首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Eukaryotic cells must coordinate contraction of the actomyosin ring at the division site together with ingression of the plasma membrane and remodelling of the extracellular matrix (ECM) to support cytokinesis, but the underlying mechanisms are still poorly understood. In eukaryotes, glycosyltransferases that synthesise ECM polysaccharides are emerging as key factors during cytokinesis. The budding yeast chitin synthase Chs2 makes the primary septum, a special layer of the ECM, which is an essential process during cell division. Here we isolated a group of actomyosin ring components that form complexes together with Chs2 at the cleavage site at the end of the cell cycle, which we named ‘ingression progression complexes’ (IPCs). In addition to type II myosin, the IQGAP protein Iqg1 and Chs2, IPCs contain the F-BAR protein Hof1, and the cytokinesis regulators Inn1 and Cyk3. We describe the molecular mechanism by which chitin synthase is activated by direct association of the C2 domain of Inn1, and the transglutaminase-like domain of Cyk3, with the catalytic domain of Chs2. We used an experimental system to find a previously unanticipated role for the C-terminus of Inn1 in preventing the untimely activation of Chs2 at the cleavage site until Cyk3 releases the block on Chs2 activity during late mitosis. These findings support a model for the co-ordinated regulation of cell division in budding yeast, in which IPCs play a central role.  相似文献   

2.
Cytokinesis in yeast can be achieved by plasma membrane ingression, which is dependent on actomyosin ring constriction. Inn1 presumably couples these processes by interaction with both the plasma membrane and the temporary actomyosin ring component Hof1. In addition, an actomyosin ring independent cytokinesis pathway exists in yeast. We here identified Cyk3, a key component of the alternative pathway, as a novel interaction partner of Inn1. The carboxy-terminal proline rich part of Inn1 binds the SH3 domains of either Cyk3 or Hof1. Strains with truncated proteins lacking either of these SH3 domains do not display any severe phenotypes, but are synthetically lethal, demonstrating their crucial role in cytokinesis. Overexpression of CYK3 leads to an actomyosin ring independent recruitment of Inn1 to the bud neck, further supporting the significance of this interaction in vivo. Moreover, overexpression of CYK3 in a myo1 or an iqg1 deletion not only restores viability, but also the recruitment of Inn1 to the bud neck. We propose that Cyk3 is part of an actomyosin ring independent cytokinesis pathway, which acts as a rescue mechanism to recruit Inn1 to the bud neck.  相似文献   

3.
During cytokinesis, the actomyosin contractile ring drives ingression of the overlying plasma membrane. A recent study has provided mechanistic insight into how the contractile ring might contribute to membrane ingression.  相似文献   

4.
In yeast and animal cytokinesis, the small guanosine triphosphatase (GTPase) Rho1/RhoA has an established role in formation of the contractile actomyosin ring, but its role, if any, during cleavage-furrow ingression and abscission is poorly understood. Through genetic screens in yeast, we found that either activation of Rho1 or inactivation of another small GTPase, Cdc42, promoted secondary septum (SS) formation, which appeared to be responsible for abscission. Consistent with this hypothesis, a dominant-negative Rho1 inhibited SS formation but not cleavage-furrow ingression or the concomitant actomyosin ring constriction. Moreover, Rho1 is temporarily inactivated during cleavage-furrow ingression; this inactivation requires the protein Cyk3, which binds Rho1-guanosine diphosphate via its catalytically inactive transglutaminase-like domain. Thus, unlike the active transglutaminases that activate RhoA, the multidomain protein Cyk3 appears to inhibit activation of Rho1 (and thus SS formation), while simultaneously promoting cleavage-furrow ingression through primary septum formation. This work suggests a general role for the catalytically inactive transglutaminases of fungi and animals, some of which have previously been implicated in cytokinesis.  相似文献   

5.
In budding yeast, partitioning of the cytoplasm during cytokinesis can proceed via a pathway dependent on the contractile actomyosin ring, as in other eukaryotes, or alternatively via a septum deposition pathway dependent on an SH3 domain protein, Hof1/Cyk2 (the yeast PSTPIP1 ortholog). In dividing yeast cells, Hof1 forms a ring at the bud neck distinct from the actomyosin ring, and this zone is active in septum deposition. We previously showed the yeast Wiskott-Aldrich syndrome protein (WASP)-interacting protein (WIP) ortholog, verprolin/Vrp1/End5, interacts with Hof1 and facilitates Hof1 recruitment to the bud neck. A Vrp1 fragment unable to interact with yeast WASP (Las17/Bee1), localize to the actin cytoskeleton or function in polarization of the cortical actin cytoskeleton nevertheless retains function in Hof1 recruitment and cytokinesis. Here, we show the ability of this Vrp1 fragment to bind the Hof1 SH3 domain via its Hof one trap (HOT) domain is critical for cytokinesis. The Vrp1 HOT domain consists of three tandem proline-rich motifs flanked by serines. Unexpectedly, the Hof1 SH3 domain itself is not required for cytokinesis and indeed appears to negatively regulate cytokinesis. The Vrp1 HOT domain promotes cytokinesis by binding to the Hof1 SH3 domain and counteracting its inhibitory effect.  相似文献   

6.
Cytokinesis requires coordination of actomyosin ring (AMR) contraction with rearrangements of the plasma membrane and extracellular matrix. In Saccharomyces cerevisiae, new membrane, the chitin synthase Chs2 (which forms the primary septum [PS]), and the protein Inn1 are all delivered to the division site upon mitotic exit even when the AMR is absent. Inn1 is essential for PS formation but not for Chs2 localization. The Inn1 C-terminal region is necessary for localization, and distinct PXXP motifs in this region mediate functionally important interactions with SH3 domains in the cytokinesis proteins Hof1 (an F-BAR protein) and Cyk3 (whose overexpression can restore PS formation in inn1Δ cells). The Inn1 N terminus resembles C2 domains but does not appear to bind phospholipids; nonetheless, when overexpressed or fused to Hof1, it can provide Inn1 function even in the absence of the AMR. Thus, Inn1 and Cyk3 appear to cooperate in activating Chs2 for PS formation, which allows coordination of AMR contraction with ingression of the cleavage furrow.  相似文献   

7.
The dramatic cell shape changes during cytokinesis require the interplay between microtubules and the actomyosin contractile ring, and addition of membrane to the plasma membrane. Numerous membrane-trafficking components localize to the central spindle during cytokinesis, but it is still unclear how this machinery is targeted there and how membrane trafficking is coordinated with cleavage furrow ingression. Here we use an arf6 null mutant to show that the endosomal GTPase ARF6 is required for cytokinesis in Drosophila spermatocytes. ARF6 is enriched on recycling endosomes at the central spindle, but it is required neither for central spindle nor actomyosin contractile ring assembly, nor for targeting of recycling endosomes to the central spindle. However, in arf6 mutants the cleavage furrow regresses because of a failure in rapid membrane addition to the plasma membrane. We propose that ARF6 promotes rapid recycling of endosomal membrane stores during cytokinesis, which is critical for rapid cleavage furrow ingression.  相似文献   

8.
Cytokinesis requires the coordination of many cellular complexes, particularly those involved in the constriction and reconstruction of the plasma membrane in the cleavage furrow. We have investigated the regulation and function of vesicle transport and fusion during cytokinesis in budding yeast. By using time-lapse confocal microscopy, we show that post-Golgi vesicles, as well as the exocyst, a complex required for the tethering and fusion of these vesicles, localize to the bud neck at a precise time just before spindle disassembly and actomyosin ring contraction. Using mutants affecting cyclin degradation and the mitotic exit network, we found that targeted secretion, in contrast to contractile ring activation, requires cyclin degradation but not the mitotic exit network. Analysis of cells in late anaphase bearing exocyst and myosin V mutations show that both vesicle transport and fusion machineries are required for the completion of cytokinesis, but this is not due to a delay in mitotic exit or assembly of the contractile ring. Further investigation of the dynamics of contractile rings in exocyst mutants shows these cells may be able to initiate contraction but often fail to complete the contraction due to premature disassembly during the contraction phase. This phenotype led us to identify Chs2, a transmembrane protein targeted to the bud neck through the exocytic pathway, as necessary for actomyosin ring stability during contraction. Chs2, as the chitin synthase that produces the primary septum, thus couples the assembly of the extracellular matrix with the dynamics of the contractile ring during cytokinesis.  相似文献   

9.
Cytokinesis is a highly ordered cellular process driven by interactions between central spindle microtubules and the actomyosin contractile ring linked to the dynamic remodelling of the plasma membrane. The mechanisms responsible for reorganizing the plasma membrane at the cell equator and its coupling to the contractile ring in cytokinesis are poorly understood. We report here that Syndapin, a protein containing an F-BAR domain required for membrane curvature, contributes to the remodelling of the plasma membrane around the contractile ring for cytokinesis. Syndapin colocalizes with phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) at the cleavage furrow, where it directly interacts with a contractile ring component, Anillin. Accordingly, Anillin is mislocalized during cytokinesis in Syndapin mutants. Elevated or diminished expression of Syndapin leads to cytokinesis defects with abnormal cortical dynamics. The minimal segment of Syndapin, which is able to localize to the cleavage furrow and induce cytokinesis defects, is the F-BAR domain and its immediate C-terminal sequences. Phosphorylation of this region prevents this functional interaction, resulting in reduced ability of Syndapin to bind to and deform membranes. Thus, the dephosphorylated form of Syndapin mediates both remodelling of the plasma membrane and its proper coupling to the cytokinetic machinery.  相似文献   

10.
Actin filaments and myosin II are evolutionarily conserved force-generating components of the contractile ring during cytokinesis. Here we show that in budding yeast, actin filament depolymerization plays a major role in actomyosin ring constriction. Cofilin mutation or chemically stabilizing actin filaments attenuate actomyosin ring constriction. Deletion of myosin II motor domain or the myosin regulatory light chain reduced the contraction rate and also the rate of actin depolymerization in the ring. We constructed a quantitative microscopic model of actomyosin ring constriction via filament sliding driven by both actin depolymerization and myosin II motor activity. Model simulations based on experimental measurements support the notion that actin depolymerization is the predominant mechanism for ring constriction. The model predicts invariability of total contraction time regardless of the initial ring size, as originally reported for C. elegans embryonic cells. This prediction was validated in yeast cells of different sizes due to different ploidies.  相似文献   

11.
Cytokinesis has been extensively studied in different models, but the role of the extracellular cell wall is less understood. Here we studied this process in fission yeast. The essential protein Bgs4 synthesizes the main cell wall β(1,3)glucan. We show that Bgs4-derived β(1,3)glucan is required for correct and stable actomyosin ring positioning in the cell middle, before the start of septum formation and anchorage to the cell wall. Consequently, β(1,3)glucan loss generated ring sliding, oblique positioned rings and septa, misdirected septum synthesis indicative of relaxed rings, and uncoupling between a fast ring and membrane ingression and slow septum synthesis, suggesting that cytokinesis can progress with defective septum pushing and/or ring pulling forces. Moreover, Bgs4-derived β(1,3)glucan is essential for secondary septum formation and correct primary septum completion. Therefore, our results show that extracellular β(1,3)glucan is required for cytokinesis to connect the cell wall with the plasma membrane and for contractile ring function, as proposed for the equivalent extracellular matrix in animal cells.  相似文献   

12.
The Hof1 protein (Homologue of Fifteen) regulates formation of the primary septum during cytokinesis in the budding yeast Saccharomyces cerevisiae, whereas the orthologous Cdc15 protein in fission yeast regulates the actomyosin ring by using its F-BAR domain to recruit actin nucleators to the cleavage site. Here we show that budding yeast Hof1 also contributes to actin ring assembly in parallel with the Rvs167 protein. Simultaneous deletion of the HOF1 and RVS167 genes is lethal, and cells fail to assemble the actomyosin ring as they progress through mitosis. Although Hof1 and Rvs167 are not orthologues, they both share an analogous structure, with an F-BAR or BAR domain at the amino terminus, capable of inducing membrane curvature, and SH3 domains at the carboxyl terminus that bind to specific proline-rich targets. The SH3 domain of Rvs167 becomes essential for assembly of the actomyosin ring in cells lacking Hof1, suggesting that it helps to recruit a regulator of the actin cytoskeleton. This new function of Rvs167 appears to be independent of its known role as a regulator of the Arp2/3 actin nucleator, as actin ring assembly is not abolished by the simultaneous inactivation of Hof1 and Arp2/3. Instead we find that recruitment to the bud-neck of the Iqg1 actin regulator is defective in cells lacking Hof1 and Rvs167, though future studies will be needed to determine if this reflects a direct interaction between these factors. The redundant role of Hof1 in actin ring assembly suggests that the mechanism of actin ring assembly has been conserved to a greater extent across evolution than anticipated previously.  相似文献   

13.
A paradigm of cytokinesis in animal cells is that the actomyosin contractile ring provides the primary force to divide the cell [1]. In the fission yeast Schizosaccharomyces pombe, cytokinesis also involves a conserved cytokinetic ring, which has been generally assumed to provide the force for cleavage [2-4] (see also [5]). However, in contrast to animal cells, cytokinesis in yeast cells also requires the assembly of a cell wall septum [6], which grows centripetally inward as the ring closes. Fission yeast, like other walled cells, also possess high (MPa) turgor pressure [7-9]. Here, we show that turgor pressure is an important factor in the mechanics of cytokinesis. Decreasing effective turgor pressure leads to an increase in cleavage rate, suggesting that the inward force generated by the division apparatus opposes turgor pressure. The contractile ring, which is predicted to provide only a tiny fraction of the mechanical stress required to overcome turgor, is largely dispensable for ingression; once septation has started, cleavage can continue in the absence of the contractile ring. Scaling arguments and modeling suggest that the large forces for cytokinesis are not produced by the contractile ring but are driven by the assembly of cell wall polymers in the growing septum.  相似文献   

14.
The budding yeast IQGAP-like protein Cyk1p/Iqg1p localizes to the mother-bud junction during anaphase and has been shown to be required for the completion of cytokinesis. In this study, video microscopy analysis of cells expressing green fluorescent protein-tagged Cyk1p/Iqg1p demonstrates that Cyk1p/Iqg1p is a dynamic component of the contractile ring during cytokinesis. Furthermore, in the absence of Cyk1p/Iqg1p, myosin II fails to undergo the contraction-like size change at the end of mitosis. To understand the mechanistic role of Cyk1p/Iqg1p in actomyosin ring assembly and dynamics, we have investigated the role of the structural domains that Cyk1p/Iqg1p shares with IQGAPs. An amino terminal portion containing the calponin homology domain binds to actin filaments and is required for the assembly of actin filaments to the ring. This result supports the hypothesis that Cyk1p/Iqg1p plays a direct role in F-actin recruitment. Deletion of the domain harboring the eight IQ motifs abolishes the localization of Cyk1p/Iqg1p to the bud neck, suggesting that Cyk1p/Iqg1p may be localized through interactions with a calmodulin-like protein. Interestingly, deletion of the COOH-terminal GTPase-activating protein-related domain does not affect Cyk1p/Iqg1p localization or actin recruitment to the ring but prevents actomyosin ring contraction. In vitro binding experiments show that Cyk1p/Iqg1p binds to calmodulin, Cmd1p, in a calcium-dependent manner, and to Tem1p, a small GTP-binding protein previously found to be required for the completion of anaphase. These results demonstrate the critical function of Cyk1p/Iqg1p in regulating various steps of actomyosin ring assembly and cytokinesis.  相似文献   

15.

Background  

All eukaryotes with the exception of plants use an actomyosin ring to generate a constriction force at the site of cell division (cleavage furrow) during mitosis and meiosis. The structure and filament forming abilities located in the C-terminal or tail region of one of the main components, myosin II, are important for localising the molecule to the contractile ring (CR) during cytokinesis. However, it remains poorly understood how myosin II is recruited to the site of cell division and how this recruitment relates to myosin filament assembly. Significant conservation between species of the components involved in cytokinesis, including those of the CR, allows the use of easily genetically manipulated organisms, such as budding yeast (Saccharomyces cerevisiae), in the study of cytokinesis. Budding yeast has a single myosin II protein, named Myo1. Unlike most other class II myosins, the tail of Myo1 has an irregular coiled coil. In this report we use molecular genetics, biochemistry and live cell imaging to characterize the minimum localisation domain (MLD) of budding yeast Myo1.  相似文献   

16.
Cell cycle ends with cytokinesis that is the physical separation of a cell into two daughter cells. For faithful cytokinesis, cells integrate multiple processes, such as actomyosin ring formation, contraction and plasma membrane closure, into coherent responses. Linear actin assembly by formins is essential for formation and maintenance of actomyosin ring. Although budding yeast’s two formins, Bni1 and Bnr1, are known to switch their subcellular localization at the division site prior to cytokinesis, the underlying mechanisms were not completely understood. Here, we provide evidence showing that Bnr1 is dephosphorylated concomitant with its release from the division site. Impaired PP1/Glc7 activity delayed Bnr1 release and dephosphorylation, Bni1 recruitment and actomyosin ring formation at the division site. These results suggest the involvement of Glc7 in this regulation. Further, we identified Ref2 as the PP1 regulatory subunit responsible for this regulation. Taken together, Glc7 and Ref2 may have a role in actomyosin ring formation by modulating the localization of formins during cytokinesis.  相似文献   

17.
The final event of the eukaryotic cell cycle is cytokinesis, when two new daughter cells are born. How the timing and execution of cytokinesis is controlled is poorly understood. Here, we show that downregulation of cyclin-dependent kinase (Cdk) activity, together with upregulation of its counteracting phosphatase Cdc14, controls each of the sequential steps of cytokinesis, including furrow ingression, membrane resolution and cell separation in budding yeast. We use phosphoproteome analysis of mitotic exit to identify Cdk targets that are dephosphorylated at the time of cytokinesis. We then apply a new and widely applicable tool to generate conditionally phosphorylated proteins to identify those whose dephosphorylation is required for cytokinesis. This approach identifies Aip1, Ede1 and Inn1 as cytokinetic regulators. Our results suggest that cytokinesis is coordinately controlled by the master cell cycle regulator Cdk together with its counteracting phosphatase and that it is executed by concerted dephosphorylation of Cdk targets involved in several cell biological processes.  相似文献   

18.
Cell shape and membrane remodeling rely on regulated interactions between the lipid bilayer and cytoskeletal arrays at the cell cortex. During cytokinesis, animal cells build an actomyosin ring anchored to the plasma membrane at the equatorial cortex. Ring constriction coupled to plasma-membrane ingression separates the two daughter cells. Plasma-membrane lipids influence membrane biophysical properties such as membrane curvature and elasticity and play an active role in cell function, and specialized membrane domains are emerging as important factors in regulating assembly and rearrangement of the cytoskeleton. Here, we show that mutations in the gene bond, which encodes a Drosophila member of the family of Elovl proteins that mediate elongation of very-long-chain fatty acids, block or dramatically slow cleavage-furrow ingression during early telophase in dividing spermatocytes. In bond mutant cells at late stages of division, the contractile ring frequently detaches from the cortex and constricts or collapses to one side of the cell, and the cleavage furrow regresses. Our findings implicate very-long-chain fatty acids or their derivative complex lipids in allowing supple membrane deformation and the stable connection of cortical contractile components to the plasma membrane during cell division.  相似文献   

19.
In the budding yeast Saccharomyces cerevisiae, an actomyosin-based contractile ring is present during cytokinesis, as occurs in animal cells. However, the precise requirement for this structure during budding yeast cytokinesis has been controversial. Here we show that deletion of MYO1, the single myosin II gene, is lethal in a commonly used strain background. The terminal phenotype of myo1Delta is interconnected chains of cells, suggestive of a cytokinesis defect. To further investigate the role of Myo1p in cytokinesis, we conditionally disrupted Myo1 function by using either a dominant negative Myo1p construct or a strain where expression of Myo1p can be shut-off. Both ways of disruption of Myo1 function result in a failure in cytokinesis. Additionally, we show that a myo1Delta strain previously reported to grow nearly as well as the wild type contains a single genetic suppressor that alleviates the severe cytokinesis defects of myo1Delta. Using fluorescence time-lapse imaging and electron microscopy techniques, we show that cytokinesis in this strain is achieved through formation of multiple aberrant septa. Taken together, these results strongly suggest that the actomyosin ring is crucial for successful cytokinesis in budding yeast, but new cytokinetic mechanisms can evolve through genetic changes when myosin II function is impaired.  相似文献   

20.
It has recently been demonstrated that phosphatidylinositol 4,5-bisphosphate (PIP2) is localized at the cleavage furrow in dividing cells and its hydrolysis is required for complete cytokinesis, suggesting a pivotal role of PIP2 in cytokinesis. Here, we report that at least three mammalian isoforms of phosphoinositide-specific phospholipase C (PLC), PLCdelta1, PLCdelta3 and PLCbeta1, are localized to the cleavage furrow during cytokinesis. Targeting of the delta1 isoform to the furrow depends on the specific interaction between the PH domain and PIP2 in the plasma membrane. The necessity of active PLC in animal cell cytokinesis was confirmed using the specific inhibitors for PIP2 hydrolysis. These results support the model that activation of selected PLC isoforms at the cleavage furrow controls progression of cytokinesis through regulation of PIP2 levels: induction of the cleavage furrow by a contractile ring consisting of actomyosin is regulated by PIP2-dependent actin-binding proteins and formation of specific lipid domains required for membrane separation is affected by alterations in the lipid composition of the furrow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号