首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Transgenically introduced laminin (LN) alpha1 chain prevents muscular dystrophy in LNalpha2 chain deficient mice. We now report increased integrin alpha7Bbeta1D synthesis in dystrophic LNalpha2 chain deficient muscle. Yet, immunofluorescence demonstrated a reduced expression of integrin alpha7B subunit at the sarcolemma. Transgenic expression of LNalpha1 chain reconstituted integrin alpha7B at the sarcolemma. Expression of alpha- and beta-dystroglycan is enhanced in LNalpha2 chain deficient muscle and normalized by transgenic expression of LNalpha1 chain. We suggest that LNalpha1 chain in part ameliorates the development of LNalpha2 chain deficient muscular dystrophy by retaining the binding sites for integrin alpha7Bbeta1D and alpha-dystroglycan, respectively.  相似文献   

2.
1. Mouse skeletal-muscle sarcolemma was isolated, and the preparations obtained from normal mouse muscle and from muscle of mice with hereditary muscular dystrophy were characterized with respect to appearance under the optical and electron microscopes, distribution of marker enzymes, histochemical properties and biochemical composition. 2. The sarcolemmal membranes from normal and dystrophic muscle were subjected to detailed lipied analysis. Total lipid content was shown to increase in sarcolemma from dystrophic mice as a result of a large increase in neutral lipid and a smaller increase in total phospholipids. Further analysis of the neutral-lipid fraction showed that total acylglycerols increased 6-fold, non-esterified fatty acid 4-fold and cholesterol esters 2-fold, whereas the amount of free cholesterol remained unchanged in sarcolemma from dystrophic muscle. Significant increases were found in lysophosphatidylcholine, phosphatidylcholine and phosphatidylethanolamine in dystrophic-muscle sarcolemma; however, the relative composition of the phospholipid fraction remained essentially the same as in the normal case. 3. The overall result of alterations in lipid composition of the sarcolemma in mouse muscular dystrophy was an increase in neutral lipid compared with total phospholipid, and a 4-fold decrease in the relative amount of free cholesterol in the membrane. The possible impact of these changes on membrane function is discussed.  相似文献   

3.
Myofiber wasting in muscular dystrophy has largely been ascribed to necrotic cell death, despite reports identifying apoptotic markers in dystrophic muscle. Here we set out to identify the contribution of canonical apoptotic pathways to skeletal muscle degeneration in muscular dystrophy by genetically deleting a known inhibitor of apoptosis, apoptosis repressor with a card domain (Arc), in dystrophic mouse models. Nol3 (Arc protein) genetic deletion in the dystrophic Sgcd or Lama2 null backgrounds showed exacerbated skeletal muscle pathology with decreased muscle performance compared with single null dystrophic littermate controls. The enhanced severity of the dystrophic phenotype associated with Nol3 deletion was caspase independent but dependent on the mitochondria permeability transition pore (MPTP), as the inhibitor Debio-025 partially rescued skeletal muscle pathology in Nol3 -/- Sgcd -/- double targeted mice. Mechanistically, Nol3 -/- Sgcd -/- mice showed elevated total and mitochondrial Bax protein levels, as well as greater mitochondrial swelling, suggesting that Arc normally restrains the cell death effects of Bax in skeletal muscle. Indeed, knockdown of Arc in mouse embryonic fibroblasts caused an increased sensitivity to cell death that was fully blocked in Bax Bak1 (genes encoding Bax and Bak) double null fibroblasts. Thus Arc deficiency in dystrophic muscle exacerbates disease pathogenesis due to a Bax-mediated sensitization of mitochondria-dependent death mechanisms.  相似文献   

4.
Mice deficient in α-sarcoglycan (Sgca-null mice) develop progressive muscular dystrophy and serve as a model for human limb girdle muscular dystrophy type 2D. Sgca-null mice suffer a more severe myopathy than that of mdx mice, the model for Duchenne muscular dystrophy. This is the opposite of what is observed in humans and the reason for this is unknown. In an attempt to understand the cellular basis of this severe muscular dystrophy, we isolated clonal populations of myogenic progenitor cells (MPCs), the resident postnatal muscle progenitors of dystrophic and wild-type mice. MPCs from Sgca-null mice generated much smaller clones than MPCs from wild-type or mdx dystrophic mice. Impaired proliferation of Sgca-null myogenic precursors was confirmed by single fiber analysis and this difference correlated with Sgca expression during MPC proliferation. In the absence of dystrophin and associated proteins, which are only expressed after differentiation, SGCA complexes with and stabilizes FGFR1. Deficiency of Sgca leads to an absence of FGFR1 expression at the membrane and impaired MPC proliferation in response to bFGF. The low proliferation rate of Sgca-null MPCs was rescued by transduction with Sgca-expressing lentiviral vectors. When transplanted into dystrophic muscle, Sgca-null MPCs exhibited reduced engraftment. The reduced proliferative ability of Sgca-null MPCs explains, at least in part, the severity of this muscular dystrophy and also why wild-type donor progenitor cells engraft efficiently and consequently ameliorate disease.  相似文献   

5.
Duchenne muscular dystrophy (DMD) is the most common inherited neuromuscular disease and is characterized by absence of the cytoskeletal protein dystrophin, muscle wasting, and fibrosis. We previously demonstrated that systemic infusion or oral administration of angiotensin-(1-7) (Ang-(1-7)), a peptide with opposing effects to angiotensin II, normalized skeletal muscle architecture, decreased local fibrosis, and improved muscle function in mdx mice, a dystrophic model for DMD. In this study, we investigated the presence, activity, and localization of ACE2, the enzyme responsible for Ang-(1-7) production, in wild type (wt) and mdx skeletal muscle and in a model of induced chronic damage in wt mice. All dystrophic muscles studied showed higher ACE2 activity than wt muscle. Immunolocalization studies indicated that ACE2 was localized mainly at the sarcolemma and, to a lesser extent, associated with interstitial cells. Similar results were observed in the model of chronic damage in the tibialis anterior (TA) muscle. Furthermore, we evaluated the effect of ACE2 overexpression in mdx TA muscle using an adenovirus containing human ACE2 sequence and showed that expression of ACE2 reduced the fibrosis associated with TA dystrophic muscles. Moreover, we observed fewer inflammatory cells infiltrating the mdx muscle. Finally, mdx gastrocnemius muscles from mice infused with Ang-(1-7), which decreases fibrosis, contain less ACE2 associated with the muscle. This is the first evidence supporting ACE2 as an important therapeutic target to improve the dystrophic skeletal muscle phenotype.  相似文献   

6.
Limb-girdle muscular dystrophy type 2D (LGMD 2D) is an autosomal recessive disorder caused by mutations in the α-sarcoglycan gene. To determine how α-sarcoglycan deficiency leads to muscle fiber degeneration, we generated and analyzed α-sarcoglycan– deficient mice. Sgca-null mice developed progressive muscular dystrophy and, in contrast to other animal models for muscular dystrophy, showed ongoing muscle necrosis with age, a hallmark of the human disease. Sgca-null mice also revealed loss of sarcolemmal integrity, elevated serum levels of muscle enzymes, increased muscle masses, and changes in the generation of absolute force. Molecular analysis of Sgca-null mice demonstrated that the absence of α-sarcoglycan resulted in the complete loss of the sarcoglycan complex, sarcospan, and a disruption of α-dystroglycan association with membranes. In contrast, no change in the expression of ε-sarcoglycan (α-sarcoglycan homologue) was observed. Recombinant α-sarcoglycan adenovirus injection into Sgca-deficient muscles restored the sarcoglycan complex and sarcospan to the membrane. We propose that the sarcoglycan–sarcospan complex is requisite for stable association of α-dystroglycan with the sarcolemma. The Sgca-deficient mice will be a valuable model for elucidating the pathogenesis of sarcoglycan deficient limb-girdle muscular dystrophies and for the development of therapeutic strategies for this disease.  相似文献   

7.
Duchenne muscular dystrophy is a musculoskeletal disease caused by mutations in the dystrophin gene. The purpose of this study was to use the mouse model of muscular dystrophy (mdx) to determine if the progression of the dystrophic phenotype in the diaphragm (costal) versus limb skeletal muscle (tibialis anterior) is associated with specific changes in extracellular regulated kinase (ERK1/2), p70 S6 kinase (p70(S6k)), or p38 signaling pathways. The studies detected that consistent with an earlier dystrophic phenotype, phosphorylation of p70(S6k) is elevated by 40% in the diaphragm with no change in limb muscle. In addition, phosphorylation of p38 kinase was decreased by 33% in the mdx diaphragm muscle. Levels of ERK1/2 as well as phosphorylation states were elevated in the diaphragm and limb muscle of mdx mice compared with age-matched control muscles. These results indicate that distinct signaling pathways are differentially activated in skeletal muscle of mdx mice. The specificity of these responses, particularly in the diaphragm, provides insight for potential targets for blunting the progression of the muscular dystrophy phenotype.  相似文献   

8.
Genetic defects in a number of components of the dystrophin–glycoprotein complex (DGC) lead to distinct forms of muscular dystrophy. However, little is known about how alterations in the DGC are manifested in the pathophysiology present in dystrophic muscle tissue. One hypothesis is that the DGC protects the sarcolemma from contraction-induced damage. Using tracer molecules, we compared sarcolemmal integrity in animal models for muscular dystrophy and in muscular dystrophy patient samples. Evans blue, a low molecular weight diazo dye, does not cross into skeletal muscle fibers in normal mice. In contrast, mdx mice, a dystrophin-deficient animal model for Duchenne muscular dystrophy, showed significant Evans blue accumulation in skeletal muscle fibers. We also studied Evans blue dispersion in transgenic mice bearing different dystrophin mutations, and we demonstrated that cytoskeletal and sarcolemmal attachment of dystrophin might be a necessary requirement to prevent serious fiber damage. The extent of dye incorporation in transgenic mice correlated with the phenotypic severity of similar dystrophin mutations in humans. We furthermore assessed Evans blue incorporation in skeletal muscle of the dystrophia muscularis (dy/dy) mouse and its milder allelic variant, the dy2J/dy2J mouse, animal models for congenital muscular dystrophy. Surprisingly, these mice, which have defects in the laminin α2-chain, an extracellular ligand of the DGC, showed little Evans blue accumulation in their skeletal muscles. Taken together, these results suggest that the pathogenic mechanisms in congenital muscular dystrophy are different from those in Duchenne muscular dystrophy, although the primary defects originate in two components associated with the same protein complex.  相似文献   

9.
Spinal muscular atrophy (SMA) is characterized by degeneration of motor neurons of the spinal cord associated with muscle paralysis and caused by mutations of the survival motor neuron gene (SMN). To determine whether SMN gene defect in skeletal muscle might have a role in SMA pathogenesis, deletion of murine SMN exon 7, the most frequent mutation found in SMA, has been restricted to skeletal muscle by using the Cre-loxP system. Mutant mice display ongoing muscle necrosis with a dystrophic phenotype leading to muscle paralysis and death. The dystrophic phenotype is associated with elevated levels of creatine kinase activity, Evans blue dye uptake into muscle fibers, reduced amount of dystrophin and upregulation of utrophin expression suggesting a destabilization of the sarcolemma components. The mutant mice will be a valuable model for elucidating the underlying mechanism. Moreover, our results suggest a primary involvement of skeletal muscle in human SMA, which may contribute to motor defect in addition to muscle denervation caused by the motor neuron degeneration. These data may have important implications for the development of therapeutic strategies in SMA.  相似文献   

10.
The dystrophin glycoprotein complex (DGC) is an assembly of proteins spanning the sarcolemma of skeletal muscle cells. Defects in the DGC appear to play critical roles in several muscular dystrophies due to disruption of basement membrane organization. O -mannosyl oligosaccharides on alpha-dystroglycan, a major extracellular component of the DGC, are essential for normal binding of alpha-dystroglycan to ligands (such as laminin) in the extracellular matrix and subsequent signal transmission to actin in the cytoskeleton of the muscle cell. Muscle-Eye-Brain disease (MEB) and Walker-Warburg Syndrome (WWS) have mutations in genes encoding glycosyltransferases needed for O -mannosyl oligosaccharide synthesis. Myodystrophic myd mice and humans with Fukuyama Congenital Muscular Dystrophy (FCMD), congenital muscular dystrophy due to defective fukutin-related protein (FKRP) and MDC1D have mutations in putative glycosyltransferases. These human congenital muscular dystrophies and the myd mouse are associated with defective glycosylation of alpha-dystroglycan. It is expected other congenital muscular dystrophies will prove to have mutations in genes involved in glycosylation.  相似文献   

11.
Duchenne muscular dystrophy is a frequent muscular disorder caused by mutations in the gene encoding dystrophin, a cytoskeletal protein that contributes to the stabilization of muscle fiber membrane during muscle activity. Affected individuals show progressive muscle wasting that generally causes death by age 30. In this study, the dystrophic mdx5Cv mouse model was used to investigate the effects of green tea extract, its major component (–)-epigallocatechin gallate, and pentoxifylline on dystrophic muscle quality and function. Three-week-old mdx5Cv mice were fed for either 1 or 5 wk a control chow or a chow containing the test substances. Histological examination showed a delay in necrosis of the extensor digitorum longus muscle in treated mice. Mechanical properties of triceps suræ muscles were recorded while the mice were under deep anesthesia. Phasic and tetanic tensions of treated mice were increased, reaching values close to those of normal mice. The phasic-to-tetanic tension ratio was corrected. Finally, muscles from treated mice exhibited 30–50% more residual force in a fatigue assay. These results demonstrate that diet supplementation of dystrophic mdx5Cv mice with green tea extract or (–)-epigallocatechin gallate protected muscle against the first massive wave of necrosis and stimulated muscle adaptation toward a stronger and more resistant phenotype. pharmacotherapy; muscular disorders; dystrophic mdx5cv mouse; muscle mechanical properties; muscle histology  相似文献   

12.
Duchenne muscular dystrophy is an inherited disease caused by the absence of dystrophin, a structural protein normally located under the sarcolemma of skeletal muscle fibers. Muscle degeneration occurring in this disease is thought to be partly caused by increased Ca2+ entry through sarcolemmal cationic channels. Using the Mn2+ quench method, we show here that Mn2+ entry triggered by Ca2+ store depletion but not basal Mn2+ entry relies on Ca2+-independent PLA2 (iPLA2) activity in dystrophic fibers isolated from a murine model of Duchenne muscular dystrophy, the mdx5cv mouse. iPLA2 was found to be localized in the vicinity of the sarcolemma and consistently, the iPLA2 lipid product lysophosphatidylcholine was found to trigger Ca2+ entry through sarcolemmal channels, suggesting that it acts as an intracellular messenger responsible for store-operated channels opening in dystrophic fibers. Our results suggest that inhibition of iPLA2 and lysophospholipid production may be of interest to reduce Ca2+ entry and subsequent degeneration of dystrophic muscle.  相似文献   

13.
Duchenne muscular dystrophy (DMD) is a fatal and incurable muscle degenerative disorder. We identify a function of the protease urokinase plasminogen activator (uPA) in mdx mice, a mouse model of DMD. The expression of uPA is induced in mdx dystrophic muscle, and the genetic loss of uPA in mdx mice exacerbated muscle dystrophy and reduced muscular function. Bone marrow (BM) transplantation experiments revealed a critical function for BM-derived uPA in mdx muscle repair via three mechanisms: (1) by promoting the infiltration of BM-derived inflammatory cells; (2) by preventing the excessive deposition of fibrin; and (3) by promoting myoblast migration. Interestingly, genetic loss of the uPA receptor in mdx mice did not exacerbate muscular dystrophy in mdx mice, suggesting that uPA exerts its effects independently of its receptor. These findings underscore the importance of uPA in muscular dystrophy.  相似文献   

14.
Dystrophin, a 427 kD membrane-associated structural protein in muscle cells, is thought to confer strength to the myofiber sarcolemma and protect the membrane from rupture during the stresses of contraction. Dystrophin is absent in muscle cells from Duchenne muscular dystrophy (DMD) patients and mdx mice, a DMD model. Dystrophic muscle membranes undergo more frequent transient, nonlethal tears than normal cell membranes, especially during exercise. In addition, the mean open probability of a background (``leak') calcium channel is higher in dystrophic muscle cells, which leads to higher intracellular free calcium levels. Because elevated calcium levels may contribute to the eventual necrosis of muscle cells in DMD, we examined the possibility that the history of sarcolemmal rupture at a specific location on the membrane affects the open probability of nearby calcium leak channels. Membrane ruptures left by the excision of cell-attached patch-clamp electrodes were used to mimic natural tears. Patches made within 5 microns of excision sites contained channels with a fourfold greater mean open probability than channels in patches 50 μm away from ruptures. The increased leak channel activity near ruptures was seen continuously through the duration of the recordings and was not seen if the rupture was made in the presence of the protease inhibitor leupeptin. Calcium background channels proteolytically activated near ruptures, perhaps in a calcium-dependent manner, may thus be the lasting consequence of the weaker dystrophic sarcolemma, leading to chronically raised intracellular free calcium, increased calcium-dependent proteolysis and, eventually, necrosis. Received: 29 November 1999/Revised: 13 April 2000  相似文献   

15.
Unregulated Ca2+ entry is thought to underlie muscular dystrophy. Here, we generated skeletal-muscle-specific transgenic (TG) mice expressing the Na+-Ca2+ exchanger 1 (NCX1) to model its identified augmentation during muscular dystrophy. The NCX1 transgene induced dystrophy-like disease in all hind-limb musculature, as well as exacerbated the muscle disease phenotypes in δ-sarcoglycan (Sgcd−/−), Dysf−/−, and mdx mouse models of muscular dystrophy. Antithetically, muscle-specific deletion of the Slc8a1 (NCX1) gene diminished hind-limb pathology in Sgcd−/− mice. Measured increases in baseline Na+ and Ca2+ in dystrophic muscle fibers of the hind-limb musculature predicts a net Ca2+ influx state due to reverse-mode operation of NCX1, which mediates disease. However, the opposite effect is observed in the diaphragm, where NCX1 overexpression mildly protects from dystrophic disease through a predicted enhancement in forward-mode NCX1 operation that reduces Ca2+ levels. Indeed, Atp1a2+/− (encoding Na+-K+ ATPase α2) mice, which have reduced Na+ clearance rates that would favor NCX1 reverse-mode operation, showed exacerbated disease in the hind limbs of NCX1 TG mice, similar to treatment with the Na+-K+ ATPase inhibitor digoxin. Treatment of Sgcd−/− mice with ranolazine, a broadly acting Na+ channel inhibitor that should increase NCX1 forward-mode operation, reduced muscular pathology.  相似文献   

16.
mAbs specific for protein components of the surface membrane of rabbit skeletal muscle have been used as markers in the isolation and characterization of skeletal muscle sarcolemma membranes. Highly purified sarcolemma membranes from rabbit skeletal muscle were isolated from a crude surface membrane preparation by wheat germ agglutination. Immunoblot analysis of subcellular fractions from skeletal muscle revealed that dystrophin and its associated glycoproteins of 156 and 50 kD are greatly enriched in purified sarcolemma vesicles. The purified sarcolemma was also enriched in novel sarcolemma markers (SL45, SL/TS230) and Na+/K(+)-ATPase, whereas t-tubule markers (alpha 1 and alpha 2 subunits of dihydropyridine receptor, TS28) and sarcoplasmic reticulum markers (Ca2(+)-ATPase, ryanodine receptor) were greatly diminished in this preparation. Analysis of isolated sarcolemma by SDS-PAGE and densitometric scanning demonstrated that dystrophin made up 2% of the total protein in the rabbit sarcolemma preparation. Therefore, our results demonstrate that although dystrophin is a minor muscle protein it is a major constituent of the sarcolemma membrane in skeletal muscle. Thus the absence of dystrophin in Duchenne muscular dystrophy may result in a major disruption of the cytoskeletal network underlying the sarcolemma in dystrophic muscle.  相似文献   

17.
Alpha-sarcoglycan (Sgca) is a transmembrane glycoprotein of the dystrophin complex located at skeletal and cardiac muscle sarcolemma. Defects in the alpha-sarcoglycan gene (Sgca) cause the severe human-type 2D limb girdle muscular dystrophy. Because Sgca-null mice develop progressive muscular dystrophy similar to human disorder they are a valuable animal model for investigating the physiopathology of the disorder. In this study, biochemical and functional properties of fast-twitch extensor digitorum longus (EDL) and slow-twitch soleus muscles of the Sgca-null mice were analyzed. EDL muscle of Sgca-null mice showed twitch and tetanic kinetics comparable with those of wild-type controls. In contrast, soleus muscle showed reduction of twitch half-relaxation time, prolongation of tetanic half-relaxation time, and increase of maximal rate of rise of tetanus. EDL muscle of Sgca-null mice demonstrated a marked reduction of specific twitch and tetanic tensions and a higher resistance to fatigue compared with controls, changes that were not evident in dystrophic soleus. Contrary to EDL fibers, soleus muscle fibers of Sgca-null mice distinctively showed right shift of the pCa-tension (pCa is the negative log of Ca2+ concentration) relationships and reduced sensitivity to caffeine of sarcoplasmic reticulum. Both EDL and soleus muscles showed striking changes in myosin heavy-chain (MHC) isoform composition, whereas EDL showed a larger number of hybrid fibers than soleus. In contrast to the EDL, soleus muscle of Sgca-null mice contained a higher number of regenerating fibers and thus higher levels of embryonic MHC. In conclusion, this study revealed profound distinctive biochemical and physiological modifications in fast- and slow-twitch muscles resulting from alpha-sarcoglycan deficiency.  相似文献   

18.
19.
Disruption of skeletal muscle homeostasis by substitution with fibrotic tissue constitutes the principal cause of death in Duchenne muscular dystrophy (DMD) patients, yet the implicated fibrogenic mechanisms remain poorly understood. This study identifies the extracellular PAI-1/urokinase-type plasminogen activator (uPA) balance as an important regulator of microribonucleic acid (miR)-21 biogenesis, controlling age-associated muscle fibrosis and dystrophy progression. Genetic loss of PAI-1 in mdx dystrophic mice anticipated muscle fibrosis through these sequential mechanisms: the alteration of collagen metabolism by uPA-mediated proteolytic processing of transforming growth factor (TGF)-β in muscle fibroblasts and the activation of miR-21 expression, which inhibited phosphatase and tensin homologue and enhanced AKT signaling, thus endowing TGF-β with a remarkable cell proliferation-promoting potential. Age-associated fibrogenesis and muscle deterioration in mdx mice, as well as exacerbated dystrophy in young PAI-1(-/-) mdx mice, could be reversed by miR-21 or uPA-selective interference, whereas forced miR-21 overexpression aggravated disease severity. The PAI-1-miR-21 fibrogenic axis also appeared dysregulated in muscle of DMD patients, providing a basis for effectively targeting fibrosis and muscular dystrophies in currently untreatable individuals.  相似文献   

20.
alpha-Sarcoglycan is a 50 kDa single-pass transmembrane glycoprotein exclusively expressed in striated muscle that, together with beta-, gamma-, and delta-sarcoglycan, forms a sub-complex at the muscle fibre cell membrane. The sarcoglycans are components of the dystrophin-associated glycoprotein (DAG) complex which forms a mechanical link between the intracellular cytoskeleton and extracellular matrix. The DAG complex function is to protect the muscle membrane from the stress of contractile activity and as a structure for the docking of signalling proteins. Genetic defects of DAG components cause muscular dystrophies. A lack or defects of alpha-sarcoglycan causes the severe type 2D limb girdle muscular dystrophy. alpha-Sarcoglycan-null (Sgca-null) mice develop progressive muscular dystrophy similar to the human disorder. This animal model was used in the present work for an ultrastructural study of diaphragm muscle. Diaphragm from Sgca-null mouse presents a clear dystrophic phenotype, with necrosis, regeneration, fibre hypertrophy and splitting, excess of collagen and fatty infiltration. Some abnormalities were also observed, such as centrally located nuclei of abnormal shape, fibres containing inclusion bodies within the contractile structure, and fibres with electron-dense material dispersed over almost the entire cell. Additionally, unusual interstitial cells of uncertain identity were detected within muscle fibres. The abnormal ultrastructure of the diaphragm from Sgca-null mice is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号