeks of age (24-29 days). In a monocularly deprived animal, recordings were taken from area 17 at 24 days. Already most neurons recorded outside layer IVc, were strongly or completely dominated by functional input from the left eye. The Non-oriented cells of layer IVc, where the bulk of the afferent input terminates, were also mainly dominated by the left eye. Although segregation of input from the two eyes was not complete, large areas of layer IVc were already monocularly dominated by the left eye. Four animals were reverse-sutured at about 4 weeks and recorded 3, 6, 15 and 126 days later. In each animal the pattern of ocular dominance was fairly similar within and outside layer IVc. Even with only 3 days of forced usage of the initially deprived right eye, about half of all cells recorded had become dominated by it, and the process of "recapture' of cortical cells by the initially deprived eye was apparently complete within 15 days. In layer IVc, the recovery took the form of an expansion of zones dominated by the deprived eye, as if the originally shrunken stripes of afferent termination had become enlarged. Binocularly driven neurons were rare at all stages, in all layers, but when present and orientation-selective, they had similar preferred orientations in the two eyes. Likewise the "columnar' sequences of preferred orientation continued without obvious disruption on shifting from regions dominated by one eye to those dominated by the other. Simply reopening the deprived eye at about 4 weeks, for 15 to 96 days caused no detectable change in the overall ocular dominance of cortical cells and, on average, no expansion of right-eye dominance columns in layer IVc. Therefore the recovery seen after reverse suturing depends not just on the restoration of normal activity to axons carrying information from the right eye, but on the establishment of a competitive advantage, through the right eye being made more active than the left.  相似文献   

2.
Brightness contrast effects shown by single cells in the macaque's lateral geniculate nucleus were studied with black and white lines of various widths, consisting of either: (1) "simultaneous contrast" stimuli in which the line was produced by luminance changes in the flanking areas or (2) "successive contrast" stimuli in which the line itself changed in luminance. Line widths that gave optimal responses and response magnitudes themselves were similar for the two types of stimulus, except for the widest lines used (2 degrees). Thus, simultaneous brightness contrast is a primary determinant of the response of primate LGN cells but only within 2 degrees of the center of the receptive field. Neural processing up to this level cannot therefore explain the long distance effects of simultaneous brightness contrast in human perception.  相似文献   

3.
Summary The synaptic organization in the lateral geniculate nucleus of the monkey has been studied by electron microscopy.The axon terminals in the lateral geniculate nucleus can be identified by the synaptic vesicles that they contain and by the specialized contacts that they make with adjacent neural processes. Two types of axon terminal have been recognized. The first type is relatively large (from 3–20 ) and contains relatively pale mitochondria, a great many vesicles and, in normal material, a small bundle of neurofilaments. These terminals have been called LP terminals. The second type is smaller (1–3 ), contains darker mitochondria, synaptic vesicles, and no neurofilaments. These have been called SD terminals.Both types of terminal make specialized axo-somatic and axo-dendritic synaptic contacts, but the axo-somatic contacts are relatively rare. In addition the LP terminals frequently make specialized contacts with the SD terminals, that is, axo-axonal contacts, and at these contacts the asymmetry of the membranes is such that the LP terminal must be regarded as pre-synaptic to the SD terminal.The majority of the synaptic contacts are identical to those that have been described previously (Gray, 1959 and 1963a) but, in addition, a new type of contact has been found. This is characterized by neurofilaments that lie close to the post-synaptic membrane, and by an irregular post-synaptic thickening. Such filamentous contacts have been found only where an LP terminal contacts a dendrite or a soma.The degeneration that follows removal of one eye demonstrates that the LP terminals are terminals of optic nerve fibres. The origin of the SD terminals is not known.The glial cells often form thin lamellae around the neural processes and tend to isolate synaptic complexes. These lamellae occasionally show a complex concentric organization similar to that of myelin.It is a pleasure to thank Prof. J. Z. Young for advice and encouragement and Dr. E. G. Gray for the considerable help he has given us. Dr. J. L. de C. Downer gave us much help with the care of the animals and with the operations. We also wish to thank Mr. K. Watkins for technical assistance and Mr. S. Waterman for the photography.  相似文献   

4.
Summary Synaptic junctions are found in all parts of the nucleus, being almost as densely distributed between cell laminae as within these laminae.In addition to the six classical cell laminae, two thin intercalated laminae have been found which lie on each side of lamina 1. These laminae contain small neurons embedded in a zone of small neural processes and many axo-axonal synapses occur there.Three types of axon form synapses in all cell laminae and have been called RLP, RSD and F axons. RLP axons have large terminals which contain loosely packed round synaptic vesicles, RSD axons have small terminals which contain closely packed round vesicles and F axons have terminals intermediate in size containing many flattened vesicles.RLP axons are identified as retinogeniculate fibers. Their terminals are confined to the cell laminae, where they form filamentous contacts upon large dendrites and asymmetrical regular synaptic contacts (with a thin postsynaptic opacity) upon large dendrites and F axons. RSD axons terminate within the cellular laminae and also between them. They form asymmetrical regular synaptic contacts on small dendrites and on F axons. F axons, which also occur throughout the nucleus, form symmetrical regular contacts upon all portions of the geniculate neurons and with other F axons. At axo-axonal junctions the F axon is always postsynaptic.Supported by Grant R 01 NB 06662 from the USPHS and by funds of the Neurological Sciences Group of the Medical Research Council of Canada. Most of the observations were made while R. W. Guillery was a visiting professor in the Department of Physiology at the University of Montreal. We thank the Department of Physiology for their support and Mr. K. Watkins, Mrs. E. Langer and Mrs. B. Yelk for their skillful technical assistance.  相似文献   

5.
In mammals, visual experience during early postnatal life is critical for normal development of the visual system. Here we report that monocular deprivation for 2, 7, and 14 consecutive days causes p53 accumulation, cell death, and progressive loss of neurones in the dorsal lateral geniculate nucleus (dLGN) of newborn rats and these are prevented by NMDA and non-NMDA glutamate receptor antagonists, and by L-NAME, an inhibitor of nitric oxide synthesis. Monocular deprivation also increases dLGN levels of citrulline, the coproduct of nitric oxide synthesis, and this, as well as cell death and neuronal loss, is abolished by antagonists of glutamate receptors and by L-NAME. Finally, poly-(ADP-ribose) polymerase (PARP) knock-out mice appear to be protected from monocular deprivation-induced cell death. In conclusion, during early postnatal development of the rat visual system monocular deprivation causes excitotoxic, nitric oxide-mediated, cell death in the dLGN that appears to be apoptotic and also requires activation of PARP.  相似文献   

6.
In recent years, recording neuronal activity in the awake, behaving primate brain has become established as one of the major tools available to study the neuronal specificity of the initiation and control of various behaviors. Primates have traditionally been used in these studies because of their ability to perform more complex behaviors closely akin to those of humans, a desirable prerequisite since our ultimate aim is to elucidate the neuronal correlates of human behaviors. A wealth of knowledge has accumulated on the sensory and motor systems such as vision, audition, and eye movements. For more demanding behaviors where the main focus has been on attention, recordings in awake primates have begun to yield valuable data on the centers of the brain that are reactive to different attributes of this behavior. As a result, various hypotheses of the origin and distribution of attentional effects have evolved. For instance, visual attentional effects have been described not only in the higher cortical area (V4) but also in areas earlier in the visual pathway which presumably involve a feedback mechanism in the latter region. Here we outline the ways in which we have successfully used these methods to make single-cell recordings in awake macaques to show how certain behavioral paradigms affect neurons of the thalamus (with emphasis on the lateral geniculate nucleus). As we have done with established techniques these methods can be readily adapted to incorporate most behaviors needed to be tested and allow recordings to be made in virtually any part of the brain.  相似文献   

7.
8.
9.
Alitto HJ  Usrey WM 《Neuron》2008,57(1):135-146
In addition to the classical, center/surround receptive field of neurons in the lateral geniculate nucleus (LGN), there is an extraclassical, nonlinear surround that can strongly suppress LGN responses. This form of suppression likely plays an important role in adjusting the gain of LGN responses to visual stimuli. We performed experiments in alert and anesthetized macaque monkies to quantify extraclassical suppression in the LGN and determine the roles of feedforward and feedback pathways in the generation of LGN suppression. Results show that suppression is significantly stronger among magnocellular neurons than parvocellular neurons and that suppression arises too quickly for involvement from cortical feedback. Furthermore, the amount of suppression supplied by the retina is not significantly different from that in the LGN. These results indicate that extraclassical suppression in the macaque LGN relies on feedforward mechanisms and suggest that suppression in the cortex likely includes a component established in the retina.  相似文献   

10.
11.
12.
Summary Nerve cell types of the lateral geniculate body of man were investigated with the use of a transparent Golgi technique that allows study of not only the cell processes but also the pigment deposits. Three types of neurons have been distinguished:Type-I neurons are medium-to large-sized multipolar nerve cells with radiating dendrites. Dendritic excrescences can often be encountered close to the main branching points. Type-I neurons comprise a variety of forms and have a wide range of dendritic features. Since all intermediate forms can be encountered as well, it appears inadequate to subdivide this neuronal type. One pole of the cell body contains numerous large vacuolated lipofuscin granules, which stain weakly with aldehyde fuchsin.Type-II and type-III neurons are small cells with few, sparsely branching and extended dendrites devoid of spines. In Golgi preparations they cannot be distinguished from each other. Pigment preparations reveal that the majority of these cells contains small and intensely stained lipofuscin granules within their cell bodies (type II), whereas a small number of them remains devoid of any pigment (type III). Intermediate forms do not occur.  相似文献   

13.
14.
15.
 Variability is usually considered an unwanted component in a sensory signal, yet the visual system does not seem to filter out the noise. On the contrary, noise is ‘tailored’ to scale with the signal size. We show that this tailoring occurs in the lateral geniculate nucleus, preferentially in X-cells, which are the cells most likely to transmit pattern information. Tailoring the variability to the signal size may be the visual system’s way of providing the right amount of variability for a signal of any magnitude at all times during the computation. Received: 13 November 1995/Accepted in revised form: 20 May 1996  相似文献   

16.
Moore BD  Kiley CW  Sun C  Usrey WM 《Neuron》2011,71(5):812-819
Compared to the developing visual system, where neuronal plasticity has been well characterized at multiple levels, little is known about plasticity in the adult, particularly within subcortical structures. We made intraocular injections of 2-amino-4-phosphonobutyric acid (APB) in adult cats to block visual responses in On-center retinal ganglion cells and examined the consequences on visual responses in the lateral geniculate nucleus (LGN) of the thalamus. In contrast to current views of retinogeniculate organization, which hold that On-center LGN neurons should become silent with APB, we find that ~50% of On-center neurons rapidly develop Off-center responses. The time course of these emergent responses and the actions of APB in the retina indicate the plasticity occurs within the LGN. These results suggest there is greater divergence of retinogeniculate connections than previously recognized and that functionally silent, nonspecific retinal inputs can serve as a substrate for rapid plasticity in the adult.  相似文献   

17.
18.
The beta sector of the rabbit's dorsal lateral geniculate nucleus is a small region of nerve cells scattered among the fibres of the geniculocortical pathway. In its topographical relations it resembles the perigeniculate nucleus of carnivores, which contains neurons driven by geniculate and visual cortical neurons and which sends inhibitory fibres back into the geniculate relay. We have traced retinogeniculate, geniculocortical and corticogeniculate pathways in rabbits by using horseradish peroxidase or radioactively labelled proline and have found that the beta sector resembles the perigeniculate nucleus in receiving no direct retinal afferents, sending no efferents to the visual cortex (V-I), and receiving afferents from the visual cortex. The corticogeniculate afferents are organized so that the visual field map in the beta sector and the main part of the lateral geniculate relays are aligned, as are the maps in the cat's perigeniculate nucleus and the main part of the geniculate relay of carnivores. Electron microscopical studies show similar types of axon terminals in the rabbit and the cat for the main part of the geniculate relay on the one hand and for the beta sector and the perigeniculate nucleus on the other. Earlier observations that the proportion of putative inhibitory terminals (F-type terminals) is lower in the rabbit's than the cat's geniculate region are confirmed. A major difference between the beta sector and the perigeniculate nucleus has been revealed by immunohistochemical staining for GABA. Whereas almost all of the cat's perigeniculate cells appear to be GABAergic, the proportion in the beta sector is much lower, and not significantly different from that found in the main part of the rabbit's geniculate relay. It is concluded that the beta sector shares many of the organizational features of the perigeniculate nucleus. A common developmental origin seems probable, but the functional differences remain to be explored.  相似文献   

19.
Reppas JB  Usrey WM  Reid RC 《Neuron》2002,35(5):961-974
We studied the effects of saccadic eye movements on visual signaling in the primate lateral geniculate nucleus (LGN), the earliest stage of central visual processing. Visual responses were probed with spatially uniform flickering stimuli, so that retinal processing was uninfluenced by eye movements. Nonetheless, saccades had diverse effects, altering not only response strength but also the temporal and chromatic properties of the receptive field. Of these changes, the most prominent was a biphasic modulation of response strength, weak suppression followed by strong enhancement. Saccadic modulation was widespread, and affected both of the major processing streams in the LGN. Our results demonstrate that during natural viewing, thalamic response properties can vary dramatically, even over the course of a single fixation.  相似文献   

20.
GABAergic interneurons (INs) in the dorsal lateral geniculate nucleus (dLGN) shape the information flow from retina to cortex, presumably by controlling the number of visually evoked spikes in geniculate thalamocortical (TC) neurons, and refining their receptive field. The INs exhibit a rich variety of firing patterns: Depolarizing current injections to the soma may induce tonic firing, periodic bursting or an initial burst followed by tonic spiking, sometimes with prominent spike-time adaptation. When released from hyperpolarization, some INs elicit rebound bursts, while others return more passively to the resting potential. A full mechanistic understanding that explains the function of the dLGN on the basis of neuronal morphology, physiology and circuitry is currently lacking. One way to approach such an understanding is by developing a detailed mathematical model of the involved cells and their interactions. Limitations of the previous models for the INs of the dLGN region prevent an accurate representation of the conceptual framework needed to understand the computational properties of this region. We here present a detailed compartmental model of INs using, for the first time, a morphological reconstruction and a set of active dendritic conductances constrained by experimental somatic recordings from INs under several different current-clamp conditions. The model makes a number of experimentally testable predictions about the role of specific mechanisms for the firing properties observed in these neurons. In addition to accounting for the significant features of all experimental traces, it quantitatively reproduces the experimental recordings of the action-potential- firing frequency as a function of injected current. We show how and why relative differences in conductance values, rather than differences in ion channel composition, could account for the distinct differences between the responses observed in two different neurons, suggesting that INs may be individually tuned to optimize network operation under different input conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号