首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ATCC4117 is a strain of S. cerevisiae that undergoes a single nuclear division during sporulation to produce asci containing two diploid ascospores (Grewal and Miller 1972). All clones derived from these spores are sporulation-capable and, like the parental strain, form two-spored asci. In this paper, we describe the genetic analysis of ATCC4117. In tetraploid hybrids of vegetative cells of the ATCC4117 diploid and a/a or α/α diploids, the production of two-spored asci is recessive. From these tetraploids, we have isolated two recessive alleles, designated spo12–1 and spo13–1, each of which alone results in the production of asci with two diploid or near-diploid spores. These alleles are unlinked and segregate as single nuclear genes. spo12–1 is approximately 22 cM from its centromere; spo13–1 has been localized to within 1 cM of arg4 on chromosome VIII. This analysis also revealed that ATCC4117 carries a diploidization gene allelic to or closely linked to HO, modifiers that reduce the number of haploid spores per ascus and alleles affecting the total level of sporulation.  相似文献   

2.
An improved method of in situ lysis of bacteriophage-infected Bacillus subtilis was developed and used to study 29 and SPO1 phage structures produced by individual cells.  相似文献   

3.
The purpose of this study was to characterize two mutator stocks of yeast which were induced and selected on the basis of high spontaneous reversion rates of the suppressible "ochre" nonsense allele lys1-1. In the mutator stock VA-3, a single mutation, designated mut1-1, is responsible for the increase in the reversion rate of the ochre alleles lys1-1 and arg4-17. In stock VA-105, there are two separate mutator mutations. Tetrad analysis data showed these two loci are loosely linked. Based on complementation data, one of these mutations is at the same locus as mut1-1 and designated mut1-2. The second mutator of stock VA-105 was designated mut2-1. All three mutators are recessive. Both mut1-1 and mut1-2 give a high mutation rate for ochre nonsense suppressor (SUP) loci, but not for the ochre nonsense alleles. On the contrary, the mutation rates of the ochre alleles are greatly reduced. With the mutant mut2-1 there were mutations at both the lys1-1 site and its suppressors; mut2-1 is as effective as mut1-2 but not as effective as mut1-1 in inducing reversions of a missense mutant, his1-7. Neither mut1-1, mut1-2 nor mut2-1 were effective in inducing reversions of a putative frameshift mutation, hom3-10, or in inducing forward mutations to canavanine resistance.  相似文献   

4.
The checkpoint clamp Rad9–Hus1–Rad1 (9–1–1) interacts with TopBP1 via two casein kinase 2 (CK2)-phosphorylation sites, Ser-341 and Ser-387 in Rad9. While this interaction is known to be important for the activation of ATR-Chk1 pathway, how the interaction contributes to their accumulation at sites of DNA damage remains controversial. Here, we have studied the contribution of the 9–1–1/TopBP1 interaction to the assembly and activation of checkpoint proteins at damaged DNA. UV-irradiation enhanced association of Rad9 with chromatin and its localization to sites of DNA damage without a direct interaction with TopBP1. TopBP1, as well as RPA and Rad17 facilitated Rad9 recruitment to DNA damage sites. Similar to Rad9, TopBP1 also localized to sites of UV-induced DNA damage. The DNA damage-induced TopBP1 redistribution was delayed in cells expressing a TopBP1 binding-deficient Rad9 mutant. Pharmacological inhibition of ATR recapitulated the delayed accumulation of TopBP1 in the cells, suggesting that ATR activation will induce more efficient accumulation of TopBP1. Taken together, TopBP1 and Rad9 can be independently recruited to damaged DNA. Once recruited, a direct interaction of 9–1–1/TopBP1 occurs and induces ATR activation leading to further TopBP1 accumulation and amplification of the checkpoint signal. Thus, we propose a new positive feedback mechanism that is necessary for successful formation of the damage-sensing complex and DNA damage checkpoint signaling in human cells.  相似文献   

5.
6.
Niemann–Pick C1-Like 1 (NPC1L1) is a polytopic transmembrane protein responsible for dietary cholesterol and biliary cholesterol absorption. Consistent with its functions, NPC1L1 distributes on the brush border membrane of enterocytes and the canalicular membrane of hepatocytes in humans. As the molecular target of ezetimibe, a hypocholesterolemic drug, its physiological and pathological significance has been recognized and intensively studied for years. Recently, plenty of new findings reveal the molecular mechanism of NPC1L1's role in cholesterol uptake, which may provide new insights on our understanding of cholesterol absorption. In this review, we summarized recent progress in these studies and proposed a working model, hoping to provide new perspectives on the regulation of cholesterol transport and metabolism.  相似文献   

7.
The endothelial CCM complex regulates blood vessel stability and permeability. Loss-of-function mutations in CCM genes are responsible for human cerebral cavernous malformations (CCMs), which are characterized by clusters of hemorrhagic dilated capillaries composed of endothelium lacking mural cells and altered sub-endothelial extracellular matrix (ECM). Association of the CCM1/2 complex with ICAP-1, an inhibitor of β1 integrin, prompted us to investigate whether the CCM complex interferes with integrin signaling. We demonstrate that CCM1/2 loss resulted in ICAP-1 destabilization, which increased β1 integrin activation and led to increased RhoA-dependent contractility. The resulting abnormal distribution of forces led to aberrant ECM remodeling around lesions of CCM1- and CCM2-deficient mice. ICAP-1–deficient vessels displayed similar defects. We demonstrate that a positive feedback loop between the aberrant ECM and internal cellular tension led to decreased endothelial barrier function. Our data support that up-regulation of β1 integrin activation participates in the progression of CCM lesions by destabilizing intercellular junctions through increased cell contractility and aberrant ECM remodeling.  相似文献   

8.
3′–nucleases/nucleotidases of the S1–P1 family (EC 3.1.30.1) are single–strand–specific or non-specific zinc–dependent phosphoesterases present in plants, fungi, protozoan parasites, and in some bacteria. They participate in a wide variety of biological processes and their current biotechnological applications rely on their single–strand preference, nucleotide non-specificity, a broad range of catalytic conditions and high stability. We summarize the present and potential utilization of these enzymes in biotechnology and medicine in the context of their biochemical and structure–function properties. Explanation of unanswered questions for bacterial and trypanosomatid representatives could facilitate development of emerging applications in medicine.  相似文献   

9.
Synovial sarcoma is an aggressive mesenchymal malignancy characterized by unique gene fusions. Tissue culture cells are essential tools for further understanding tumorigenesis and anti-cancer drug development; however, only a limited number of well-characterized synovial sarcoma cell lines exist. Thus, the objective of this study was to establish a patient-derived synovial sarcoma cell line. We established a synovial sarcoma cell line from tumor tissue isolated from a 72-year-old female patient. Prepared cells were analyzed for the presence of gene fusions by fluorescence in situ hybridization, RT-PCR, and karyotyping. In addition, the resulting cell line was characterized by viability, short tandem repeat, colony and spheroid formation, and invasion analyses. Differences in gene enrichment between the primary tumor and cell line were examined by mass spectrometric protein expression profiling and KEGG pathway analysis. Our analyses revealed that the primary tumor and NCC–SS1–C1 cell line harbored the SS18SSX1 fusion gene typical of synovial sarcoma and similar proteomics profiles. In vitro analyses also confirmed that the established cell line harbored invasive, colony-forming, and spheroid-forming potentials. Moreover, drug screening with chemotherapeutic agents and tyrosine kinase inhibitors revealed that doxorubicin, a subset of tyrosine kinase inhibitors, and several molecular targeting drugs markedly decreased NCC–SS1–C1 cell viability. Results from the present study support that the NCC–SS1–C1 cell line will be an effective tool for sarcoma research.  相似文献   

10.
Alzheimer's disease (AD) is characterized by the massive deposition in the brain of the 40-42-residue amyloid beta protein (A(beta)). While A(beta)1-40 predominates in the vascular system, A(beta)1-42 is the major component of the senile plaques in the neuropil. The concentration of both A(beta) species required to form amyloid fibrils in vitro is micromolar, yet soluble A(betas) found in normal and AD brains are in the low nanomolar range. It has been recently proposed that the levels of A(beta) sufficient to trigger amyloidogenesis may be reached intracellularly. To study the internalization and intracellular accumulation of the major isoforms of A(beta), we used THP-1 and IMR-32 neuroblastoma cells as models of human monocytic and/or macrophagic and neuronal lineages, respectively. We tested whether these cells were able to internalize and accumulate 125I-A(beta)1-40 and 125I-A(beta)1-42 differentially when offered at nanomolar concentrations and free of large aggregates, conditions that mimic a prefibrillar stage of A(beta) in AD brain. Our results showed that THP-1 monocytic cells internalized at least 10 times more 125I-A(betas) than IMR-32 neuroblastoma cells, either isolated or in a coculture system. Moreover, 125I-A(beta)1-42 presented a higher adsorption, internalization, and accumulation of undigested peptide inside cells, as opposed to 125I-A(beta)1-40. These results support that A(beta)1-42, the major pathogenic form in AD, may reach supersaturation and generate competent nuclei for amyloid fibril formation intracellularly. In light of the recently reported strong neurotoxicity of soluble, nonfibrillar A(beta)1-42, we propose that intracellular amyloidogenesis in microglia is a protective mechanism that may delay neurodegeneration at early stages of the disease.  相似文献   

11.
N.K. Matheson 《Phytochemistry》1975,14(9):2017-2021
After removal of granular starch at low centrifugal force, the centrifugation, at increasing forces, of aqueous extracts of su1 corn gave a series of α-glucan precipitates that contained amylose. The amylose content decreased as the force increased. In contrast, in normal corn all the α-glucan precipitated as starch granules at low forces. In the sweet corn precipitates, apart from the granular starch, the branched α-glucan was phytoglycogen. The MW of this decreased as the proportion of amylose decreased. It appears that, as well as starch granules and soluble phytoglycogen, sweet corn contains granules, smaller than starch, of a range of sizes, and these are made up of phytoglycogen and amylose. As granule size decreases, so does the MW of the phytoglycogen and the content of amylose. A method of quantitative extraction of starch giving minimal depolymerization is described. The isopotential iodine absorption of a quantitative extract of sweet corn flour indicated that the total ratio of linear (amylose) fraction to branched (amylopectin + phytoglycogen) fraction was near the normal value of 1:4.  相似文献   

12.
The tetracyclic diterpenoid carboxylic acids, gibberellins (GAs), orchestrate a broad spectrum of biological programs. In nature, GAs or GA-like substance is produced in bacteria, fungi, and plants. The function of GAs in microorganisms remains largely unknown. Phytohormones GAs mediate diverse growth and developmental processes through the life cycle of plants. The GA biosynthetic and metabolic pathways in bacteria, fungi, and plants are remarkably divergent. In vascular plants, phytohormone GA, receptor GID1, and repressor DELLA shape the GA–GID1–DELLA module in GA signaling cascade. Sequence reshuffling, functional divergence, and adaptive selection are main driving forces during the evolution of GA pathway components. The GA–GID1–DELLA complex interacts with second messengers and other plant hormones to integrate environmental and endogenous cues, which is beneficial to phytohormones homeostasis and other biological events. In this review, we first briefly describe GA metabolism pathway, signaling perception, and its second messengers. Then, we examine the evolution of GA pathway genes. Finally, we focus on reviewing the crosstalk between GA–GID1–DELLA module and phytohormones. Deciphering mechanisms underlying plant hormonal interactions are not only beneficial to addressing basic biological questions, but also have practical implications for developing crops with ideotypes to meet the future demand.  相似文献   

13.
Amyloid β peptides appear to play a role in physiological processes; however, they are also involved in the pathogenesis of Alzheimer disease. Their actions under normal conditions are probably mediated by soluble monomeric l-isoforms at low concentrations, perhaps via highly specific interactions. On the contrary, toxic effects of aggregated natural l-isoforms/synthetic d-isoforms on membranes are very similar, but synthetic reverse/random l-isoforms without pronounced aggregation properties are not toxic. Our previous work reported interactions of non-aggregated/aggregated l-isoforms of amyloid β peptides 1–40/1–42 with racemic 24-hydroxycholesterol. In this study, stereospecificity in the interactions of natural 24(S)hydroxycholesterol (cerebrosterol) or synthetic 24(R)hydroxycholesterol with soluble fragment 1–40 was evaluated by means of an in vitro test based on increased vulnerability of the hemicholinium-3 sensitive high-affinity choline uptake system in rat hippocampal cholesterol-depleted synaptosomes to the actions of amyloid β; computational simulations were also performed. Our results suggest that: (1) 24(S)hydroxycholesterol interacts with l-peptide 1–40 but not with the reverse l-peptide 40–1, (2) 24(R)hydroxycholesterol does not interact with l-peptide 1–40 or reverse 40–1, and (3) both enantiomers can probably interact with d-peptide 1–40. Therefore, the binding of 24(S)hydroxycholesterol is not fully stereospecific and the interaction could not reflect a physiological mechanism. Data from the computational simulation indicate that the hydrophobic core of the amyloid β molecule interacts with the hydrophobic part of 24(S)hydroxycholesterol, but no hydrogen bonds with high stability were found. Using this procedure, globular amyloid β could retain 24(S)hydroxycholesterol and thus contribute to its pathological accumulation in the brains of patients with Alzheimer disease.  相似文献   

14.
Insulin degrading enzyme (IDE) is a metalloprotease that has been involved in amyloid peptide (A) degradation in the brain. We analyzed the ability of human brain soluble fraction to degrade A analogs 1–40, 1–42 and the Dutch variant 1–40Q at physiological concentrations (1 nM). The rate of synthetic 125I-A degradation was similar among the A analogs, as demonstrated by trichloroacetic acid precipitation and SDS-PAGE. A 110 kDa protein, corresponding to the molecular mass of IDE, was affinity labeled with either 125I-insulin, 125I-A 1–40 or 125I-A 1–42 and both A degradation and cross-linking were specifically inhibited by an excess of each peptide. Sensitivity to inhibitors was consistent with the reported inhibitor profile of IDE. Taken together, these results suggested that the degradation of A analogs was due to IDE or a closely related protease. The apparent Km, as determined using partially purified IDE from rat liver, were 2.2 ± 0.4, 2.0 ± 0.1 and 2.3 ± 0.3 M for A 1–40, A 1–42 and A 1–40Q, respectively. Comparison of IDE activity from seven AD brain cytosolic fractions and six age-matched controls revealed a significant decrease in A degrading activity in the first group, supporting the hypothesis that a reduced IDE activity may contribute to A accumulation in the brain.  相似文献   

15.
Some characteristics of Bacillus subtilis phage SPO2 which show that it is a temperate phage are presented. Wild-type SPO2 forms turbid plaques, similar to those of other temperate phages. SPO2 lysogenic strains which are resistant to SPO2 can be isolated; these strains remain stable lysogens despite the fact that they can no longer adsorb SPO2. SPO2 lysogenic strains can be grown for many generations in SPO2 antiserum and remain lysogenic. Phage SPO2 plates on phi105 lysogens and phage phi105 plates on SPO2 lysogens; this indicates that SPO2 and phi105 are heteroimmune. Phage phi105 plates on an SPO2-resistant strain; this indicates that SPO2 and phi105 adsorb to different receptor sites on the bacterial surface.  相似文献   

16.
17.
Gene–environment interactions have been extensively studied in lung cancer. It is likely that several genetic polymorphisms cooperate in increasing the individual risk. Therefore, the study of gene–gene interactions might be important to identify high-susceptibility subgroups. GSEC is an initiative aimed at collecting available data sets on metabolic polymorphisms and the risks of cancer at several sites and performing pooled analyses of the original data. Authors of published papers have provided original data sets. The present paper refers to gene–gene interactions in lung cancer and considers three polymorphisms in three metabolic genes: CYP1A1, GSTM1 and GSTT1. The present analyses compare the gene–gene interactions of the CYP1A1*2A, GSTM1 and GSTT1 polymorphisms from studies on lung cancer conducted in Europe and the USA between 1991 and 2000. Only Caucasians have been included. The data set includes 1466 cases and 1488 controls. The only clear-cut association was found with CYP1A1*2A. This association remained unchanged after stratification by polymorphisms in other genes (with an odds ratio [OR] of approximately 2.5), except when interaction with GSTM1 was considered. When the OR for CYP1A1*2A was stratified according to the GSTM1 genotype, the OR was increased only among the subjects who had the null (homozygous deletion) GSTM1 genotype (OR=2.8, 95% CI=0.9–8.4). The odds ratio for the interactive term (CYP1A1*2A by GSTM1) in logistic regression was 2.7 (95% CI=0.5–15.3). An association between lung cancer and the homozygous CYP1A1*2A genotype is confirmed. An apparent and biologically plausible interaction is suggested between this genotype and GSTM1.  相似文献   

18.
19.
β1–3-N-Acetylglucosaminyltransferases (β3GlcNAcTs) and β1–4-galactosyltransferases (β4GalTs) have been broadly used in enzymatic synthesis of N-acetyllactosamine (LacNAc)-containing oligosaccharides and glycoconjugates including poly-LacNAc, and lacto-N-neotetraose (LNnT) found in the milk of human and other mammals. In order to explore oligosaccharides and derivatives that can be synthesized by the combination of β3GlcNAcTs and β4GalTs, donor substrate specificity studies of two bacterial β3GlcNAcTs from Helicobacter pylori (Hpβ3GlcNAcT) and Neisseria meningitidis (NmLgtA), respectively, using a library of 39 sugar nucleotides were carried out. The two β3GlcNAcTs have complementary donor substrate promiscuity and 13 different trisaccharides were produced. They were used to investigate the acceptor substrate specificities of three β4GalTs from Neisseria meningitidis (NmLgtB), Helicobacter pylori (Hpβ4GalT), and bovine (Bβ4GalT), respectively. Ten of the 13 trisaccharides were shown to be tolerable acceptors for at least one of these β4GalTs. The application of NmLgtA in one-pot multienzyme (OPME) synthesis of two trisaccharides including GalNAcβ1–3Galβ1–4GlcβProN3 and Galβ1–3Galβ1–4Glc was demonstrated. The study provides important information for using these glycosyltransferases as powerful catalysts in enzymatic and chemoenzymatic syntheses of oligosaccharides and derivatives which can be useful probes and reagents.  相似文献   

20.
Intermediate filament (IF) attachment to intercellular junctions is required for skin and heart integrity, but how the strength and dynamics of this attachment are modulated during normal and pathological remodeling is poorly understood. We show that glycogen synthase kinase 3 (GSK3) and protein arginine methyltransferase 1 (PRMT-1) cooperate to orchestrate a series of posttranslational modifications on the IF-anchoring protein desmoplakin (DP) that play an essential role in coordinating cytoskeletal dynamics and cellular adhesion. Front-end electron transfer dissociation mass spectrometry analyses of DP revealed six novel serine phosphorylation sites dependent on GSK3 signaling and four novel arginine methylation sites including R2834, the mutation of which has been associated with arrhythmogenic cardiomyopathy (AC). Inhibition of GSK3 or PRMT-1 or overexpression of the AC-associated mutant R2834H enhanced DP–IF associations and delayed junction assembly. R2834H blocked the GSK3 phosphorylation cascade and reduced DP–GSK3 interactions in cultured keratinocytes and in the hearts of transgenic R2834H DP mice. Interference with this regulatory machinery may contribute to skin and heart diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号