首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The metamorphic rate of Rana pipiens tadpoles was studied under different photoperiods, daylengths, and feeding schedules. Tail resorption and hindlimb growth and development induced by immersion in 30 μg/l thyroxine (T4) were accelerated under longer photoperiods and continuous light when 6L: 18D, 12L: 12D, 18L: 6D, and 24L regimes were compared. Constant light exposure did not produce faster development than an 18 hr photoperiod, and initially was less effective. The rate of spontaneous and T4-induced metamorphosis was greater the shorter the day on 9L:9D, 12L: 12D, or 15L: 15D cycles, although all groups received the same overall amount of light, but in different dosages. When feeding schedule but not the LD cycle was varied, groups of tadpoles fed on 18, 24, or 30 hr regimes showed no differences in growth and development rate on 19L: 5D, and only random variations under continuous light. Differences in metamorphic rate on 18, 24, or 30 hr days are not due to the feeding schedules, but to the LD cycles. From these experiments we conclude that illumination, particularly the length and frequency of the photoperiod, affects the utilization of T4. Development rates independent of the total amount of illumination, but related to daylength and light schedule, suggest interaction of light with an endogenous timing mechanism.  相似文献   

2.
This study analyzed the role of day length in regulation of seasonal body fattening and testicular growth in a latitudinal Palaearctic-Indian migrant, the redheaded bunting (Emberiza bruniceps). When exposed to increasing photoperiods (hours of light: hours of darkness; 11.5L:12.5D, 12L:12D, 12.5L:11.5D, 13L:11D, 14L:10D, and 18L:6D) for 9-12 weeks, buntings responded in a photoperiod-dependent manner and underwent growth and regression cycle under photoperiods of > or =12 hr per day. Also, the response to a long photoperiod of birds that were held under natural photoperiods at 27 degrees N for 2 years was similar to those who arrived the same year from their breeding grounds ( approximately 40 degrees N), suggesting that the experience of higher amplitude day-night (light-dark, LD) cycles during migratory and breeding seasons were not critical for the subsequent response (initiation-termination-reinitiation) cycle. Another experiment examined entrainment of the circadian photoperiodic rhythm in buntings by subjecting them to T=24+/-2 hr LD-cycles with 8 hr photophase and to T=22 and 24 hr with 11 hr photophase. The results showed a reduction in critical day length under T=22 hr LD-cycle. In the last experiment, we constructed an action spectrum for photoperiodic induction by exposing birds for 4.5 weeks to 13L:11D of white (control), blue (450 nm), or red (640 nm) light at irradiances ranging from 0.028 to 1.4 W m(-2). The threshold light irradiance for photoinduction was about 10-fold higher for blue light, than for red and white lights. These results conclude that the daily light of the environment regulates the endogenous program that times seasonal responses in body fattening and testicular cycles of the redheaded bunting.  相似文献   

3.
The purpose of this work was to investigate the circadian melatonin system in two tropical teleost species characterized by different behavioral habits, Nile tilapia (diurnal) and African catfish (nocturnal). To do so, fish were subjected to either a control photoperiod (12L:12D), continuous light (LL) or darkness (DD), or a 6L:6D photoperiod. Under 12L:12D, plasma melatonin levels were typically low during the photophase and high during the scotophase in both species. Interestingly, in both species, melatonin levels significantly decreased prior to the onset of light, which in catfish reached similar basal levels to those during the day, demonstrating that melatonin production can anticipate photic changes probably through circadian clocks. Further evidence for the existence of such pacemaker activity was obtained when fish were exposed to DD, as a strong circadian melatonin rhythm was maintained. Such an endogenous rhythm was sustained for at least 18 days in Nile tilapia. A similar rhythm was shown in catfish, although DD was only tested for four days. Under LL, the results confirmed the inhibitory effect of light on melatonin synthesis already reported in other species. Finally, when acclimatized to a short photo-cycle (6L:6D), no endogenous melatonin rhythm was observed in tilapia under DD, with melatonin levels remaining high. This could suggest that the circadian clocks cannot entrain to such a short photocycle. Additional research is clearly needed to further characterize the circadian axis in teleost species, identify and localize the circadian clocks, and better understand the environmental entrainment of fish physiology.  相似文献   

4.
A study was made of photoperiodic induction of the facultative pupal diapause in the tobacco hornworm, Manduca sexta, reared on artificial diet in the laboratory. The species entered a prolonged diapause when the egg and larval feeding stages were reared in daily photoperiods of 13·5 hr or less. Diapause was induced in all insects at photoperiods ranging from 1 to 13 hr, and part of the population entered diapause at only 15 to 30 min of light per day. Photoperiods of 14 hr or more and continous darkness prevented diapause. Duration of diapause varied with the inductive photoperiod in which the hornworms were reared during the sensitive period. Insects reared in longer diapause-inducing photoperiods within a range of 12 to 13·25 hr remained in diapause longer than those reared in shorter photoperiods. There was no difference in the rate of larval development of hornworms reared in diapause-inducing vs diapause-preventing photoperiods. Temperatures of 26 to 30°C were most favourable for the photoperiodic induction of diapause; at 21°C, the critical photoperiod and incidence of diapause were decreased. Diapause induction was suppressed by low (18°C) and higher (33°C) temperatures. The number of inductive 12L:12D (light = 12 hr; dark = 12 hr) cycles required to induce diapause ranged from as few as 5 for some insects to as many as 12 for others when the post-inductive régimen was continuous light, but with insects previously held in continuous dark, as few as 2 12L:12D cycles during the last 2 days of larval feeding induced diapause in 38 per cent of the population. Only 3 to 4 cycles of 15L:9D during the final larval instar reversed inductive effects of 14 to 15 12L:12D cycles. Photoperiodic sensitivity extended from the late embryo to the end of larval feeding but showed considerable fluctuation during development with maximum sensitivity occurring just before egg hatch and during larval growth.Light breaks applied at different times during the dark period of 12L:12D cycles generated different response curves, depending on the number of cycles in which light breaks were repeated. When repeated for 6 cycles, a unimodal response curve was obtained; 10 cycles produced a bimodal curve and light breaks given for 18 cycles throughout the sensitive period averted diapause regardless of time of night applied. It is suggested that diapause is regulated by a photo- and thermolabile substance that accumulates during long nights (11 hr or more) and acts during the early pupal stage to inhibit the translocation and release of development-promoting neurosecretion from the brain.  相似文献   

5.
The rate of DNA synthesis in normal tissues exhibits circadian rhythmicity. However, there have been conflicting reports of the effects of tumor burden on the circadian rhythm of DNA synthesis in non-cancer tissues. We have developed a mouse colon cancer (MC-26) that exhibits different growth under different photoperiods. The purpose of this study was to analyze DNA synthetic activity in tissues removed from tumor-bearing and tumor-free mice maintained under two different photoperiods. Two groups each of approximately 80 male Balb/c mice were acclimated to one of two light-dark cycles, 12L:12D or 6L:18D. Half of each group were injected with 5.0 × 104 MC-26 cells. Twenty-two days later, all mice were killed in subgroups at 4-6 hr intervals over one 24-hr period. Colons and tumors were removed for measurement of DNA synthesis. Results were analyzed by means of one-way analysis of variance (ANO VA) in order to determine whether DNA synthesis varied significantly within groups over the 24-hr period. The DNA synthetic activity, as measured by uptake of tritiated thymidine, exhibited significant temporal variation in the colons of control (tumor-free) mice under both the 12L:12D and 6L:18D photoperiods. The colons of tumor-bearing mice failed to exhibit a fluctuation under a 12L:12D photoperiod but did show a significant 24-hr rhythm under the 6L:18D photoperiod. The subcutaneously growing cancers did not exhibit a circadian variation in DNA synthetic activity under either photoperiod. Both photoperiod and the presence of cancer appear to affect the DNA synthetic activity observed in mice bearing the MC-26 colon cancer.  相似文献   

6.
Two groups of ovary-intact ewes were placed in separate photochambers on the day of the vernal equinox (VE). One group was exposed to a 16 h light:8 h dark (16L:8D) photoperiod and the other to 8L:16D. On the day of the summer solstice (SS) and at 90-91-day intervals thereafter [autumnal equinox (AE), winter solstice (WS), VE and SS], each group was changed to the opposite photoperiod. The latent period between each change and either onset or cessation of cycles, as determined by measuring blood progesterone concentrations, was recorded. The latent period between change to 8L:16D and onset of cycles was shortest after the exposure at AE and longest after exposure at WS (P less than 0.001). The latent period after AE was shorter (P less than 0.001) than after VE. The correlations were small between ambient temperature and interval to onset of cycles. The latent period to cessation of cycles in response to 16L:8D was shorter after SS exposure than after WS exposure (P less than 0.01), but other differences were not significant. There was a strong (r = -0.94, P less than 0.05) negative correlation between interval to cessation of cycles and ambient temperature. Cessation of cycles in response to 16L:8D occurred more rapidly (P less than 0.001) than onset in response to 8L:16D. These results show that responsiveness to the inductive effects of photoperiod varies significantly with time of the sidereal year.  相似文献   

7.
To examine the importance of the inductive light period of a skeleton photoperiod in relation to the endogenous circadian rhythm of photoinducibility mediating photoperiodic induction, P. domesticus were exposed for 28 weeks to a series of skeleton photoperiods, viz. 6L:4D:1L:13D, 6L:6D:1L:11D. 6L:8D:1L:9D and 6L:14D:1L:3D. The inductive effects of 1 hr light pulse at night varied depending on the time of its placement. To compare the inductive effects of complete and its corresponding skeleton photoperiods, birds in the second experiment were subjected for 20 weeks to 12L:12D and 6L:5D:1L:12D given daily or interposed on alternate days with constant darkness (12L:12D/DD and 6L:5D:1L:12D/DD). There was a difference in the rate and magnitude of response between the complete and skeleton photoperiods. It appears that the subtropical house sparrow uses photoperiodic strategy in regulation of its seasonal testicular responses similar to that is reported for its temperate population.  相似文献   

8.
The aim of the current investigation was to study the effect of lithium on circadian rhythms of pineal - testicular hormones by quantitations of pineal and serum serotonin, N-acetylserotonin and melatonin, and serum testosterone at four time points (06.00, 12.00, 18.00 and 24.00) of a 24-hr period under normal photoperiod (L:D), reversed photoperiod (D:L), constant light (L:L) and constant dark phase (D:D) in rats. Circadian rhythms were observed in pineal hormones in all the combinations of photoperiodic regimens, except in constant light, and in testosterone levels in all the photoperiodic combinations. Pineal and serum N-acetylserotonin and melatonin levels were higher than serotonin at night (24.00 hr), in natural L:D cycle, in reversed L:D cycle or similar to normal L:D cycle in constant dark phase, without any change in constant light. In contrast, testosterone level was higher in light phase (12.00 hr through 18.00 hr) than in the dark phase (24.00 hr through 06.00 hr) in normal L:D cycle, in reversed L:D cycle, similar to normal L:D cycle in constant dark (D:D), and reversed to that of the normal L:D cycle in constant light (L:L). Lithium treatment (2 mEq/kg body weight daily for 15 days) suppressed the magnitude of circadian rhythms of pineal and serum serotonin, N-acetylserotonin and melatonin, and testosterone levels by decreasing their levels at four time points of a 24-hr period in natural L:D or reversed D:L cycle and in constant dark (D:D). Pineal indoleamine levels were reduced after lithium treatment even in constant light (L:L). Moreover, lithium abolished the melatonin rhythms in rats exposed to normal (L:D) and reversed L:D (D:L) cycles, and sustained the rhythms in constant dark. But testosterone rhythm was abolished after lithium treatment in normal (L:D)/reversed L:D (D:L) cycle or even in constant light/dark. The findings indicate that the circadian rhythm exists in pineal hormones in alternate light - dark cycle (L:D/D:L) and in constant dark (D:D), but was absent in constant light phase (L:L) in rats. Lithium not only suppresses the circadian rhythms of pineal hormones, but abolishes the pineal melatonin rhythm only in alternate light - dark cycles, but sustains it in constant dark. The testosterone rhythm is abolished after lithium treatment in alternate light - dark cycle and constant light/dark. It is suggested that (a) normal circadian rhythms of pineal hormones are regulated by pulse dark phase in normal rats, (b) lithium abolishes pineal hormonal rhythm only in pulse light but sustains it in constant dark phase, and (c) circadian testosterone rhythm occurs in both pulse light or pulse dark phase in normal rats, and lithium abolishes the rhythm in all the combinations of the photoperiod. The differential responses of circadian rhythms of pineal and testicular hormones to pulse light or pulse dark in normal and lithium recipients are discussed.  相似文献   

9.
The effect of photoperiod on reproductive behavior in male ring doves (Streptopelia risoria) was studied in androgen-injected castrates maintained under long (16L:8D) or short (86:16D) photoperiods. Behavioral recordings were made over a 2-week period during which each male was paired with a female for 6.5 hr/day. There was some indication that males held on long days display higher levels of courtship activity during the initial period following pairing, but the evidence was not conclusive. Day length had no effect upon copulatory behavior. Long-day males exhibited consistently higher levels of nest building than short-day males, indicating that photoperiod affects building through some mechanism other than changes in endogenous androgen levels.  相似文献   

10.
The object of this study was to investigate factors which determine the duration of sitting in ring doves. This normally lasts ca. 19 days from laying, with very small variation. The period is made up of 15 days incubating eggs and 4-5 days brooding squabs. The duration of sitting is unaffected by substituting fresh or sterile eggs, and can only be slightly influenced by substituting foster squabs or new eggs just before or after hatching. The sitting period appears to be predetermined to run for 19 days following laying. The maintenance of sitting, however, requires the presence of the nest and eggs, and can be drastically varied by keeping subjects in continuous daylight or on a day of 6 hr light:6 hr dark (6 L:6 D). Birds kept on ahemeral cycles (11 L: 10 D; 13 L:14 D) displayed significantly different periods of incubation on infertile eggs and recycling, indicative of an endogenous circadian basis to the timing mechanism.  相似文献   

11.
Melatonin secretion in ewes was entrained by 22-h light-dark cycles whether of long (16L:6D) or short (6L:16D) photoperiod. In photoperiods of 6L:16D, a phase-delay of melatonin secretion was evident, leading to a dark-phase duration shorter than that found in 8L:16D. Early onset of estrus was induced in anestrous ewes kept in 8L:16D, but not 6L:16D, from 22 July compared to controls in natural light. In photoperiods of 16L:6D, the melatonin profile corresponded precisely to the dark phase. Early offset of estrus was induced in estrous ewes kept in both 18L:6D and 16L:6D from 18 December compared to controls in natural light. Thus, when the duration of melatonin secretion was appropriate to the long photoperiod (16L:6D), but with a constantly changing phase position, a long-day reproductive response was found. Activity-rest cycles were not entrained by 16L:6D; thus the synchronization of melatonin and activity-rest cycles does not appear to be essential for the induction of a long-day reproductive response. These results support the hypothesis that the duration, not the circadian-phase position, of melatonin is critical to the induction of photoperiodic effects.  相似文献   

12.
Endogenous circannual clocks are found in many long-lived organisms, but are best studied in mammal and bird species. Circannual clocks are synchronized with the environment by changes in photoperiod, light intensity and possibly temperature and seasonal rainfall patterns. Annual timing mechanisms are presumed to have important ultimate functions in seasonally regulating reproduction, moult, hibernation, migration, body weight and fat deposition/stores. Birds that live in habitats where environmental cues such as photoperiod are poor predictors of seasons (e.g. equatorial residents, migrants to equatorial/tropical latitudes) rely more on their endogenous clocks than birds living in environments that show a tight correlation between photoperiod and seasonal events. Such population-specific/interspecific variation in reliance on endogenous clocks may indicate that annual timing mechanisms are adaptive. However, despite the apparent adaptive importance of circannual clocks, (i) what specific adaptive value they have in the wild and (ii) how they function are still largely untested. Whereas circadian clocks are hypothesized to be generated by molecular feedback loops, it has been suggested that circannual clocks are either based upon (i) a de-multiplication ('counting') of circadian days, (ii) a sequence of interdependent physiological states, or (iii) one or more endogenous oscillators, similar to circadian rhythms. We tested the de-multiplication of days (i) versus endogenous regulation hypotheses (ii) and (iii) in captive male and female house sparrows (Passer domesticus). We assessed the period of reproductive (testicular and follicular) cycles in four groups of birds kept either under photoperiods of LD 12L:12D (period length: 24h), 13.5L:13.5D (27 h), 10.5L:10.5D (23 h) or 12D:8L:3D:1L (24-h skeleton photoperiod), respectively, for 15 months. Contrary to predictions from the de-multiplication hypothesis, individuals experiencing 27-h days did not differ (i.e. did not have longer) annual reproductive rhythms than individuals from the 21- or 24-h day groups. However, in line with predictions from endogenous regulation, birds in the skeleton group had significantly longer circannual period lengths than all other groups. Birds exposed to skeleton photoperiods experienced fewer light hours per year than all other groups (3285 versus 4380) and had a lower daily energy expenditure, as tested during one point of the annual cycle using respirometry. Although our results are tantalizing, they are still preliminary as birds were only studied over a period of 15 months. Nevertheless, the present data fail to support a 'counting of circadian days' and instead support hypotheses proposing whole-organism processes as the mechanistic basis for circannual rhythms. We propose a novel energy turnover hypothesis which predicts a dependence of the speed of the circannual clock on the overall energy expenditure of an organism.  相似文献   

13.
The purpose of this study was to evaluate whether the insertion of a continuous-release melatonin implant into ewes provides a short-day photoperiodic signal or acts as a functional pinealectomy (provides no specific photoperiodic signal but renders ewes incapable of responding to changes in photoperiod). Ewes primed with 60 long days (18L:6D) during the spring were moved to intermediate day length (13L:11D) for 66 days and then given one of five treatments: 1) short-day control, second drop in photoperiod to 8L:16D; 2) intermediate-photoperiod control, kept on 13L:11D; 3) pinealectomy and kept on 13L:11D; 4) melatonin implant and kept on 13L:11D; 5) melatonin implant and moved to 8L:16D. Mean number of estrous cycles per group and total duration of reproductive activity were determined. Ewes in all groups began to exhibit estrous cycles after the initial reduction in photoperiod. The number of estrous cycles and duration of reproductive activity differed among groups. The number of estrous cycles and duration of reproductive activity was extended in ewes receiving the second drop in photoperiod compared to that of the intermediate-photoperiod controls. Pinealectomized ewes had a number of estrous cycles and duration of reproductive activity similar to those of ewes maintained on the intermediate photoperiod. Melatonin implants increased the number of estrous cycles and prolonged reproductive activity in ewes maintained on the intermediate photoperiod; melatonin implants did not prevent the extension of reproductive activity in ewes receiving the second photoperiodic drop to the short daylength.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
-The effect of photoperiod on growth of juvenile giant freshwater prawns, Macrobrachium rosenbergii de Man, was tested. The prawns were divided into four groups and each group was reared under one of the following light-dark conditions: continuous darkness (L0:D24), 12 hr light: 12 hr dark (L12:D12), 16 hr light: 8 hr dark (L16:D8), and 20 hr light: 4 hr dark (L20:D4). Body size was determined at the age of 45, 75, and 110 days by measuring total length, orbital length, and carapace length; body weight was determined at the age of 110 days. At 110 days of age, the prawns reared under L0:D24 photoperiod were significantly longer and heavier than those reared under other light-dark conditions. The survival rate of the prawns reared under L0:D24 photoperiod was also higher than that of other groups. This study indicates a positive effect of continuous darkness on growth and survival rate of juvenile giant freshwater prawns, M. rosenbergii.  相似文献   

15.
Three experiments were conducted using a total of 41 cows to determine if photoperiod modulates the establishment of postpartum estrous cycles and conception. Cows calving in the autumn and winter were exposed to either 18 hr light/day (18L:6D) or natural photoperiods. In Exp. 1, cows receiving 18L:6D had shorter (P<0.025) intervals from calving to estrus (61 +/- 3.8 days) than cows not receiving supplemental light (154 +/- 23.9 days). The same was true for primiparous cows in Exp. 2 (76 +/- 5.5 days vs 153 +/- 38.0 days; P<0.06) but not for the multiparous cows in Exp. 2 (56 +/- 5.2 days vs 40 +/- 7.4 days) or for all cows in Exp. 3 (60 +/- 10.1 days vs 70 +/- 13.5 days). Because conception rate was higher for cows exposed to 18L:6D for the multiparous cows in Exp. 2 and all cows in Exp. 3, interval to conception was significantly shorter for animals exposed to 18L:6D in all experiments. Generally, interval from calving to uterine involution was also reduced by exposure to 18L:6D. No effects of photoperiod were observed on body weight changes, serum levels of luteinizing hormone (LH), follicle stimulating hormone (FSH) or estradiol or on estradiol-induced release of gonadotropins. It was concluded that in certain situations day length can hasten estrus and conception in postpartum cows. The effect of photoperiod interacts with other conditions, one of which is parity. The endocrine basis for these effects are not known.  相似文献   

16.
The primary objective of this study was to determine the duration of exposure to a long-day or short-day photoperiod required to disrupt photorefractoriness to short-day and long-day photoperiods, respectively. In Experiment 1, 4 groups of Suffolk breed ewes--designated B1, B2, B3, and B4--were placed in photochambers one day before the winter solstice, exposed to a 16L:8D photoperiod for 0, 30, 60, or 90 days, and then exposed to a 10L:14D photoperiod until the time of the summer solstice. Blood samples taken by venipuncture thrice weekly were analyzed for progesterone concentrations. The interval between start of the study and cessation of estrous cycles did not differ significantly between groups (p greater than 0.05). All 6 ewes in Group B1 then remained in anestrus for the duration of the study. Four of the 6 ewes in Group B2, and all ewes in Groups B3 and B4 resumed cycles after exposure to the 10L:14D photoperiod. In Experiment 2, 4 groups of ewes--designated A1, A2, A3, and A4--were placed in photochambers one day before the summer solstice, exposed to a 10L:14D photoperiod for 0, 30, 60, and 90 days, respectively, and then exposed to a 16L:8D photoperiod. Ewes in Group A1 started estrous cycles at a time not significantly different from ewes kept outdoors. However, onset of cycles was significantly advanced (p less than 0.05) in ewes exposed to 10L:14D. After ewes were returned to the 16L:8D photoperiod, estrous cycles were suppressed in 5 of 6 ewes in Group A2 and in all ewes in Groups A3 and A4.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The objective was to determine if "clamping" ewes onto a 12L:12D photoperiod resulted in expression of circannual rhythms of reproductive activity. On 24 February, 1986, two groups of 6 yearling ewes each were placed in isolated adjacent photochambers under a 12L:12D photoperiod and controlled temperature. Six control ewes were kept outdoors. Blood samples taken thrice weekly were analyzed for progesterone. Data from Days 0-1056 are reported. The mean number of cycles by control and 12L:12D ewes did not differ (32.8 +/- 1.7 vs. 29.7 +/- 4.0). The ranges were 27-39 vs. 4-51, respectively. Ten 12L:12D ewes started cycling coincidentally or later than the controls, and then cycled either regularly or irregularly throughout the study. Two of the 12L:12D ewes cycled continuously. The mean number of cycles during the period 15 April-15 August (anestrus) in Years 1, 2, and 3 were 0.7, 0.7, 0.2 for controls versus 0.3, 5.1, and 4.5 for 12L:12D ewes. The mean number of cycles during the period 15 September-15 January (breeding season) in Years 1, 2, and 3 were 7.3, 7.7, and 7.3 for controls versus 2.8, 4.8, and 4.0 for 12L:12D ewes. All controls showed distinct, alternating annual periods of anestrus and ovarian cycles whereas only two 12L:12D ewes showed a similar pattern. Estrous cycles were distributed nonrandomly in all controls and in 2 ewes exposed to 12L:12D. In the 12L:12D ewes, melatonin concentrations rose immediately after the lights-off and fell immediately after on. Lengths of the luteal phases of the cycles did not differ between groups. In summary, estrous cycles of most ewes clamped on a 12L:12D photoperiod occurred throughout the year at variable intervals rather than in distinct breeding seasons.  相似文献   

18.
Some diapause characteristics were studied in a strain of the spider mite. Tetranychus urticae. which had been reared on bean plants in the laboratory for over 15 yr. The diapause induction response curve was of the long-day type, showing a sharply defined critical daylength of 13 hr 50 min. In constant darkness no diapause induction occurred, but with a photoperiod of 1L:23D diapause incidence was already complete. A thermoperiod with a 5°C amplitude induced diapause in combination with a short-day photoperiod only when the low phase of the thermoperiod coincided with the scotophase. The same thermoperiod did not induce any diapause in constant darkness. The photoperiodic reaction of the laboratory strain used in these experiments appeared to remain constant over a very long period of time and to be independent of the diapause history of previous generations of mites.Although photoperiodic sensitivity was demonstrated during the whole postembryonic development, sensitivity was maximal at the end of the protonymphal instar and declined rapidly during the deutonymphal instar. Only 2 inductive cycles of 10L:14D were required to induce up to 62% diapause if the mites were kept in continuous darkness during the remainder of their development. Long days or continuous light could reverse the inductive effect of a sequence of short-day cycles previously applied to the mites.Light breaks of 1 hr duration applied at different times during the dark period of a 10L:14D photoperiod generated a sharp bimodal response curve with two discrete points of sensitivity to the light breaks at 10 hr after ‘dusk’ and 10 hr before ‘dawn’, thus showing a remarkable similarity with the results obtained in light break experiments with some species of insects.  相似文献   

19.
Plasma thyroxine and corticosterone levels were determined by competitive protein binding assay, at 3 hr intervals, throughout the photoperiod. Pigeons were kept in controlled environment (21 +/- 1 degree C; 14L6-20: 10D). Intact controls exhibited low thyroxine (T4) and corticosterone (B) levels for the light phase of the photoperiod. Values were rising during the night, up to a peak at 03 hr. Electrolytic lesions were placed bilaterally in either the nucleus anterior medialis hypothalami or the n. preopticus, or the n. supraopticus. Circadian rhythms of both T4 and B were markedly altered in all lesioned pigeons, with a shift of very high T4 values to the morning times and a complete disorganization of B patterns, with very heterogeneous values. The possibility is raised that anterior hypothalamic formations participate in the endogenous oscillator circuitry in birds.  相似文献   

20.
The effect of photoperiod on sexual function and growth in weanling male and female collared lemmings (Dicrostonyx groenlandicus) was studied. Males and females maintained in 6 hr light:18 hr dark after weaning were larger at the end of 70 days than their siblings kept in 20L:4D. Males in 6L:18D were longer and overall body growth was greater. Males in 6L:18D had heavier adrenals but there were no differences in the weights of testes, preputial glands or seminal vesicles or in the mean testosterone levels of the two groups. Females in 6L:18D had heavier preputial glands than the 20L:4D females. There were no differences between the two groups in uterine, ovarian or adrenal weights or in the number or mean size of atretic or healthy Graafian follicles. Adult males kept in 6L:18D increased more in body weight than those in 20L:4D, but there was no detectable influence of the short photoperiod on reproductive function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号