首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In 1981, Chugai Pharmaceutical succeeded in marketing alfacalcidol, a prodrug of calcitriol, as a therapeutic agent for renal osteodystrophy. In 1983, Chugai succeeded in extending the application of alfacalcidol to the treatment of osteoporosis as well. Clinicians in Japan have accepted alfacalcidol as a remedy for osteoporosis. However, the use of calcitriol and its analogs for the treatment of osteoporosis is still controversial. Some misunderstandings exist internationally about the efficacy of the active form of vitamin D for the treatment of osteoporosis. It is important to emphasize that patients with osteoporosis have intestinal calcium malabsorption and dysfunction in renal activation of vitamin D. When massive doses of parent vitamin D were administered to OVX rats, bone mass increased, but surprisingly, many porotic area were observed in the cortical bone. On the other hand, administration of alfacalcidol increased physiological bone without porotic observation. It is necessary to give the active form of vitamin D, D-hormone, with an RDA-equivalent supply of calcium. Alfacalcidol forms physiological strong bones that are hardly fractured by regulating calcium and bone metabolism. We proposed a new vitamin D analog, 2beta (3-hydroxypropoxy)calcitriol [ED-71] as a therapeutic drug for osteoporosis, which is more potent than calcitriol. ED-71 is now being investigated in phase 2 clinical studies in Japan. ED-71 will appear as more improved drugs for osteoporosis until 2010.  相似文献   

2.
1alpha,25-Dihydroxy-2beta-(3-hydroxypropoxy)vitamin D(3) (ED-71), an analog of active vitamin D(3), 1alpha,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)], possesses a hydroxypropoxy substituent at the 2beta-position of 1,25(OH)(2)D(3). ED-71 has potent biological effects on bone and is currently under phase III clinical studies for bone fracture prevention. It is well-known that the synthesis and secretion of parathyroid hormone (PTH) is regulated by 1,25(OH)(2)D(3). Interestingly, during clinical development of ED-71, serum intact PTH in osteoporotic patients did not change significantly upon treatment with ED-71. The reason remains unclear, however. Brown et al. reported that 3-epi-1,25(OH)(2)D(3), an epimer of 1,25(OH)(2)D(3) at the 3-position, shows equipotent and prolonged activity compared to 1,25(OH)(2)D(3) at suppressing PTH secretion. Since ED-71 has a bulky hydroxypropoxy substituent at the 2-position, epimerization at the adjacent and sterically hindered 3-position might be prevented, which may account for its weak potency in PTH suppression observed in clinical studies. We have significant interest in ED-71 epimerization at the 3-position and the biological potency of 3-epi-ED-71 in suppressing PTH secretion. In the present studies, synthesis of 3-epi-ED-71 and investigations of in vitro suppression of PTH using bovine parathyroid cells are described. The inhibitory potency of vitamin D(3) analogs were found to be 1,25(OH)(2)D(3)>ED-71> or =3-epi-1,25(OH)(2)D(3)>3-epi-ED-71. ED-71 and 3-epi-ED-71 showed weak activity towards PTH suppression in our assays.  相似文献   

3.
4.
BACKGROUND: Calcitriol [1,25-(OH)(2)D(3)] is a strong anti-proliferative agent both in vitro and in vivo. Earlier studies have established that calcitriol inhibits the growth factor-stimulated proliferation of endothelial cells (EC) and angiogenesis. However, the lethal calcemic side effects of calcitriol prohibit its use as a therapeutic agent. Several analogs of vitamin D have been developed to minimize these calcemic side effects. 1,25-dihydroxy-3-epi-vitamin D(3) (3-epiD(3)), a naturally formed vitamin D metabolite is one such analog. OBJECTIVE: To demonstrate that 3-epiD(3), a calcitriol analog, inhibits endothelial cell proliferation and induces apoptosis. RESULTS: Treatment of EC with 3-epiD(3) showed 60% inhibition (P < 0.006) of proliferation. Cell viability assays corroborated these results. Pro-apoptotic caspase-3 activity was increased fourfold (P < 0.01) in 3-epiD(3)-treated cells over controls. 3-epiD(3) induced apoptosis in EC as shown by genomic DNA fragmentation. Cell cycle analysis of 3-epiD(3)-treated EC revealed a G0/G1 arrest. CONCLUSIONS: 3-epiD(3), a low-calcemic, natural analog of calcitriol, inhibits EC proliferation by causing a G0/G1 arrest and induces apoptosis more effectively than 1,25-(OH)(2)D(3). These results suggest that 3-epiD(3) is a potent inhibitor of EC growth.  相似文献   

5.
A series of 16-en-22-oxa-derivatives of vitamin D3 based on the structure of maxacalcitol (2) were prepared. Maxacalcitol is currently used topically for the treatment of psoriasis and is recognized as the most successful antedrug of natural vitamin D(3) because it retains the original antiproliferative activity of calcitriol without increased calcemic activity. We introduced 16-olefinic functionality to accelerate the oxidative metabolism of the drug in liver, presumed to be essential for the reduction of calcemic activity, and modified the side-chain moiety by placing the 22-oxygen on the more labile allylic carbon center. Novel 22-oxa analogs (7a-i), carrying either the 24-alkynyl bond or 24-hydroxy functionality in addition to the 16-double bond were synthesized and their pharmacokinetics were evaluated.  相似文献   

6.
Many efforts have been made to obtain active and less toxic Vitamin D analogs for new clinical applications. The results of previous studies demonstrated the efficacy and safety of topical treatment of psoriasis with one of these analogs, 1,24-dihydroxyvitamin D(3), tacalcitol (1,24-(OH)(2)D(3)). In the present study, we evaluated the toxicity and antitumor effect of this analog. Lethal toxicity of 1,24-(OH)(2)D(3) after s.c. injection was significantly lower than that of calcitriol. No significant differences were observed in the toxicity of the analogs when administered p.o. Calcium levels in the serum of mice treated with calcitriol were significantly higher (111%) than those in mice treated with 1,24-(OH)(2)D(3) (89%) at 5 day after the first s.c. (10 microg/kg/day) administration in comparison to the control (healthy, untreated animals). Oral administration increased the calcium level by 78% for calcitriol and only to 47% over the control for 1,24-(OH)(2)D(3). Parallel administration of clodronate prevented the calcitriol- and 1,24-(OH)(2)D(3)-induced lethal toxicity and also prevented increase in calcium levels. Single therapy with calcitriol did not affect tumor growth in the 16/C mouse mammary cancer model. In contrary, 1,24-(OH)(2)D(3) alone reduced tumor volume to 41% of control. Cisplatin alone did not affect growth of 16/C tumor in these conditions. The growth of tumors in the presence of cisplatin was inhibited by 1,24-(OH)(2)D(3) but not by calcitriol. Interestingly, the inhibition of tumor growth in cisplatin-treated mice by 1,24-(OH)(2)D(3) was greater, than that observed in mice treated with this analog alone. In conclusion, 1,24-(OH)(2)D(3) revealed higher antitumor and lower calcemic activity and toxicity than calcitriol. Application of biphosphonates along with Vitamin D analogs is sufficient to overcome the calcemic and toxic side effects of the proposed treatment.  相似文献   

7.
Regulatory activities of 2 beta-(3-hydroxypropoxy)-1 alpha, 25-dihydroxyvitamin D3 [ED-71], a novel synthetic vitamin D3 derivative, on calcium metabolism were investigated. The compound behaved similar to 1 alpha, 25-dihydroxyvitamin D3 [1,25(OH)2D3] in the ex vivo intestinal calcium transport using rat everted gut sac and the in vivo bone mobilization using vitamin D-deficient rats. By means of Raisz's assay method, 45Ca releasing activity of ED-71 was not greater than that of 1,25(OH)2D3. The time course curve of ED-71 in plasma made a mild round shape compared with that of 1,25(OH)2D3 and the former's plasma concentration remained increased longer than the latter's. The therapeutic effect of ED-71 for the animal models with osteoporosis seemed to be better than that of 1,25(OH)2D3. The results suggest that ED-71 may be a promising drug for therapy of osteoporosis.  相似文献   

8.
Vitamin D and prostate cancer.   总被引:4,自引:0,他引:4  
Classically, the actions of vitamin D have been associated with bone and mineral metabolism. More recent studies have shown that vitamin D metabolites induce differentiation and/or inhibit cell proliferation of a number of malignant and nonmalignant cell types including prostate cancer cells. Epidemiological studies show correlations between the risk factors for prostate cancer and conditions that can result in decreased vitamin D levels. The active metabolite of vitamin D, 1,25-dihydroxyvitamin D3 (calcitriol), inhibits growth of both primary cultures of human prostate cancer cells and cancer cell lines, but the mechanism by which the cells are growth-inhibited has not been clearly defined. Initial studies suggest that calcitriol alters cell cycle progression and may also initiate apoptosis. One of the disadvantages of using vitamin D in vivo is side-effects such as hypercalcemia at doses above physiological levels. Analogs of calcitriol have been developed that have comparable or more potent antiproliferative effects but are less calcemic. Further research into the mechanisms of vitamin D action in prostate and identification of suitable analogs for use in vivo may lead to its use in the treatment or prevention of prostate cancer.  相似文献   

9.
As a candidate for active vitamin D analogs that have selective effects on bone, 1alpha,25-dihydroxy-2beta-(3-hydroxypropoxy)vitamin D3 (ED-71) has been synthesized and is currently under clinical trials. In ovariectomized rat model for osteoporosis, ED-71 caused an increase bone mass at the lumbar vertebra to a greater extent than 1alpha-hydroxyvitamin D3 (alfacalcidol), while enhancing calcium absorption and decreasing serum parathyroid hormone levels to the same degree as alfacalcidol. ED-71 lowered the biochemical and histological parameters of bone resorption more potently than alfacalcidol, while maintaining bone formation markers.An early phase II clinical trial was conducted with 109 primary osteoporotic patients. The results indicate that oral daily administration of ED-71 (0.25, 0.5, 0.75, and 1.0 microgram) for 6 months increased lumbar bone mineral density in a dose-dependent manner without causing hypercalcemia and hypercalciuria. ED-71 also exhibited a dose-dependent suppression of urinary deoxypyridinoline with no significant reduction in serum osteocalcin. These results demonstrate that ED-71 has preferential effects on bone with diminished effects on intestinal calcium absorption. ED-71 offers potentially a new modality of therapy for osteoporosis with selective effects on bone.  相似文献   

10.
A series of analogs of 1,25-dihydroxyergocalciferol (1-4) was synthesized and screened for their antiproliferative activity in vitro. The structure of new analogs was designed based on biological activity of the previously obtained side-chain modified analogs of vitamin D(2) and D(3). The analogs were obtained by the Julia olefination of C(22)-vitamin D sulfone 11 with side-chain aldehyde 15. The analogs were tested for their antiproliferative activity against the cells of human breast cancer lines T47D and MCF7 as well as human and mouse leukemia lines, HL-60 and WEHI-3, respectively. Analog 2 (PRI-1907) showed the strongest antiproliferative activity out of the present series of analogs of 1,25-dihydroxyvitamin D(2) with the mono homologated and double unsaturated side chain. The activity of 2 was 3-150 times stronger, depending on the cell line, than that of 1,25-dihydroxycholecalciferol (calcitriol), used as standard.  相似文献   

11.
12.
A previous randomized placebo-controlled double-blinded clinical trial revealed that treatment of osteoporotic subjects supplemented with 200 or 400 IU/day vitamin D3 with 0.75 μg/day ED-71 for 12 months increased lumbar and hip bone mineral density (BMD) by 3.4 and 1.5%, respectively, compared to placebo group (JCE&M 90:5031,2005). These effects on BMD were stronger than any previous results using 1(OH)D3 or 1,25(OH)2D3. However, there still was a concern that the effect of ED-71 could be observed because serum 25(OH)D in many of these subjects were below its optimal level. In order to address this issue, we performed post hoc analysis to compare the effect of ED-71 on lumbar and hip BMD between subjects with upper (>29 ng/mL) and lower tertiles (<25 ng/mL) of serum 25(OH)D. Lumbar BMD after 12-month treatment with 0.5, 0.75 and 1.0 μg/day ED-71 increased similarly in both lower and upper tertile groups of serum 25(OH)D. In addition, hip BMD also showed a tendency to increase when 0.75 and 1.0 μg/day ED-71 groups were combined together in both upper and lower serum 25(OH)D tertile groups, although the increase was not statistically significant. These results demonstrate that the effect of ED-71 on bone is independent of supplementary effect for nutritional vitamin D insufficiency, and suggest that ED-71 may exert its effect as a unique VDR ligand with stronger effect on bone compared to the natural ligand, 1,25(OH)2D3.  相似文献   

13.
A 3-position diastereomer of 1alpha,25-dihydroxy-2beta-(3-hydroxypropoxy)vitamin D3 (ED-71, 2), 3-epi-ED-71 (4), was synthesized by the convergent method coupling the A-ring fragment (5) with the C/D-ring fragment (6). As the results of preliminary in vitro biological evaluation of 3-epi-ED-71 (4), the inhibition of parathyroid hormone secretion in bovine parathyroid cells and binding affinity to human recombinant vitamin D receptor and to human vitamin D binding protein in comparison with ED-71 (2), 1alpha,25-dihydroxyvitamin D3 (1,25(OH)2D3, 1), and 3-epi-1,25(OH)2D3 (3) are described.  相似文献   

14.
1alpha,25-Dihydroxy-2beta-(3-hydroxypropoxy)vitamin D(3) (ED-71), an analog of active vitamin D(3), 1alpha,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] is under phase III clinical trials in Japan for the treatment of osteoporosis and bone fracture prevention. Since ED-71 has a substituent at the 2beta-position of the A-ring, it is recognized that the metabolic pathway of ED-71 might be more complicated than 1,25(OH)(2)D(3) because of metabolism at the 2beta-position substituent in addition to the inherent metabolism of the side chain. To clarify the metabolism of hydroxypropoxy substituent of the 2beta-positon and a combination of metabolism between side chain and 2beta-positon, four putative metabolites of ED-71 have been prepared as authentic samples. The metabolites at the 2beta-positon, the methyl ester derivative considered as an ester standard of the oxidized metabolite and the tetraol derivative as the truncated metabolite were synthesized from alpha-epoxide, a key intermediate of ED-71 synthesis. The combination metabolites between side chain and 2beta-positon, the 24(S)- and 24(R)-pentaols were synthesized using Trost's convergent method.  相似文献   

15.
16.
The vitamin D endocrine system plays a central role in mineral ion homeostasis through the actions of the vitamin D hormone, 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)], on the intestine, bone, parathyroid gland, and kidney. The main function of 1,25(OH)(2)D(3) is to promote the dietary absorption of calcium and phosphate, but effects on bone, kidney and the parathyroids fine-tune the mineral levels. In addition to these classical actions, 1,25(OH)(2)D(3) exerts pleiotropic effects in a wide variety of target tissues and cell types, often in an autocrine/paracrine fashion. These biological activities of 1,25(OH)(2)D(3) have suggested a multitude of potential therapeutic applications of the vitamin D hormone for the treatment of hyperproliferative disorders (e.g. cancer and psoriasis), immune dysfunction (autoimmune diseases), and endocrine disorders (e.g. hyperparathyroidism). Unfortunately, the effective therapeutic doses required to treat these disorders can produce substantial hypercalcemia. This limitation of 1,25(OH)(2)D(3) therapy has spurred the development of vitamin D analogs that retain the therapeutically important properties of 1,25(OH)(2)D(3), but with reduced calcemic activity. Analogs with improved therapeutic indices are now available for treatment of psoriasis and secondary hyperparathyroidism in chronic kidney disease, and research on newer analogs for these indications continues. Other analogs are under development and in clinical trials for treatment of various types of cancer, autoimmune disorders, and many other diseases. Although many new analogs show tremendous promise in cell-based models, this article will limit it focus on the development of analogs currently in use and those that have demonstrated efficacy in animal models or in clinical trials.  相似文献   

17.
18.
The biologically active form of vitamin D, 1,25-dihydroxyvitamin D3 [1,25(OH)(2)D3,] possess in vitro multiple anti-cancer activities including growth arrest, induction of apoptosis and differentiation of a variety of different types of malignant cells. However, its use as a therapeutic agent is hindered by its calcemic effects. Analogs of 1,25(OH)(2)D3 have enhanced anti-tumor activity, with reduced calcemic effects. However, limited clinical studies using vitamin D compounds have not yet achieved major clinical success. Nevertheless, pre-clinical studies suggest that the combination of either 1,25(OH)(2)D3 or its analogs with other agents can have additive or synergistic anti-cancer activities, suggesting future clinical studies.  相似文献   

19.
A series 5-8 of 1- and 3-CH(2)OH 19-nor analogs of the hormone calcitriol (1) has been prepared. Surprisingly, 19-nor 1alpha-CH(2)OH analog 5a is more antiproliferative at 100 nM concentration than the corresponding regioisomeric analog 6a with the natural 1alpha-OH group, and 1alpha-CH(2)OH hybrid analog 7a is similar in antiproliferative potency to calcitriol (1) even at low nanomolar concentrations.  相似文献   

20.
Eldecalcitol (ED-71) is a new type of vitamin D analog, and vitamin D has been reported to have therapeutic effects in infectious disease, autoimmune disease, and cancer. However, the anti-cancer effect of ED-71 remains unclear. The objective of this study was to explore the anti-cancer effect of ED-71 in human osteosarcoma cells and to identify the related mechanism. The CCK8 assay results showed that ED-71 inhibited MG-63 cell viability in dose and time dependent manners. Cloning and Transwell invasion assays showed that ED-71 inhibited clonal and invasion ability of MG-63 cells. Flow cytometry results showed ED-71 the G2/M cycle arrest rate, apoptosis, and intracellular ROS. Western blot was used to detect cleaved-caspase-3, Bax, Bcl-2, LC3-II/LC3-I, and P62 levels and the mTOR pathway. The increase of LC3-II and P62 indicated that ED-71 induced the formation of autophagosomes and inhibited autophagy flux. Furthermore, ED-71-induced apoptosis was weakened after adding 3-methyladenine and ED-71-induced early autophagy was weakened by caspase-3 inhibitor (Z-VAD-FMK), which indicated the two processes active each other in the presence of ED-71. Furthermore, N-acetylcysteine (NAC) pretreatment reversed the ED-71-treatment outcomes, including increased apoptosis and autophagy and inhibition of the PI3K/Akt/mTOR pathway. In conclusion, our results reveal that ED-71 induced G2/M arrest, apoptosis and autophagy in MG-63 cells by accumulating ROS to suppress the PI3K/Akt/mTOR signaling pathway  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号