共查询到20条相似文献,搜索用时 15 毫秒
1.
IL-19 induces production of IL-6 and TNF-alpha and results in cell apoptosis through TNF-alpha 总被引:9,自引:0,他引:9
Liao YC Liang WG Chen FW Hsu JH Yang JJ Chang MS 《Journal of immunology (Baltimore, Md. : 1950)》2002,169(8):4288-4297
IL-10 is an immunosuppressive cytokine in the immune system. It was in clinical trial as an anti-inflammatory therapy for inflammatory bowel disease and various autoimmune diseases such as psoriasis, rheumatoid arthritis, and multiple sclerosis. IL-19 belongs to the IL-10 family, which includes IL-10, IL-19, IL-20, IL-22, melanoma differentiation-associated gene (MDA-7, IL-24), and AK155 (IL-26). Despite a partial homology in their amino acid sequences, they are dissimilar in their biologic functions. Little is known about the biologic function and gene regulation of IL-19. To understand the gene regulation of human IL-19, we identified a human IL-19 genomic clone and analyzed its promoter region. Five fusion genes containing different regions upstream of exon 1 linked to a luciferase reporter gene were expressed in the canine kidney epithelial-like Madin-Darby canine kidney cells. A fusion gene containing 394 bp showed luciferase activity 7- to 8-fold higher than the negative control of the promoterless fusion gene. We also isolated a full-length mouse cDNA clone. Mouse IL-19 shared 71% amino acid identity with human IL-19. Treatment of monocytes with mouse IL-19 induced the production of IL-6 and TNF-alpha. It also induced mouse monocyte apoptosis and the production of reactive oxygen species. Taken together, our results indicate that mouse IL-19 may play some important roles in inflammatory responses because it up-regulates IL-6 and TNF-alpha and induces apoptosis. 相似文献
2.
Zhang HG Liu C Su K Su K Yu S Zhang L Zhang S Wang J Cao X Grizzle W Kimberly RP 《Journal of immunology (Baltimore, Md. : 1950)》2006,176(12):7385-7393
In common with many other cell types, synovial fibroblasts produce exosomes. In this study, we show that the exosomes produced by synovial fibroblasts obtained from individuals with rheumatoid arthritis (RASF), but not exosomes produced by synovial fibroblasts obtained from individuals with osteoarthritis, contain a membrane bound form of TNF-alpha as demonstrated by colloidal gold immunostaining of TNF-alpha and confirmed by both Western blot and mass spectrometry. The RASF-derived exosomes, but not exosomes derived from fibroblasts obtained from individuals with osteoarthritis, are cytotoxic for the L929 cell, a TNF-alpha-sensitive cell line, and stimulate activation of NF-kappaB and induction of collagenase-1 in RASF. These effects are blocked by addition of soluble TNFR1 (sTNFbp), suggesting that a TNF-alpha-signaling pathway mediates these biological activities. sTNFbp also reduced the production of exosomes by RASF, suggesting the interruption of a positive amplification loop. Exosomes can transmit signals between cells, and RASF exosomes, effectively taken up by anti-CD3-activated T cells, activated AKT and NF-kappaB and rendered these activated T cells resistant to apoptosis. Neutralization of exosomal membrane TNF-alpha by sTNFbp partially reversed this resistance, suggesting that not only TNF-alpha but also additional exosomal proteins may contribute to the development of apoptosis resistance. 相似文献
3.
Autoantigen-specific IL-10-transduced T cells suppress chronic arthritis by promoting the endogenous regulatory IL-10 response 总被引:2,自引:0,他引:2
Guichelaar T ten Brink CB van Kooten PJ Berlo SE Broeren CP van Eden W Broere F 《Journal of immunology (Baltimore, Md. : 1950)》2008,180(3):1373-1381
Deficient T cell regulation can be mechanistically associated with development of chronic autoimmune diseases. Therefore, combining the regulatory properties of IL-10 and the specificity of autoreactive CD4(+) T cells through adoptive cellular gene transfer of IL-10 via autoantigen-specific CD4(+) T cells seems an attractive approach to correct such deficient T cell regulation that avoids the risks of nonspecific immunosuppressive drugs. In this study, we studied how cartilage proteoglycan-specific CD4(+) T cells transduced with an active IL-10 gene (T(IL-10)) may contribute to the amelioration of chronic and progressive proteoglycan-induced arthritis in BALB/c mice. TCR-transgenic proteoglycan-specific T(IL-10) cells ameliorated arthritis, whereas T(IL-10) cells with specificity for OVA had no effect, showing the impact of Ag-specific targeting of inflammation. Furthermore, proteoglycan-specific T(IL-10) cells suppressed autoreactive proinflammatory T and B cells, as T(IL-10) cells caused a reduced expression of IL-2, TNF-alpha, and IL-17 and a diminished proteoglycan-specific IgG2a Ab response. Moreover, proteoglycan-specific T(IL-10) cells promoted IL-10 expression in recipients but did not ameliorate arthritis in IL-10-deficient mice, indicating that T(IL-10) cells suppress inflammation by propagating the endogenous regulatory IL-10 response in treated recipients. This is the first demonstration that such targeted suppression of proinflammatory lymphocyte responses in chronic autoimmunity by IL-10-transduced T cells specific for a natural Ag can occur via the endogenous regulatory IL-10 response. 相似文献
4.
Cutting edge: Lipopolysaccharide induces IL-10-producing regulatory CD4+ T cells that suppress the CD8+ T cell response 总被引:1,自引:0,他引:1
TLR ligands are potent activators of dendritic cells and therefore function as adjuvants for the induction of immune responses. We analyzed the capacity of TLR ligands to enhance CD8+ T cell responses toward soluble protein Ag. Immunization with OVA together with LPS or poly(I:C) elicited weak CD8+ T cell responses in wild-type C57BL/6 mice. Surprisingly, these responses were greatly increased in mice lacking CD4+ T cells indicating the induction of regulatory CD4+ T cells. In vivo, neutralization of IL-10 completely restored CD8+ T cell responses in wild-type mice and OVA-specific IL-10 producing CD4+ T cells were detected after immunization with OVA plus LPS. Our study shows that TLR ligands not only activate the immune system but simultaneously induce Ag specific, IL-10-producing regulatory Tr1 cells that strongly suppress CD8+ T cell responses. In this way, excessive activation of the immune system may be prevented. 相似文献
5.
TNF-alpha and IL-10 modulate the induction of apoptosis by virulent Mycobacterium tuberculosis in murine macrophages 总被引:4,自引:0,他引:4
Rojas M Olivier M Gros P Barrera LF García LF 《Journal of immunology (Baltimore, Md. : 1950)》1999,162(10):6122-6131
The Bcg/Nramp1 gene controls early resistance and susceptibility of macrophages to mycobacterial infections. We previously reported that Mycobacterium tuberculosis-infected (Mtb) B10R (Bcgr) and B10S (Bcgs) macrophages differentially produce nitric oxide (NO-), leading to macrophage apoptosis. Since TNF-alpha and IL-10 have opposite effects on many macrophage functions, we determined the number of cells producing TNF-alpha and IL-10 in Mtb-infected or purified protein derivative-stimulated B10R and B10S macrophages lines, and Nramp1+/+ and Nramp1-/- peritoneal macrophages and correlated them with Mtb-mediated apoptosis. Mtb infection and purified protein derivative treatment induced more TNF-alpha+Nramp1+/+ and B10R, and more IL-10+Nramp1-/- and B10S cells. Treatment with mannosylated lipoarabinomannan, which rescues macrophages from Mtb-induced apoptosis, augmented the number of IL-10 B10R+ cells. Anti-TNF-alpha inhibited apoptosis, diminished NO- production, p53, and caspase 1 activation and increased Bcl-2 expression. In contrast, anti-IL-10 increased caspase 1 activation, p53 expression, and apoptosis, although there was no increment in NO- production. Murine rTNF-alpha induced apoptosis in noninfected B10R and B10S macrophages that was reversed by murine rIL-10 in a dose-dependent manner with concomitant inhibition of NO- production and caspase 1 activation. NO- and caspase 1 seem to be independently activated in that aminoguanidine did not affect caspase 1 activation and the inhibitor of caspase 1, Tyr-Val-Ala-Asp-acylooxymethylketone, did not block NO- production; however, both treatments inhibited apoptosis. These results show that Mtb activates TNF-alpha- and IL-10-dependent opposite signals in the induction of macrophage apoptosis and suggest that the TNF-alpha-IL-10 ratio is controlled by the Nramp1 background of resistance/susceptibility and may account for the balance between apoptosis and macrophage survival. 相似文献
6.
Peyer's patches (PP) are believed to be the principal sites for induction of tolerance to Ags from food and commensal flora, yet the phenotype of T cells activated within the PP is largely unexplored. We hypothesize that exposure to Ags within the PP promotes differentiation of T cells with immunoregulatory functions. Cytokine production and cell surface marker expression of murine PP mononuclear cells (MC) are compared with those from mesenteric lymph nodes and peripheral lymph nodes (PLN). In response to stimulation through the TCR/CD3 complex, PP MC exhibit vigorous proliferation, modest production of IL-2, and significantly elevated synthesis of IL-10. Exogenous IL-12 enhances both IL-10 and IFN-gamma secretion by activated PP MC. Cell surface marker analysis reveals that PP T cells consist of activated and memory subpopulations compared with the predominantly naive T cells identified in the PLN and mesenteric lymph nodes. Upon stimulation, only CD45RB(low)CD4(+) PP T cells produce IL-10, whereas secretion of IL-2, IL-4, and IFN-gamma was not detected. Furthermore, PP MC, but not PLN MC, stimulated through the TCR/CD3 complex suppress proliferation of purified PLN T cells in vitro, evidence for a regulatory function among PP lymphocytes. We conclude that PP favor differentiation of an IL-10-producing, regulatory CD45RB(low)CD4(+) T cell population and that inhibition of T cell proliferation by activated PP MC may reflect regulatory activity consistent with T regulatory cells. 相似文献
7.
8.
Positive effects of glucocorticoids on T cell function by up-regulation of IL-7 receptor alpha 总被引:11,自引:0,他引:11
Franchimont D Galon J Vacchio MS Fan S Visconti R Frucht DM Geenen V Chrousos GP Ashwell JD O'Shea JJ 《Journal of immunology (Baltimore, Md. : 1950)》2002,168(5):2212-2218
Despite the effects of glucocorticoids on immune function, relatively little is known about glucocorticoid-inducible genes and how their products may regulate lymphocyte function. Using DNA microarray technology to analyze gene expression in PBMC from healthy donors, we identified IL-7Ralpha as a glucocorticoid-inducible gene. This observation was confirmed at the mRNA and protein levels. Conversely, TCR signaling decreased IL-7Ralpha expression, and the relative strength of signaling between these two receptors determined the final IL-7Ralpha levels. The up-regulation of IL-7Ralpha by glucocorticoids was associated with enhanced IL-7-mediated signaling and function. Moreover, IL-7-mediated inhibition of apoptosis at increasing concentrations of glucocorticoids is consistent with enhanced cell sensitivity to IL-7 following glucocorticoid exposure. These observations provide a mechanism by which glucocorticoids may have a positive influence on T cell survival and function. 相似文献
9.
IL-21 induces apoptosis of antigen-specific CD8+ T lymphocytes 总被引:3,自引:0,他引:3
Barker BR Parvani JG Meyer D Hey AS Skak K Letvin NL 《Journal of immunology (Baltimore, Md. : 1950)》2007,179(6):3596-3603
IL-21, a member of the common gamma-chain family of cytokines, has pleiotropic effects on T, B, and NK cells. We found that IL-21 and the prototype common gamma-chain cytokine IL-2 can stimulate proliferation and cytokine secretion by Ag-specific rhesus monkey CD8+ T cells. However, unique among the members of this family of cytokines, we found that IL-21 drives these cells to apoptosis by down-regulation of Bcl-2. These findings suggest that IL-21 may play an important role in the contraction of CD8+ T cell responses. 相似文献
10.
Perez N Karumuthil-Melethil S Li R Prabhakar BS Holterman MJ Vasu C 《Journal of immunology (Baltimore, Md. : 1950)》2008,180(10):6566-6576
Costimulatory ligands CD80 and CD86 have different binding preferences and affinities to their receptors, CD28 and CTLA-4. Earlier, we demonstrated that CD80 binds to CTLA-4 with higher affinity and has a role in suppressing T cell response. The current study demonstrates that not only did blockade of CD86 upon Ag presentation by bone marrow-derived dendritic cells (DC) to OVA-specific T cells result in induction of hyporesponsive T cells but also that these T cells could suppress the proliferative response of effector T cells. These T cells showed TGF-beta1 on their surface and secreted TGF-beta1 and IL-10 upon restimulation. Although blockade of CTLA-4 and neutralization of IL-10 profoundly inhibited the induction of these TGF-beta1(+) T cells, their ability to suppress the effector T cell proliferation was abrogated by neutralization of TGF-beta1 alone. Induction of TGF-beta1(+) and IL-10(+) T cells was found to be independent of natural CD4(+)CD25(+) regulatory T cells, demonstrating that preferential ligation of CTLA-4 by CD80 induced IL-10 production by effector T cells, which in turn promoted the secretion of TGF-beta1. Treatment of prediabetic NOD mice with islet beta cell Ag-pulsed CD86(-/-) DCs, but not CD80(-/-) DCs, resulted in the induction of TGF-beta1- and IL-10-producing cells, significant suppression of insulitis, and delay of the onset of hyperglycemia. These observations demonstrate not only that CD80 preferentially binds to CTLA-4 but also that interaction during Ag presentation can result in IL-10-dependent TGF-beta1(+) regulatory T cell induction, reinstating the potential of approaches to preferentially engage CTLA-4 through CD80 during self-Ag presentation in suppressing autoimmunity. 相似文献
11.
Tsuji-Takayama K Suzuki M Yamamoto M Harashima A Okochi A Otani T Inoue T Sugimoto A Toraya T Takeuchi M Yamasaki F Nakamura S Kibata M 《Journal of immunology (Baltimore, Md. : 1950)》2008,181(6):3897-3905
STAT5 molecules are key components of the IL-2 signaling pathway, the deficiency of which often results in autoimmune pathology due to a reduced number of CD4(+)CD25(+) naturally occurring regulatory T (Treg) cells. One of the consequences of the IL-2-STAT5 signaling axis is up-regulation of FOXP3, a master control gene for naturally occurring Treg cells. However, the roles of STAT5 in other Treg subsets have not yet been elucidated. We recently demonstrated that IL-2 enhanced IL-10 production through STAT5 activation. This occurred in two types of human Treg cells: a novel type of umbilical cord blood-derived Treg cell, termed HOZOT, and Tr1-like Treg cells, IL-10-Treg. In this study, we examined the regulatory mechanisms of IL-10 production in these Treg cells, focusing specifically on the roles of STAT5. By performing bioinformatic analysis on the IL-10 locus, we identified one STAT-responsive element within intron 4, designated I-SRE-4, as an interspecies-conserved sequence. We found that I-SRE-4 acted as an enhancer element, and clustered CpGs around the I-SRE-4 were hypomethylated in IL-10-producing Treg cells, but not in other T cells. A gel-shift analysis using a nuclear extract from IL-2-stimulated HOZOT confirmed that CpG DNA methylation around I-SRE-4 reduced STAT5 binding to the element. Chromatin immunoprecipitation analysis revealed the in situ binding of IL-2-activated STAT5 to I-SRE-4. Thus, we provide molecular evidence for the involvement of an IL-2-STAT5 signaling axis in the expression of IL-10 by human Treg cells, an axis that is regulated by the intronic enhancer, I-SRE-4, and epigenetic modification of this element. 相似文献
12.
Ahmed N Anderson SM Berridge MV 《Apoptosis : an international journal on programmed cell death》1999,4(2):71-80
Growth factors promote cell survival and proliferation. Homeostasis is maintained by programmed cell death which occurs when the growth stimulus is withdrawn, in response to negative growth regulators such as interferons, TNF- and CD95 ligand, or following differentiation. Although acutely-transforming oncogenes often overcome the need for growth factors, growth regulatory cytokines can influence proliferative responses of transformed cells. In this study we investigated the effects of IL-3 on the proliferative responses of parental bone marrow-derived 32D cells and cells transformed with ras and abl oncogenes. We show that treatment of ras-transformed 32D cells with IL-3 reduced proliferative responses and decreased colony-forming ability. These effects were exacerbated in the absence of serum and associated with inhibition of tyrosine kinase activity, down-regulation of RAS and MYC expression, and induction of apoptosis as indicated by DNA fragmentation. In contrast, treatment of parental 32D cells with IL-3, which is obligatory for cell survival and proliferation, increased tyrosine kinase activity, upregulated MYC and RAS expression and maintained DNA integrity. With abl-transformed cells, proliferation and colony-forming ability were also inhibited by IL-3. Tyrosine kinase activity and MYC expression were reduced, but early apoptosis was not evident. Calcium uptake however, was stimulated by IL-3 in both parental and oncogene-transformed cells. These results suggest that threshold levels of tyrosine kinase activity are necessary for cell survival and proliferation and that with ras-transformed cells, IL-3 treatment may result in this threshold being breached. We conclude that in some situations, growth-promoting cytokines can inhibit proliferation of transformed cells and induce cell death by apoptosis. 相似文献
13.
IFN-alpha induces the human IL-10 gene by recruiting both IFN regulatory factor 1 and Stat3 总被引:1,自引:0,他引:1
Ziegler-Heitbrock L Lötzerich M Schaefer A Werner T Frankenberger M Benkhart E 《Journal of immunology (Baltimore, Md. : 1950)》2003,171(1):285-290
The anti-inflammatory cytokine IL-10 can be induced by type I IFNs, but the molecular mechanisms involved have remained elusive. With in silico analysis of the human IL-10 promoter we identified a module consisting of an IFN regulatory factor 1 (IRF-1) site and a Stat3 site. We demonstrate that IFN-alpha will induce the binding of IRF-1 and Stat3 to the respective motifs. Mutational analysis revealed that inactivation of the IRF-1 motif substantially reduces trans-activation from 5- to 2-fold and that inactivation of the Stat3 motif completely ablates trans-activation by IFN-alpha. The dominant role of Stat3 in this module was confirmed with the blockade of trans-activation by a dominant negative Stat3. By contrast, Stat1 contributes a minor proportion to the DNA binding to the Stat site, and overexpression will counteract Stat3-mediated trans-activation. The data show that IFN-alpha induces the IL-10 gene via a module consisting of interdependent IRF-1 and Stat3 motifs. Of note, LPS-induced trans-activation does not target this module, since it is independent of the IRF-1 motif but completely depends on Stat3. 相似文献
14.
Role for IL-10 in suppression mediated by peptide-induced regulatory T cells in vivo 总被引:15,自引:0,他引:15
Sundstedt A O'Neill EJ Nicolson KS Wraith DC 《Journal of immunology (Baltimore, Md. : 1950)》2003,170(3):1240-1248
Regulatory CD4(+) T cells were induced in the Tg4 TCR transgenic mouse specific for the N-terminal peptide (Ac1-9) of myelin basic protein by intranasal administration of a high-affinity MHC-binding analog (Ac1-9[4Y]). Peptide-induced tolerant cells (PItol) were anergic, failed to produce IL-2, but responded to Ag by secretion of IL-10. PItol cells were predominantly CD25(-) and CTLA-4(+) and their anergic state was reversed by addition of IL-2 in vitro. PItol cells suppressed the response of naive Tg4 cells both in vitro and in vivo. The in vitro suppression mediated by these cells was not reversed by cytokine neutralization and was cell-cell contact-dependent. However, suppression of proliferation and IL-2 production by PItol cells in vivo was abrogated by neutralization of IL-10. These results emphasize an important role for IL-10 in the function of peptide-induced regulatory T cells in vivo and highlight the caution required in extrapolating mechanisms of T regulatory cell function from in vitro studies. 相似文献
15.
Tumor necrosis factor-alpha (TNF-alpha) binds to TNF-alpha receptors (TNFR) to produce a hexameric (TNF-alpha)(3)-(TNFR)(3) structure that stimulates apoptosis. We found by using ELISA that TNF-alpha binds to the glycosylphosphatidylinositol (GPI) anchor glycans of carcinoembryonic antigen, human placental alkaline phosphatase (hAP), and Tamm-Horsfall glycoprotein. These binding abilities were inhibited by 10(-6)M mannose-6-phosphate. Treatment of hAP with mild acid and phosphatase, which releases the N-acetylglucosamine (GlcNAc) beta1 -->phosphate-->6 residue from the GPI-anchor glycan of hAP, abrogated the binding of TNF-alpha to hAP. Thus, TNF-alpha binds to the GlcNAcbeta1-->phosphate-->6Man residue in GPI-anchor glycans. To investigate whether the carbohydrate-binding ability of TNF-alpha is related to its physiological functions, human lymphoma U937 cells were used. TNF-alpha stimulates U937 cell apoptosis in a dose-dependent manner and the presence of mannose-6-phosphate inhibited this. TNF-alpha-dependent tyrosine phosphorylation of several proteins in U937 cells was also diminished by mannose-6-phosphate. Phosphatidylinositol-specific phospholipase C-pretreatment also inhibited this tyrosine phosphorylation. These data suggest that TNF-alpha stimulates U937 cell apoptosis by forming a high-affinity nanomeric (TNF-alpha)(3)-(TNFR)(3)-(GPI-anchored glycan)(3) complex. The GPI-anchored glycoprotein involved remains to be identified. 相似文献
16.
Cutting edge: IL-12 induces CD4+CD25- T cell activation in the presence of T regulatory cells 总被引:2,自引:0,他引:2
IL-12p40 cytokines have been implicated in the development of organ-specific autoimmune diseases as well as pathogen-specific adaptive immunity. In addition to inducing IFN-gamma, IL-12 stimulates effector CD4(+) T cells to express adhesion molecules and homing receptors that facilitate their migration to sites of inflammation. In this study, we expand upon those observations by demonstrating an alternative pathway by which IL-12 could promote Th1 inflammatory responses in mice, namely, by restoring proliferation and cytokine expression by effector T cells in the presence of CD4(+)CD25(+) regulatory T cells (Treg). This effect of IL-12 was not replicated by IL-23 or IFN-gamma and was dependent on signaling through the IL-12R expressed on CD25(-) responder cells, but not on Treg. Our studies suggest that IL-12 could act in concert with other proinflammatory factors to stimulate CD4(+)CD25(-) T cell activation in the presence of Treg. 相似文献
17.
T cell apoptosis can be triggered by different mechanisms that lead to distinctive features such as cell shrinkage, membrane blebbing, phosphatidylserine externalization, and internucleosomal DNA fragmentation. Prevailing models for the induction of apoptosis place the cytoskeleton as a distal target of the death effector molecules ('executioners'). However, the cytoskeleton can also play a role in the induction of apoptosis as suggested by the finding that cytoskeletal disruption can induce apoptosis. The mechanism by which this occurs is unknown. Here, we report that T cell apoptosis by cytoskeletal disruption involves a protein synthesis-independent mechanism leading to up-regulation of caspase-3 protease activity and increased accessibility of active caspase-3 to its substrate. Thus, cytoskeleton integrity may regulate the subcellular compartmentalization of death effector molecules. 相似文献
18.
Biswas PS Pedicord V Ploss A Menet E Leiner I Pamer EG 《Journal of immunology (Baltimore, Md. : 1950)》2007,179(7):4520-4528
Regulation of CD8 T cell expansion and contraction is essential for successful immune defense against intracellular pathogens. IL-10 is a regulatory cytokine that can restrict T cell responses by inhibiting APC functions. IL-10, however, can also have direct effects on T cells. Although blockade or genetic deletion of IL-10 enhances T cell-mediated resistance to infections, the extent to which IL-10 limits in vivo APC function or T cell activation/proliferation remains unknown. Herein, we demonstrate that primary and memory CD8 T cell responses following Listeria monocytogenes infection are enhanced by the absence of IL-10. Surface expression of the IL-10R is transiently up-regulated on CD8 T cells following activation, suggesting that activated T cells can respond to IL-10 directly. Consistent with this notion, CD8 T cells lacking IL-10R2 underwent greater expansion than wild-type T cells upon L. monocytogenes infection. The absence of IL-10R2 on APCs, in contrast, did not enhance T cell responses following infection. Our studies demonstrate that IL-10 produced during bacterial infection directly limits expansion of pathogen-specific CD8 T cells and reveal an extrinsic regulatory mechanism that modulates the magnitude of memory T cell responses. 相似文献
19.
The abnormal apoptosis of T cell subsets and possible involvement of IL-10 in systemic lupus erythematosus 总被引:9,自引:0,他引:9
To study the apoptosis of lymphocyte subpopulations in systemic lupus erythematosus (SLE) patients and the possible role of IL-10 in this apoptosis involved in the pathogenesis of SLE, three color fluorescence and flow cytometry were used to investigate the early apoptosis of lymphocyte subsets from freshly separated or cultured peripheral blood mononuclear cells (PBMCs). ELISA was employed to detect the levels of IL-10 in serum and the levels of sFas and sFasL in cultured PBMC supernatants, and the results of sFas and sFasL were confirmed by real-time PCR of Fas and FasL mRNA. The results showed that in cells from SLE patients, the apoptosis of CD3+, CD4+, and CD8+ T cells was distinctly increased, and the percentage of CD4+ cells and the CD4/CD8 ratio was significantly decreased, as compared with normal controls. The apoptosis of T lymphocytes cultured with SLE serum was markedly higher than that of cells cultured with control's serum. Blockade of interleukin-10 (IL-10) activation by an anti-IL-10 antibody reduced the SLE serum induced apoptosis of CD4+ and CD8+ T cells. The levels of sFas and sFasL in the culture supernatant and Fas and FasL mRNA expressions in cultured cells were significantly higher in the SLE serum-cultured groups, but decreased evidently in the presence of the anti-IL-10 antibody. Above findings suggested that SLE cells showed abnormally high apoptosis of T lymphocytes, especially of the CD4+ subpopulation, resulting in a decreased CD4/CD8 ratio. The high percentage of apoptotic T cells in SLE patients may be related to the high levels of IL-10 in SLE serum, as IL-10 may induce the abnormally activated T cells to trigger apoptosis via the Fas-FasL pathway. 相似文献
20.
Bivona TG Wiener HH Ahearn IM Silletti J Chiu VK Philips MR 《The Journal of cell biology》2004,164(3):461-470
Rap1 and Ras are closely related GTPases that share some effectors but have distinct functions. We studied the subcellular localization of Rap1 and its sites of activation in living cells. Both GFP-tagged Rap1 and endogenous Rap1 were localized to the plasma membrane (PM) and endosomes. The PM association of GFP-Rap1 was dependent on GTP binding, and GFP-Rap1 was rapidly up-regulated on this compartment in response to mitogens, a process blocked by inhibitors of endosome recycling. A novel fluorescent probe for GTP-bound Rap1 revealed that this GTPase was transiently activated only on the PM of both fibroblasts and T cells. Activation on the PM was blocked by inhibitors of endosome recycling. Moreover, inhibition of endosome recycling blocked the ability of Rap1 to promote integrin-mediated adhesion of T cells. Thus, unlike Ras, the membrane localizations of Rap1 are dynamically regulated, and the PM is the principle platform from which Rap1 signaling emanates. These observations may explain some of the biological differences between these GTPases. 相似文献