首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The irreversible binding of the radical cation of promethazine (PMZ+.) to DNA and protein in vitro and bacterial macromolecules in situ has been studied. Binding experiments were performed with synthesized [35S] promethazine. The results are compared to those with the chlorpromazine radical cation (CPZ+.). Secondary reaction products which result from fission of the alkylamino side chain are involved in the macromolecular binding of PMZ+. Compared to CPZ+. the covalent DNA binding of PMZ+. is significantly less. A larger amount of PMZ+. binds to single-stranded DNA than to double-stranded DNA. The extent of binding to proteins and RNA is of the same order as that of CPZ+. Bacterial mutagenicity tests show that the low genotoxicity of PMZ+. is related to the low DNA binding. The bacterial cytotoxicity is possibly related to the covalent protein binding. Similar results have been obtained with photoactivated promethazine (PMZ) and chlorpromazine (CPZ). The role of radical cations in the photosensitization and metabolic activation of phenothiazine drugs is discussed.  相似文献   

2.
Acid phosphatase assay with alpha-naphthyl phosphate as substrate and the use of diazonium salt (Fast Red TR) for chromophore formation was kinetically analysed as a system of two chemical reactions coupled to an enzymic reaction. This system follows a mechanism defined as enzymic-chemical-chemical (EzCC). The accumulation of chromophore with reaction time presented a marked lag period, which was only dependent on the rate constants of the chemical reactions and was independent of the enzymic step. The specific rate constants of each chemical step were determined in 3.8-5.0 pH and 10-35 degrees C temperature ranges. Thermodynamic parameters of the chemical steps were also obtained. Measurement of acid phosphatase activity can be carried out in the pH range 3.8-5.0 (4.8 was optimal pH) without the need to eliminate the lag period.  相似文献   

3.
Studies were performed to determine the DNA interactions of and the induction of cytotoxic effects by the radical cation (CPZ+.) formed enzymatically from chlorpromazine (CPZ): in the presence of native DNA the lifetime of CPZ+. is markedly increased. The decreased reactivity of CPZ+. in the presence of native DNA and the concomitant increased viscosity of CPZ+.-DNA complexes strongly support the assumption that CPZ+. does form intercalation complexes with DNA. The relative strong bacteriotoxicity of CPZ+. hindered the accurate determination of mutagenesis in various Salmonella indicator strains, but a test for repairable DNA damage in Escherichia coli using various repair-deficient strains indicated that the cytotoxic action of CPZ+. is in part due to DNA alterations which can be excised in wild-type DNA repair-proficient strains. After activation of CPZ with long wavelength UV light, genetic effects are observed in S. typhimurium strain TA98, as well as in the E. coli tester strains. The possible role of CPZ+. in the photosensitization of CPZ is discussed.  相似文献   

4.
Chlorpromazine is an excellent chromogen for determining micro-quantities of hemoglobin. The oxidation of chlorpromazine by peroxidase activity of hemoglobin is coupled to a non-enzymatic reaction of second-order. Kinetic analysis of the overall system leads to a discussion about the optimal assay conditions. Spectrophotometric progress curves for the accumulation of the chlorpromazine cation radical during the reaction have been obtained, and further analyzed by non-linear regression. The use of a linear calibration curve of the enzymatic reaction rate against hemoglobin concentration is proposed for its determination.  相似文献   

5.
The irreversible binding of chlorpromazine radical cation (CPZ+·) and photoactivated chlorpromazine (CPZ) to calf thymus DNA in vitro and bacterial macromolecules in intact bacterium cells was investigated. CPZ+· may be formed in vivo metabolically and photochemically. CPZ+· and photoactivated CPZ bind covalently to double- and single-strand DNA. The conformation of the DNA appeared to be important for the CPZ+· reactivity: though CPZ+· is less stabilized by complex formation with single-strand DNA, the reaction rate and the binding capacity of DNA-complexed CPZ+· with single-strand DNA is larger than with double-strand DNA. Photoactivated CPZ binds considerably to proteins, DNA and RNA in the intact bacterium cells. In spite of the relatively short lifetime of CPZ+· in the presence of the cells CPZ+· also binds irreversibly to bacterial DNA, RNA and proteins. The consequences of covalent binding for the cytotoxicity and genotoxicity of CPZ+· and photoactivated CPZ and the possible role for CPZ+· as an intermediate in the photobinding of CPZ is discussed.  相似文献   

6.
Human polymorphonuclear leukocytes (PMNs) have been stimulated with either phorbol 12-myristate 13-acetate (PMA), calcium ionophore A23187 or a combination of both to induce the respiratory burst and myeloperoxidase (MPO) release. Chlorpromazine (CPZ) but not chlorpromazine sulfoxide (CPZSO) inhibited the respiratory burst as measured with lucigenin chemiluminescence. The inhibition was due to interference with processes in the cell leading to the respiratory burst and not to scavenging of produced oxygen radicals that provoke the luminescence. CPZ was metabolized by stimulated PMNs. HPLC analysis revealed formation of CPZSO and an unidentified product. Both products result from decay of chlorpromazine radical cation (CPZ+.), indicating formation of this radical intermediate in CPZSO oxidation by stimulated PMNs. CPZ conversion correlated with H2O2 production and MPO release. The largest CPZ conversion was observed with phorbol ester plus A23187 stimulation. The conversion was reduced by catalase and sodium azide, an inhibitor of MPO, with 70% and 40%, respectively. This indicates only partial involvement of extracellularly released MPO in CPZ metabolism by PMNs. Considerable covalent binding of [3H]CPZ to nucleic acids and proteins of intact stimulated PMNs was observed. This binding was larger upon co-stimulation with phorbol ester and A23187. Azide did not reduce covalent binding. This indicates that covalent binding is not mediated by extracellularly released MPO and that CPZ is probably activated intracellularly. Activation of PMNs and production of H2O2 is a prerequisite for both CPZ conversion and covalent binding. This study demonstrates that phagocytic cells might contribute to drug metabolism and drug-induced toxicity.  相似文献   

7.
The oxidation of chlorpromazine by methemoglobin plus H2O2 has been studied. The transient formation of the chlorpromazine radical cation in this reaction has been demonstrated by light absorption measurements. Under the experimental conditions complete conversion of chlorpromazine yields approximately 60% chlorpromazine sulfoxide. From studies with 3H-labeled chlorpromazine it appears that the remaining 40% is covalently bound to apohemoglobin. Upon reaction of methemoglobin with H2O2 a stable ferrylhemoglobin is formed. This ferrylhemoglobin is not the reactive species, which accepts the chlorpromazine electron, as its presence is not sufficient to induce chlorpromazine oxidation. For this the presence of H2O2 is a prerequisite. This indicates that a transient species in the formation of the stable ferrylhemoglobin is involved, whether this is a compound I analogue or a ferrylhemoglobin with a free radical on one of the apoprotein residues. Exposition of methemoglobin to H2O2 denatures hemoglobin and induces protein-heme crosslinks, as appears from changes in the visible absorption spectrum and heme retention by the protein after methyl ethyl ketone extraction. Reaction with CPZ partly protects against denaturation and crosslinking.  相似文献   

8.
Stopped-flow techniques were utilized to investigate the kinetics of the reaction of lignin peroxidase compounds I and II (LiPI and LiPII) with veratryl alcohol (VA). All rate data were collected from single turnover experiments under pseudo first-order conditions. The reaction of LiPI with VA strictly obeys second-order kinetics over the pH range 2.72-5.25 as demonstrated by linear plots of the pseudo first-order rate constants versus concentrations of VA. The second-order rate constants are strongly dependent on pH and range from 2.62 x 10(6) M-1 s-1 (pH 2.72) to 1.45 x 10(4) M-1 s-1 (pH 5.25). The reaction of LiPII and VA exhibits saturation behavior when the observed pseudo first-order rate constants are plotted against VA concentrations. The saturation phenomenon is quantitatively explained by the formation of a 1:1 LiPII-substrate complex. Results of kinetic and rapid scan spectral analyses exclude the formation of a LiPII-VA cation radical complex. The first-order dissociation rate constant and the equilibrium dissociation constant for the LiPII reaction are also pH dependent. Binding of VA to LiPII is controlled by a heme-linked ionizable group of pKa approximately 4.2. The pH profiles of the second-order rate constants for the LiPI reaction and of the first-order dissociation constants for the LiPII reaction both demonstrate two pKa values at approximately 3.0 and approximately 4.2. Protonated oxidized enzyme intermediates are most active, suggesting that only electron transfer, not proton uptake from the reducing substrate, occurs at the enzyme active site. These results are consistent with the one-electron oxidation of VA to an aryl cation radical by LiPI and LiPII.  相似文献   

9.
Irradiation in the presence of O2, with near-UV light of five promazine (PZ) derivatives added to erythrocyte ghost membranes, causes covalent cross-linking between proteins as revealed by a progressive decrease in the amounts of proteins separable by electrophoresis after denaturation. The induction of cross-links in the two spectrin subunits is a single-hit process as a function of the irradiation time; relatively the rate constants (in min?1) of the photoreactions were 0.060 with chlorpromazine (CPZ), 0.039 with methoxypromazine (MTPZ), 0.031 with PZ, 0.029 with triflupromazine (TFPZ) and 0.006 with acepromazine (ACPZ).A main photochemical intermediate implicated in the spectrin aggregation seems to be the cation radical of the PZ derivatives. Indeed, (i) the chemically generated cation radicals can induce the reaction in the dark; (ii) the photoaggregation is regularly reduced upon addition of increasing concentrations of NaN3; (iii) NaN3 similarly affects the amount of cross-links induced by the isolated cation radicals. Hydroxyl radicals are also involved in the photocross-linking when the reaction is initiated only by MTPZ and not by the other sensitizers.In the absence of oxygen during irradiation, PZ, MTPZ and ACPZ completely loose their cross-linking activities whereas CPZ and TFPZ remain as efficient as in the presence of oxygen.  相似文献   

10.
H W Chih  E N Marsh 《Biochemistry》1999,38(41):13684-13691
Glutamate mutase catalyzes the reversible isomerization of L-glutamate to L-threo-3-methylaspartate. Rapid quench experiments have been performed to measure apparent rate constants for several chemical steps in the reaction. The formation of substrate radicals when the enzyme was reacted with either glutamate or methylaspartate was examined by measuring the rate at which 5'-deoxyadenosine was formed, and shown to be sufficiently fast for this step to be kinetically competent. Furthermore, the apparent rate constant for 5'-deoxyadenosine formation was very similar to that measured previously for cleavage of the cobalt-carbon bond of adenosylcobalamin by the enzyme, providing further support for a mechanism in which homolysis of the coenzyme is coupled to hydrogen abstraction from the substrate. The pre-steady-state rates of methylaspartate and glutamate formation were also investigated. No burst phase was observed with either substrate, indicating that product release does not limit the rate of catalysis in either direction. For the conversion of glutamate to methylaspartate, a single chemical step appeared to dominate the overall rate, whereas in the reverse direction a lag phase was observed, suggesting the accumulation of an intermediate, tentatively ascribed to glycyl radical and acrylate. The rates of formation and decay of this intermediate were also sufficiently rapid for it to be kinetically competent. When combined with information from previous mechanistic studies, these results allow a qualitative free energy profile to constructed for the reaction catalyzed by glutamate mutase.  相似文献   

11.
Oxalic acid was found to inhibit noncompetitively the Cα-Cβ bond cleavage of veratrylglycerol catalyzed by a lignin peroxidase (LiP) isozyme of the white-rot fungus P. chrysosporium. With greater amounts of oxalic acid in the LiP system, the substrate was not converted to veratraldehyde but was almost all recovered. Oxalic acid was shown to be decomposed to CO2 during the enzymatic reaction. The results clearly indicate that oxalic acid reduced the cation radical intermediate formed in the reaction back to the substrate to block the production of veratraldehyde. A novel equation has been derived to explain the mechanism for this unique non-competitive inhibition that is different from the classical noncompetitive one. The inhibition constant Ki obtained here, which is different from the classical inhibition constant Ki, is defined as the ratio of the rate constant (kp) for product formation to the rate constant (ki) for the reduction of the cation radical to the substrate.  相似文献   

12.
Since hydroperoxide specificity of lipoxygenase (LO) is poorly understood at present, we investigated the ability of cumene hydroperoxide (CHP) and tert-butyl hydroperoxide (TBHP) to support cooxidase activity of the enzyme toward the selected xenobiotics. Considering the fact that in the past, studies of xenobiotic N-demethylation have focused on heme-proteins such as P450 and peroxidases, in this study, we investigated the ability of non-heme iron proteins, namely soybean LO (SLO) and human term placental LO (HTPLO) to mediate N-demethylation of phenothiazines. In addition to being dependent on peroxide concentration, the reaction was dependent on enzyme concentration, substrate concentration, incubation time, and pH of the medium. Using Nash reagent to estimate formaldehyde production, the specific activity under optimal assay conditions for the SLO mediated N-demethylation of chlorpromazine (CPZ), a prototypic phenothiazine, in the presence of TBHP, was determined to be 117+/-12 nmol HCHO/min/mg protein, while that of HTPLO was 3.9+/-0.40 nmol HCHO/min/mg protein. Similar experiments in the presence of CHP yielded specific activities of 106+/-11 nmol HCHO/min/mg SLO, and 3.2+/-0.35 nmol HCHO/min/mg HTPLO. As expected, nordihydroguaiaretic acid and gossypol, the classical inhibitors of LOs, as well as antioxidants and free radical reducing agents, caused a marked reduction in the rate of formaldehyde production from CPZ by SLO in the reaction media fortified with either CHP or TBHP. Besides chlorpromazine, both SLO and HTPLO also mediated the N-demethylation of other phenothiazines in the presence of these organic hydroperoxides.  相似文献   

13.
Carotenoicls in chloroform and carbon tetrachloriclc photobleach upon nanosecond laser flash photolysis in two steps: instantaneously and in a second-order reaction. The rate constant for second-order reaction (first-order in a solvent derived radical and first-order in (excess) ccirotenoid) is largest for carotenes (9.8·108 M-1 s-1 for β-carotene), intermediate for hydroxylated carotenoids, and smallest for carbonyl containing carotenoids (1.0·108 M-1 s-1 for astaxanthin) in chloroform at 20°C. Near infrared, ibsorbing transients are formed concomitant with pliotohleaching in chloroform (not detected in cxbon tetrachloride). A species formed instantaneously is tentatively identified as either a carotenoid/solvent adduct or an ion-pair. A second species is formed by decay of the instantaneously formed species and is identified as the carotenoid radical cation. This species is formed in a first-order reaction with a rate constant of approx. 5·104 s-1 and absorbing at longer wavelength than the precursor. The lifetime (second-order decay) of the interniediates appears to be longest for the carotenoids with the longest conjugated system. The results indicate that carotenes are better antioxidants than xantliophylls as the carotenes, at least in the present lipophilic solvents, react faster with free radicals.  相似文献   

14.
The red colored product, which was identified as a chlorpromazine (CPZ) free radical, was observed in the reaction of CPZ with the vanadate ion (+5 oxidation state). The product and the mechanism for the reaction were characterized from optical and EPR spectrometries. Optimal conditions for generation of the free radical were determined as reaction time within one minute of pH 6 and free radical stabilizing time of 30 minutes by acidifying with HCl. Under these conditions, the stoichiometry for the reaction was found to be 1:1, indicating the involvement of one electron transfer from CPZ to the vanadate ion to form the free radical and vanadyl ion (+4 oxidation state). A possible reaction scheme was proposed:
The implications of this reaction were discussed with regard to the pharmacological action of the vanadate ion and CPZ.  相似文献   

15.
N,N-Dimethyl-p-phenylenediamine (DMPD) reacted directly with oxyhemoglobin under formation of ferrihemoglobin and, presumably, the N,N-dimethyl-p-phenylenediamine radical cation (DMPP.+). The apparent second-order rate constant of this reaction was 1 M-1 s-1 (pH 7.4, 37 degrees C). The reaction rate was diminished by catalase (by 1/3) and by superoxide dismutase (by 1/5). The apparent second-order rate constant of ferrihemoglobin formation by DMPD.+ was 5 x 10(3) M-1 s-1. Since DMPD.+ is disproportionated by 50% at pH 7.4, the quinonediimine could not be excluded as the ultimate ferrihemoglobin forming oxidant. To prove this hypothesis, the disproportionation equilibrium was shifted to the radical side by addition of excess DMPD. Ferrihemoglobin formation was thereby increased, indication that the radical was the responsible oxidant. In contrast to ferrihemoglobin formation, reactions with glutathione occurred predominantly with the quinonediimine. The second-order rate constant of this reaction was 4 x 10(5) M-1 s-1 which approaches the value obtained with p-benzoquinone. In contrast to the corresponding reactions of the N,N,N',N'-tetramethyl-p-phenylenediamine radical cation, the disporportionation reaction of DMPD.+ was very fast, k = 2 x 10(6) M-1 s-1. Formation of glutathione disulfide was negligible and the main reaction products were two isomeric glutathione adducts, 2- and 3-(glutathione-S-yl)-N,N-dimethyl-p-phenylenediamine. In human erythrocytes, DMPD produced many equivalents of ferrihemoglobin, diminished glutathione and produced both thioethers. In contrast to ferrihemoglobin formation, DMPD and glutathione disappearance as well as thioether appearance occured only after a marked lag phase. The calculated steady state concentration of DMPD.+ was only 4 x 10(-6) the DMPD concentration, as long as ferrihemoglobin was low. At increasing ferrihemoglobin higher steady state concentrations of the radical are attained. In fact, preformed ferrihemoglobin in red cells significantly accelerated DMPD and glutathione disappearance. This effect was completely prevented in the presence of ferrihemoglobin-complexing cyanide. The presented experiments once more appoint blood as a metabolically competent organ for the biotransformation of aromatic amines.  相似文献   

16.
The pre-steady-state kinetics of the prostaglandin endoperoxide synthase oxygenase reaction with eicosadienoic acids and the cyclooxygenase reaction with arachidonic acid were investigated by stopped-flow spectrophotometry at 426 nm, an isosbestic point between native enzyme and compound I. A similar reaction mechanism for both types of catalysis is defined from combined kinetic experiments and numerical simulations. In the first step a fatty acid hydroperoxide reacts with the native enzyme to form compound I and the fatty acid hydroxide. In the second step the fatty acid reduces compound I to compound II and a fatty acid carbon radical is formed. This is followed by two fast steps: (1) the addition of either one molecule of oxygen (the oxygenase reaction) or two molecules of oxygen (the cyclooxygenase reaction) to the fatty acid carbon radical to form the corresponding hydroperoxyl radical, and (2) the reaction of the hydroperoxyl radical with compound II to form the fatty acid hydroperoxide and a compound I-protein radical. A unimolecular reaction of the compound I-protein radical to reform the native enzyme is assumed for the last step in the cycle. This is a slow reaction not significantly affecting steps 1 and 2 under pre-steady-state conditions. A linear dependence of the observed pseudo-first-order rate constant, k(obs), on fatty acid concentration is quantitatively reproduced by the model for both the oxygenase and cyclooxygenase reactions. The simulated second order rate constants for the conversion of native enzyme to compound I with arachidonic or eicosadienoic acids hydroperoxides as a substrate are 8 x 10(7) and 4 x 10(7) M(-1) s(-1), respectively. The simulated and experimentally obtained second-order rate constants for the conversion of compound I to compound II with arachidonic and eicosadienoic acids as a substrate are 1.2 x 10(5) and 3.0 x 10(5) M(-1) s(-1), respectively.  相似文献   

17.
Photoinduced reduction of methylviologen (MV2+) by ethylenediaminetetraacetate (EDTA3-), which was sensitized by thiacarbocyanine dyes having long alkyl chains (C+m-n) embedded in palmitoyl lysophosphatidylcholine micelle and dipalmitoyl phosphatidylcholine liposomal membrane, was carried out. The formation rate of reduced methylviologen cation radical (MV+.) decreased with the time of irradiation with visible light, and the deceleration was more pronounced in the micellar solution. In kinetic studies, we found that the sensitizer divalent cation radical (C2+.m-n) is formed through the reaction of photoexcited sensitizer (C+*m-n) with MV2+ as an intermediate in this reaction, and that the reduction of C2+.m-n with EDTA3- inhibits the back reaction of MV+. with C2+.m-n. The inhibition was greater in the liposomal solution than in the micellar solution. This was ascribed to a higher concentration of EDTA3- on the liposomal surfaces through the electrostatic interaction between EDTA3- and the liposomal surfaces, the charge of which is attributed to the univalent cation sensitizer embedded in the liposomal membrane. The difference in the positive charge density of the surface of these lipid aggregates was due to the difference in the curvature of the micelle and the liposome. These results suggest that the dipalmitoyl phosphatidylcholine liposome is a more effective carrier than the palmitoyl lysophosphatidylcholine micelle for the production of MV+. in the photoreduction studied here.  相似文献   

18.
Since hydroperoxide specificity of lipoxygenase (LO) is poorly understood at present, we investigated the ability of cumene hydroperoxide (CHP) and tert-butyl hydroperoxide (TBHP) to support cooxidase activity of the enzyme toward the selected xenobiotics. Considering the fact that in the past, studies of xenobiotic N-demethylation have focused on heme-proteins such as P450 and peroxidases, in this study, we investigated the ability of non-heme iron proteins, namely soybean LO (SLO) and human term placental LO (HTPLO) to mediate N-demethylation of phenothiazines. In addition to being dependent on peroxide concentration, the reaction was dependent on enzyme concentration, substrate concentration, incubation time, and pH of the medium. Using Nash reagent to estimate formaldehyde production, the specific activity under optimal assay conditions for the SLO mediated N-demethylation of chlorpromazine (CPZ), a prototypic phenothiazine, in the presence of TBHP, was determined to be 117±12 nmol HCHO/min/mg protein, while that of HTPLO was 3.9±0.40 nmol HCHO/min/mg protein. Similar experiments in the presence of CHP yielded specific activities of 106±11 nmol HCHO/min/mg SLO, and 3.2±0.35 nmol HCHO/min/mg HTPLO. As expected, nordihydroguaiaretic acid and gossypol, the classical inhibitors of LOs, as well as antioxidants and free radical reducing agents, caused a marked reduction in the rate of formaldehyde production from CPZ by SLO in the reaction media fortified with either CHP or TBHP. Besides chlorpromazine, both SLO and HTPLO also mediated the N-demethylation of other phenothiazines in the presence of these organic hydroperoxides.  相似文献   

19.
We reported evidence that horseradish peroxidase (HRP) and chloroperoxidase (CPO) catalyze oxygen transfer from H2O2 to thioanisoles [Kobayashi, S., Nakano, M., Goto, T., Kimura, T., & Schaap, A. P. (1986) Biochem. Biophys. Res. Commun. 135, 166-171]. In the present paper, the reaction mechanism of this oxygen transfer is discussed. The oxidation of para-substituted thioanisoles by HRP compound II showed a large negative rho value of -1.46 vs. the sigma + parameter in a Hammett plot. These results are in accord with the formation of a cation radical intermediate in the rate-determining step. Hammett treatments for HRP- and CPO-dependent S-oxygenations did not provide unequivocal proofs to judge the reaction mechanism, because of the poor correlations for sigma + and sigma p parameters. Different behavior was found in kinetics and stereoselectivity between the two enzymes. Results in the present study and recent studies strongly suggested the formation of a cation radical intermediate. The oxygen atom would transfer by reaction of compound II and the cation radical intermediate. Although involvement of the cation radical was not confirmed in the CPO system, a similar mechanism was proposed for CPO.  相似文献   

20.
A mechanism for beta-chlorophenethylamine inhibition of dopamine beta-monooxygenase has been postulated in which bound alpha-aminoacetophenone is generated followed by an intramolecular redox reaction to yield a ketone-derived radical cation as the inhibitory species (Mangold, J.B., and Klinman, J.P. (1984) J. Biol. Chem. 259, 7772-7779). Based on the assumption that the ketone radical is the inhibitory intermediate, an analogous system was predicted and verified (Bossard, M.J., and Klinman, J.P. (1986) J. Biol. Chem. 261, 16421-16427). In the present study, the role of alpha-aminoacetophenone as the proposed intermediate in the inactivation by beta-chlorophenethylamine was examined in greater detail. From the interdependence of tyramine and alpha-aminoacetophenone concentrations, ketone inactivation is concluded to occur at the substrate site as opposed to potential binding at the reductant-binding site. Using beta-[2-1H]- and beta-[2-2H]chlorophenethylamine, the magnitude of the deuterium isotope effect on inactivation under second-order conditions has been found to be identical to that observed under catalytic turnover, D(kappa inact/Ki) = D(kappa cat/Km) = 6-7. By contrast, the isotope effect on inactivation under conditions of substrate and oxygen saturation, D kappa inact = 2, is 3-fold smaller than that seen on catalytic turnover, D kappa cat = 6. This reduced isotope effect for inactivation is attributed to a normal isotope effect on substrate hydroxylation followed by an inverse isotope effect on the partitioning of the enol of alpha-aminoacetophenone between oxidation to a radical cation versus protonation to regenerate ketone. These findings are unusual in that two isotopically sensitive steps are present in the inactivation pathway whereas only one is observable in turnover.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号