首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sulfate assimilation and glutathione synthesis were traditionally believed to be differentially compartmentalised in C4 plants with the synthesis of cysteine and glutathione restricted to bundle sheath and mesophyll cells, respectively. Recent studies, however, showed that although ATP sulfurylase and adenosine 5′ phosphosulfate reductase, the key enzymes of sulfate assimilation, are localised exclusively in bundle sheath in maize and other C4 monocot species, this is not true for the dicot C4 species of Flaveria. On the other hand, enzymes of glutathione biosynthesis were demonstrated to be active in both types of maize cells. Therefore, in this review the recent findings on compartmentation of sulfate assimilation and glutathione metabolism in C4 plants will be summarised and the consequences for our understanding of sulfate metabolism and C4 photosynthesis will be discussed.  相似文献   

2.
In C3 plants, part of the CO2 fixed during photosynthesis in chloroplasts is released from mitochondria during photorespiration by decarboxylation of glycine via glycine decarboxylase (GDC), thereby reducing photosynthetic efficiency. The apparent positioning of most mitochondria in the interior (vacuole side of chloroplasts) of mesophyll cells in C3 grasses would increase the efficiency of refixation of CO2 released from mitochondria by ribulose 1,5-bisphosphate carboxylase/?oxygenase (Rubisco) in chloroplasts. Therefore, in mesophyll cells of C4 grasses, which lack both GDC and Rubisco, the mitochondria ought not to be positioned the same way as in C3 mesophyll cells. To test this hypothesis, we investigated the intracellular position of mitochondria in mesophyll cells of 14 C4 grasses of different C4 subtypes and subfamilies (Chloridoideae, Micrairoideae, and Panicoideae) and a C3–C4 intermediate grass, Steinchisma hians, under an electron microscope. In C4 mesophyll cells, most mitochondria were positioned adjacent to the cell wall, which clearly differs from the positioning in C3 mesophyll cells. In S. hians mesophyll cells, the positioning was similar to that in C3 cells. These results suggest that the mitochondrial positioning in C4 mesophyll cells reflects the absence of both GDC and Rubisco in the mesophyll cells and the high activity of phosphoenolpyruvate carboxylase. In contrast, the relationship between the mitochondrial positioning and enzyme distribution in S. hians is complex, but the positioning may be related to the capture of respiratory CO2 by Rubisco. Our study provides new possible insight into the physiological role of mitochondrial positioning in photosynthetic cells.  相似文献   

3.
C4 photosynthesis is the carbon fixation pathway in specific plant species, so called C4 plants including maize, sorghum and sugarcane. It is characterized by the carboxylation reaction that forms four-carbon (C4) molecules, which are then used to transport CO2 to the proximity of RubisCO in the bundle sheath cells. Since C4 photosynthesis confers high photosynthetic as well as water and nitrogen use efficiency on plants, worldwide efforts have been made to understand the mechanisms of C4 photosynthesis and to properly introduce the pathway into C3 crops. Metabolic flux analysis (MFA) is a research field trying to analyze the metabolic pathway structure and activity (i.e., flux) in vivo. Constraint-based reconstruction and analysis tools theoretically study the distribution of metabolic flux in genome-scale network-based models. Different types of MFA and model-based analyses have been contributing to the discovery of C4 photosynthetic pathways and to analyze its operation in C4 plant species. This article reviews the studies to dissect the operation of C4 photosynthesis and adjacent pathways, from the pioneer studies using radioisotope-based MFA to the recent stable isotope-based MFA and the model-based approaches. These studies indicate complex interconnections among metabolic pathways and the importance of the integration of experimental and theoretical approaches. Perspectives on the integrative approach and major obstacles are also discussed.  相似文献   

4.
C4 plants can efficiently accumulate CO2 in leaves and thus reduce wasteful oxygen fixation by the RuBisCO enzyme. Three C4 enzymes, namely carbonic anhydrase (CA), phosphoenol pyruvate (PEPC) and pyruvate orthophosphate dikinase (PPDK), were over expressed in Oryza sativa L. ssp. indica var. Khitish under the control of green tissue specific promoters PD54o, PEPC and PPDK, respectively. Integration of these genes was confirmed by Southern hybridization. The relative expression of PEPC, CA and PPDK were, respectively, 6.75, 6.57 and 3.6-fold higher in transgenic plants compared to wild type plants (control). Photosynthetic efficiency of the transgenic plants increased significantly along with a 12?% increase in grain yield compared to wild type plants. Compared to control plants, transgenic plants also showed phenotypic changes such as increased leaf blade size, root biomass, and plant height and anatomical changes such as greater leaf vein number, bundle sheath cells, and bulliform cells. Our findings indicate that the combined over expression of these three enzymes is an efficient strategy for incorporating beneficial physiological and anatomical features that will enable subsequent yield enhancement in C3 rice plants.  相似文献   

5.
The complete set of 86 isolated-pentagon-rule (IPR) isomers of C92 has been described by the SAM1 quantum-chemical method, and their energetics checked by density functional theory at the B3LYP/6-31G* level. Although the lowest-energy cage is not identical in both approaches, it still exhibits D 2 symmetry in both cases. As energetics themselves cannot produce reliable relative stabilities at high temperatures, entropy terms are also computed and the relative-stability problem is treated entirely in terms of the Gibbs function. The lowest-energy structure is not the most populated isomer at higher temperatures – it is replaced by a D 3 structure. Further stability interchanges are possible at very high temperatures, when C 3 and C 1 structures are also important. There is a partial agreement of the computations with available observed data.  相似文献   

6.
The natural occurrence and altitudinal pattern of species with C4 photosynthesis were investigated on Qinghai Plateau, Qinghai province by using stable carbon isotopes in plant leaves and using additional data from references. A total of 58 species belonging to 10 families and 34 genera were identified using C4 photosynthetic pathway, which is only 1.66 % of total 3 500 plant species in Qinghai province. The leading two families, i.e. Gramineae (23 species) and Chenopodiaceae (22 species) contain 77.6 % of all C4 plants in the studied area. The number of C4 species increased from 1 600 to 2 400 m a.s.l. and then decreases quickly till 4 400 m a.s.l. with one half of C4 species distributing from 2 200 to 2 800 m a.s.l. (48 %). Eight plant species were found above 4 000 m a.s.l., but the distribution of these species is limited to the south of Qinghai province (low latitude area) where annual mean temperature is above 0 °C, suggesting that low temperature may generally limit the distribution of C4 plants.  相似文献   

7.
The Na+/H+ antiporters play an important role in salt tolerance in plants. However, the functions of OsNHXs in rice except OsNHX1 have not been well studied. Using the gain- and loss-of-function strategies, we studied the potential role of OsNHX2 in salt tolerance in rice. Overexpression of OsNHX2 (OsNHX2-OE) in rice showed the significant tolerance to salt stress than wild-type plants and OsNHX2 knockdown transgenic plants (OsNHX2-KD). Under salt treatments of 300-mM NaCl for 5 days, the plant fresh weights, relative water percentages, shoot heights, Na+ contents, K+ contents, and K+/Na+ ratios in leaves of OsNHX2-OE transgenic plants were higher than those in wild-type plants, while no differences were detected in roots. K+/Na+ ratios in rice leaf mesophyll cells and bundle sheath cells were higher in OsNHX2-OE transgenic plants than in wild-type plants and OsNHX2-KD transgenic plants. Our data indicate that OsNHX2 plays an important role in salt stress based on leaf mesophyll cells and bundle sheath cells and can be served in genetically engineering crop plants with enhanced salt tolerance.  相似文献   

8.
Separation of mesophyll and bundle sheath cells (MC and BSC) from the leaves of green amaranth (Amaranthus retroflexus L.) showed that glycolate oxidase (GO, EC 1.1.3.35) is located predominately in BSC (on the average, 84.5% of the total activity). Three peaks of GO activity were detected following the elution from a DEAE-fractogel column. The first peak corresponded to the isoform located in BSC, the second peak had dual location, and the third one was associated with MC fraction. Elaborated flow sheet of GO purification from the amaranth leaves produced highly purified (by 63.5 times) isoforms from MC and BSC with specific activity of 0.54 EU/mg protein. It was also shown that GO from MC has greater affinity for glycolate, with the K M values for GO from BSC and MC being 58 and 20 µM, respectively. Intermediates of the Krebs cycle were shown to affect the GO activity from MC and BSC: succinate suppressed and isocitrate activated GO.__________Translated from Fiziologiya Rastenii, Vol. 52, No. 4, 2005, pp. 622–627.Original Russian Text Copyright © 2005 by Eprintsev, Ivent’ev, Popov.  相似文献   

9.
Sugars are key constituents that affect quality of grape berries, and consequently the grape metabolic profile relevant to wine’s industry. However, enzymes and transporter genes expression involved in sugar transport at different phenological stages are scarcely studied. In addition, little is known about the role of the plant hormones ABA and Gibberellin (GA3) as endogenous regulators, over the expression pattern of the sugars transporters genes in grapevine. The aim of this study was to analyze the expression pattern of the most relevant sugar transporters and invertases in leaves and berries of grapevine plants cv. Malbec during berry ripening stages and its shift after ABA and GA3 sprays. In leaves, VvHT1 was the sugar transporter highly expressed, whereas VvHT6 was the most abundant in berries throughout berry ripening. Moreover, VvSUC12 and VvSUC27 were expressed at veraison greater in leaves than in berries, suggesting an active phloem loading at the onset of ripening. Applications of ABA and GA3 enhanced the expression of VvSUC12 and VvSUC27 in pre-veraison leaves. Furthermore, hormones increased the expression of VvHT2, VvHT3 and VvHT6 in berries at different stages of ripening favoring sugar unloading from phloem. In conclusion, ABA and GA3 are involved in the long-distance sugar transport from leaves to berries in Vitis vinifera L. cv. Malbec, and their exogenous application could be a suitable strategy to improve the process.  相似文献   

10.
Although most fire research in plant ecology focuses on vegetation responses to burning, shifts in plant community composition wrought by climate change can change wildland fuelbeds and affect fire behaviour such that the nature of fire in these systems is altered. Changes that introduce substantially different fuel types can alter the spatial extent of fire, with potential impacts on community succession and biodiversity. Montane grasslands of sub-Saharan Africa are threatened by climate change because species distributions can shift with climatically determined ranges. We studied the impact of patches of the temperate C3 grass Festuca costata in C4-dominated grassland at the transition between their subalpine ranges in South Africa’s Drakensberg. We used empirical data on fuel moisture and fuel load across F. costata-dominated patches in a C4-dominated matrix in fire spread models to predict the effect of larger, higher-moisture F. costata patches on the spatial extent of fire. Results indicate F. costata reduces fire spread and burn probability in F. costata patches, and the effect increases as live fuel moisture increases and patches get larger. However, as a native species, F. costata does not appear to have the extreme, fire-suppressing effect of non-native C3 grasses in other C4 grasslands. Instead, F. costata patches likely increase variability in the spatial extent of fire in this C4-dominated grassland, which likely translates to spatial variability on vegetation succession.  相似文献   

11.
The mitotic chromosome numbers of 35 species belonging to 25 genera from East Azerbaijan Province of Iran and meiotic numbers of five species of Salicornia from different parts of Iran of family Chenopodiaceae are reported. Some of them are first reports and some are first counts from Iran. Based on a review of previously published reports, 145 species and 46 genera occurring in SW Asia have been cytologically studied either based on populations within or surrounding regions. The nomenclature and generic position of all these species are updated based on recent phylogenetic and taxonomic studies. The polyploidy percentage of 26.2 % is beyond the average known in flowering plants, which is surprising for dominant plants of saline and desert ecosystems. The polyploidy of annual plants is only 16 % and that of perennials 19 %, respectively. It was found that C4 plants represent lower polyploidy levels than C3 plants. This is correlated by the fact that large number of annuals in the area is C4 and secondly, polyploidy may constrain niche advantageous in C4 plants. However, presence of different cytotypes in the widespread species is advantageous as they can occupy different niches. The basic chromosome numbers in chenopods is x = 9 with few derived exceptions in Spinacia (x = 6), Camphorosma (x = 6) and some species of Petrosimonia (x = 8).  相似文献   

12.
13.
Aluminum is one of the most important heavy metals inducing stress during plant growth and development. In this study, transgenic rice (Oryza sativa L., cv. Kitaake) plants expressing the maize C4PEPC and PPDK genes were evaluated for aluminum tolerance. A 4.3 and 19.1 folds increase of PPDK and PEPC activities in transgenic rice produced increases in root exudation of oxalate, malate, and citrate (1.20, 1.41, and 1.65 times, respectively) compared to untransformed (WT) plants. Transgenic rice had enhanced aluminum tolerance compared to WT based on chlorophyll fluorescence and chlorophyll levels. Transgenic plants under aluminum stress also had decreased lipid membrane oxidative damage and higher levels of ROS-scavenging enzyme activity. The PEPC and PPDK genes play an important role in aluminum stress tolerance by increasing the effluxes of organic acids.  相似文献   

14.
The effects of the diurnal variations in ambient temperature on some C3 and C4 enzymes in the Salsola dendroides and Suaeda altissima species of Chenopodiaceae family were studied during the intensive vegetation period. Activities of phosphoenolpyruvate carboxylase (PEPC) and cytosolic aspartate aminotransferase (AsAT) were shown to decrease in both species in the afternoon and evening. The activity of the mitochondrial AsAT decreased in S. altissima, remained relatively constant in S. dendroides during the day. The activity of alanine aminotransferase was high in the S. dendroides species in the morning and evening and decreased in the S. altissima species by the evening. Glucose-6-phosphate activated PEPC in both species throughout the day. The study of the redox status-regulated C3 enzymes showed temperature-related increases in NADP-glyceraldehyde 3-phosphate dehydrogenase activity in both plants, in fructose-2,6-bisphosphatase activity in the S. altissima species, and in NADP-MDH activity in the S. dendroides species in the afternoon.  相似文献   

15.
Harpin proteins encoded by hrp genes are bacterial protein elicitors that can stimulate hypersensitive response (HR) in non-host plants. HR-related pathogen resistance involves a complex form of programmed cell death (PCD). It is increasingly viewed as a key component of the hypersensitive disease response of plants. Currently, the evidence of harpin proteins-induced PCD is deficient though it exhibits phenotypic parallels with HR, and the mechanism of harpin proteins-induced PCD is not well understood. In this study, we demonstrate that harpinXoo protein from Xanthomonas oryzae pv. oryzae of rice bacterial blight expressed and isolated from bacterial cells acted as an agent to induce PCD in infiltrated tobacco plants. Treatment of tobacco leaves with harpinXoo induced typical PCD-related morphological and biochemical changes including cell shrinkage and nuclear DNA degradation. We further analyzed the expression of several genes in signal transduction pathway of PCD in tobacco plants by real-time qRT-PCR analysis using EF- as an endogenous control. Our results showed that the expression of NtDAD1 was down-regulated and the expression of BI-1, tpa1 and aox1 was up-regulated following the infiltration of harpinXoo into tobacco leaves. Our data suggest that harpinXoo can induce PCD with the coordination of PCD-related genes in infiltrated tobacco leaves, providing evidence to further investigate the signal transduction pathways of HR and PCD.  相似文献   

16.
The review is done to summarise the history of the discoveries of the many anatomical, agronomical, and physiological aspects of C4 photosynthesis (where the first chemical products of CO2 fixation in illuminated leaves are four-carbon dicarboxylic acids) and to document correctly the scientists at the University of Arizona and the University of California, Davis, who made these early discoveries. The findings were milestones in plant science that occurred shortly after the biochemical pathway of C3 photosynthesis in green algae (where the first chemical product is a three-carbon compound) was elucidated at the University of California, Berkeley, and earned a Nobel Prize in chemistry. These remarkable achievements were the result of ground-breaking pioneering research efforts carried out by many agronomists, plant physiologists and biochemists in several laboratories, particularly in the USA. Numerous reviews and books written in the past four decades on the history of C4 photosynthesis have focused on the biochemical aspects and give an unbalanced history of the multidisciplinary/multinstitutional nature of the achievements made by agronomists, who published much of their work in Crop Science. Most notable among the characteristics of the C4 species that differentiated them from the C3 ones are: (I) high optimum temperature and high irradiance saturation for maximum leaf photosynthetic rates; (II) apparent lack of CO2 release in a rapid stream of CO2-free air in illuminated leaves in varying temperatures and high irradiances; (III) a very low CO2 compensation point; (IV) lower mesophyll resistances to CO2 diffusion coupled with higher stomatal resistances, and, hence, higher instantaneous leaf water use efficiency; (V) the existence of the so-called “Kranz leaf anatomy” and the higher internal exposed mesophyll surface area per cell volume; and (VI) the ability to recycle respiratory CO2 by illuminated leaves.  相似文献   

17.
Yoshimura Y  Kubota F  Ueno O 《Planta》2004,220(2):307-317
In C4 plants, photorespiration is decreased relative to C3 plants. However, it remains unclear how much photorespiratory capacity C4 leaf tissues actually have. We thoroughly investigated the quantitative distribution of photorespiratory organelles and the immunogold localization of the P protein of glycine decarboxylase (GDC) in mesophyll (M) and bundle sheath (BS) cells of various C4 grass species. Specific differences occurred in the proportions of mitochondria and peroxisomes in the BS cells (relative to the M cells) in photosynthetic tissues surrounding a vein: lower in the NADP-malic enzyme (NADP-ME) species having poorly formed grana in the BS chloroplasts, and higher in the NAD-malic enzyme (NAD-ME) and phosphoenolpyruvate carboxykinase (PCK) species having well developed grana. In all C4 species, GDC was localized mainly in the BS mitochondria. When the total amounts of GDC in the BS mitochondria per unit leaf width were estimated from the immunogold labeling density and the quantity of mitochondria, the BSs of NADP-ME species contained less GDC than those of NAD-ME or PCK species. This trend was also verified by immunoblot analysis of leaf soluble protein. There was a high positive correlation between the degree of granal development (granal index) in the BS chloroplasts and the total amount of GDC in the BS mitochondria. The variations in the structural and biochemical features involved in photorespiration found among C4 species might reflect differences in the O2/CO2 partial pressure and in the potential photorespiratory capacity of the BS cells.Abbreviations BS Bundle sheath - GDC Glycine decarboxylase - M Mesophyll - NAD-ME NAD-malic enzyme - NADP-ME NADP-malic enzyme - PCK Phosphoenolpyruvate carboxykinase  相似文献   

18.
The cuticle, composed primarily of wax and cutin, covers most plant aerial surfaces and plays a vital role in interactions between plants and their environment. Some ATP-binding cassette G subfamily (ABCG) members are involved in cuticular lipid molecule exportation to outside in the plant surface. Thellungiella salsugineum, a relative of Arabidopsis thaliana with a heavy cuticle, has extreme stress tolerance. TsABCG11, an ABCG transporter was cloned (GenBank accession number JQ389853), and its structure was studied. qRT-PCR showed that TsABCG11 expression varied in different organs of T. salsugineum and was upregulated under ABA, NaCl, drought and cold conditions. The rosette leaves from 4-week-old TsABCG11 overexpressed (OE) Arabidopsis plants displayed lower rates of water loss and decreased chlorophyll-extracted rates compared to wild-type plants. TsABCG11-OE plants also exhibited significantly increased total cuticular wax and cutin monomer amounts, mainly due to prominent changes in the C29, C31, and C33 alkanes in the wax and C18:2 dioic in cutin monomers, respectively. TsABCG11-OE seedlings exhibit lower root growth inhibition under 100 mM of NaCl or 1 µM of ABA than the wild type. Four-week-old TsABCG11-OE plants exhibited higher photosynthetic rates and water-use efficiency under cold stress (4 °C) than control plants. These results indicate that TsABCG11 plays an important role in cuticle lipid exportation and is involved in abiotic stresses, probably having a close relationship with extreme stress tolerance in T. salsugineum.  相似文献   

19.
Mesophyll and bundle sheath chloroplasts were isolated by differential grinding from the leaves of two NADP-ME C4 plants, Setaria italica Beauv. cv. H-1, Pennisetum typhoides S & H. cv. AKP-2, and a NAD-ME C4 species Amaranthus paniculatus L. The mesophyll chloroplasts of C4 plants possessed slightly lower Km for ADP and Pi than those of bundle sheath chloroplasts. The Hill reaction activities and noncyclic photophosphorylation rates of the bundle sheath chloropiasts from S. italica and P. typhoides were less than one-fifth of those by the mesophyll chloroplasts. But the bundle sheath chloroplasts of A. paniculatus exhibited high rates of Hill reaction, cyclic as well as noncyclic photophosphorylation. The pigment- and eyiochrome composition suggested a relative enrichment of PS 1 in bundle sheath chloroplasts of S. italica and P. typhoides. The chain exists in both mesophyll and bundle sheath chloroplasts. As much as 35–52% of leaf chlorophyll was located in the bundle sheath chloroplasts. The photochemical activities of bundle sheath chloroplasts are significant though a major part of leaf photochemical potential is associated with the mesophyll chloroplasts.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号