首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Deterioration of functional islet β-cell mass is the final step in progression to Type 2 diabetes. We previously reported that overexpression of Nkx6.1 in rat islets has the dual effects of enhancing glucose-stimulated insulin secretion (GSIS) and increasing β-cell replication. Here we show that Nkx6.1 strongly upregulates the prohormone VGF in rat islets and that VGF is both necessary and sufficient for Nkx6.1-mediated enhancement of GSIS. Moreover, the VGF-derived peptide TLQP-21 potentiates GSIS in rat and human islets and improves glucose tolerance in vivo. Chronic injection of TLQP-21 in prediabetic ZDF rats preserves islet mass and slows diabetes onset. TLQP-21 prevents islet cell apoptosis by a pathway similar to that used by GLP-1, but independent of the GLP-1, GIP, or VIP receptors. Unlike GLP-1, TLQP-21 does not inhibit gastric emptying or increase heart rate. We conclude that TLQP-21 is a targeted agent for enhancing islet β-cell survival and function.  相似文献   

2.
Type 1 and type 2 diabetes result from a deficit in insulin production and beta-cell mass. Methods to expand beta-cell mass are under intensive investigation for the treatment of type 1 and type 2 diabetes. We tested the hypothesis that cholecystokinin (CCK) can promote beta-cell proliferation. We treated isolated mouse and human islets with an adenovirus containing the CCK cDNA (AdCMV-CCK). We measured [(3)H]thymidine and BrdU incorporation into DNA and additionally, performed flow cytometry analysis to determine whether CCK overexpression stimulates beta-cell proliferation. We studied islet function by measuring glucose-stimulated insulin secretion and investigated the cell cycle regulation of proliferating beta-cells by quantitative RT-PCR and Western blot analysis. Overexpression of CCK stimulated [(3)H]thymidine incorporation into DNA 5.0-fold and 15.8-fold in mouse and human islets, respectively. AdCMV-CCK treatment also stimulated BrdU incorporation into DNA 10-fold and 21-fold in mouse and human beta-cells, respectively. Glucose-stimulated insulin secretion was unaffected by CCK expression. Analysis of cyclin and cdk mRNA and protein abundance revealed that CCK overexpression increased cyclin A, cyclin B, cyclin E, cdk1, and cdk2 with no change in cyclin D1, cyclin D2, cyclin D3, cdk4, or cdk6 in mouse and human islets. Additionally, AdCMV-CCK treatment of CCK receptor knockout and wild-type mice resulted in equal [(3)H]thymidine incorporation. CCK is a beta-cell proliferative factor that is effective in both mouse and human islets. CCK triggers beta-cell proliferation without disrupting islet function, up-regulates a distinct set of cell cycle regulators in islets, and signals independently of the CCK receptors.  相似文献   

3.
Both major forms of diabetes involve a decline in beta-cell mass, mediated by autoimmune destruction of insulin-producing cells in type 1 diabetes and by increased rates of apoptosis secondary to metabolic stress in type 2 diabetes. Methods for controlled expansion of beta-cell mass are currently not available but would have great potential utility for treatment of these diseases. In the current study, we demonstrate that overexpression of trefoil factor 3 (TFF3) in rat pancreatic islets results in a 4- to 5-fold increase in [(3)H]thymidine incorporation, with full retention of glucose-stimulated insulin secretion. This increase was almost exclusively due to stimulation of beta-cell replication, as demonstrated by studies of bromodeoxyuridine incorporation and co-immunofluorescence analysis with anti-bromodeoxyuridine and antiinsulin or antiglucagon antibodies. The proliferative effect of TFF3 required the presence of serum or 0.5 ng/ml epidermal growth factor. The ability of TFF3 overexpression to stimulate proliferation of rat islets in serum was abolished by the addition of epidermal growth factor receptor antagonist AG1478. Furthermore, TFF3-induced increases in [3H]thymidine incorporation in rat islets cultured in serum was blocked by overexpression of a dominant-negative Akt protein or treatment with triciribine, an Akt inhibitor. Finally, overexpression of TFF3 also caused a doubling of [3H]thymidine incorporation in human islets. In summary, our findings reveal a novel TFF3-mediated pathway for stimulation of beta-cell replication that could ultimately be exploited for expansion or preservation of islet beta-cell mass.  相似文献   

4.
5.
Cyclins D2 and D1 are essential for postnatal pancreatic beta-cell growth   总被引:1,自引:0,他引:1  
Regulation of adult beta-cell mass in pancreatic islets is essential to preserve sufficient insulin secretion in order to appropriately regulate glucose homeostasis. In many tissues mitogens influence development by stimulating D-type cyclins (D1, D2, or D3) and activating cyclin-dependent kinases (CDK4 or CDK6), which results in progression through the G(1) phase of the cell cycle. Here we show that cyclins D2 and D1 are essential for normal postnatal islet growth. In adult murine islets basal cyclin D2 mRNA expression was easily detected, while cyclin D1 was expressed at lower levels and cyclin D3 was nearly undetectable. Prenatal islet development occurred normally in cyclin D2(-/-) or cyclin D1(+/-) D2(-/-) mice. However, beta-cell proliferation, adult mass, and glucose tolerance were decreased in adult cyclin D2(-/-) mice, causing glucose intolerance that progressed to diabetes by 12 months of age. Although cyclin D1(+/-) mice never developed diabetes, life-threatening diabetes developed in 3-month-old cyclin D1(-/+) D2(-/-) mice as beta-cell mass decreased after birth. Thus, cyclins D2 and D1 were essential for beta-cell expansion in adult mice. Strategies to tightly regulate D-type cyclin activity in beta cells could prevent or cure diabetes.  相似文献   

6.
7.
8.
Glucose-stimulated insulin secretion (GSIS) is mediated in part by glucose metabolism-driven increases in ATP/ADP ratio, but by-products of mitochondrial glucose metabolism also play an important role. Here we investigate the role of the mitochondrial citrate/isocitrate carrier (CIC) in regulation of GSIS. Inhibition of CIC activity in INS-1-derived 832/13 cells or primary rat islets by the substrate analogue 1,2,3-benzenetricarboxylate (BTC) resulted in potent inhibition of GSIS, involving both first and second phase secretion. A recombinant adenovirus containing a CIC-specific siRNA (Ad-siCIC) dose-dependently reduced CIC expression in 832/13 cells and caused parallel inhibitory effects on citrate accumulation in the cytosol. Ad-siCIC treatment did not affect glucose utilization, glucose oxidation, or ATP/ADP ratio but did inhibit glucose incorporation into fatty acids and glucose-induced increases in NADPH/NADP+ ratio relative to cells treated with a control siRNA virus (Ad-siControl). Ad-siCIC also inhibited GSIS in 832/13 cells, whereas overexpression of CIC enhanced GSIS and raised cytosolic citrate levels. In normal rat islets, Ad-siCIC treatment also suppressed CIC mRNA levels and inhibited GSIS. We conclude that export of citrate and/or isocitrate from the mitochondria to the cytosol is an important step in control of GSIS.  相似文献   

9.
Most insulin-producing beta-cells in the fetal mouse pancreas arise during the secondary transition, a wave of differentiation starting at embryonic day 13. Here, we show that disruption of homeobox gene Nkx6.1 in mice leads to loss of beta-cell precursors and blocks beta-cell neogenesis specifically during the secondary transition. In contrast, islet development in Nkx6. 1/Nkx2.2 double mutant embryos is identical to Nkx2.2 single mutant islet development: beta-cell precursors survive but fail to differentiate into beta-cells throughout development. Together, these experiments reveal two independently controlled pathways for beta-cell differentiation, and place Nkx6.1 downstream of Nkx2.2 in the major pathway of beta-cell differentiation.  相似文献   

10.
11.
12.
13.
Type I diabetes mellitus is an autoimmune disease characterized by the selective destruction of the insulin-secreting beta-cell found in pancreatic islets of Langerhans. Cytokines such as interleukin-1 (IL-1), interferon-gamma (IFN-gamma), and tumor necrosis factor-alpha (TNF-alpha) mediate beta-cell dysfunction and islet degeneration, in part, through the induction of the inducible isoform of nitric-oxide synthase and the production of nitric oxide by beta-cells. Cytokines also stimulate the expression of the inducible isoform of cyclooxygenase, COX-2, and the production of prostaglandin E(2) (PGE(2)) by rat and human islets; however, the role of increased COX-2 expression and PGE(2) production in mediating cytokine-induced inhibition of islet metabolic function and viability has been incompletely characterized. In this study, we have shown that treatment of rat islets with IL-1beta or human islets with a cytokine mixture containing IL-1beta + IFN-gamma +/- TNF-alpha stimulates COX-2 expression and PGE(2) formation in a time-dependent manner. Co-incubation of rat and human islets with selective COX-2 inhibitors SC-58236 and Celecoxib, respectively, attenuated cytokine-induced PGE(2) formation. However, these inhibitors failed to prevent cytokine-mediated inhibition of insulin secretion or islet degeneration. These findings indicate that selective inhibition of COX-2 activity does not protect rat and human islets from cytokine-induced beta-cell dysfunction and islet degeneration and, furthermore, that islet production of PGE(2) does not mediate these inhibitory and destructive effects.  相似文献   

14.
15.
16.
17.
18.
We have previously reported that glucose-stimulated insulin secretion (GSIS) is tightly correlated with pyruvate carboxylase (PC)-catalyzed anaplerotic flux into the tricarboxylic acid cycle and stimulation of pyruvate cycling activity. To further evaluate the role of PC in beta-cell function, we constructed a recombinant adenovirus containing a small interfering RNA (siRNA) specific to PC (Ad-siPC). Ad-siPC reduced PC mRNA levels by 83 and 64% and PC protein by 56 and 35% in INS-1-derived 832/13 cells and primary rat islets, respectively. Surprisingly, this manipulation did not impair GSIS in rat islets. In Ad-siPC-treated 832/13 cells, GSIS was slightly increased, whereas glycolytic rate and glucose oxidation were unaffected. Flux through PC at high glucose was decreased by only 20%, suggesting an increase in PC-specific activity. Acetyl carnitine, a surrogate for acetyl-CoA, an allosteric activator of PC, was increased by 36% in Ad-siPC-treated cells, suggesting a mechanism by which PC enzymatic activity is maintained with suppressed PC protein levels. In addition, the NADPH:NADP ratio, a proposed coupling factor for GSIS, was unaffected in Ad-siPC-treated cells. We conclude that beta-cells activate compensatory mechanisms in response to suppression of PC expression that prevent impairment of anaplerosis, pyruvate cycling, NAPDH production, and GSIS.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号