首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As a potential anti-tumor protein, tumor necrosis factor-related apoptosis-inducing ligand(TRAIL) has drawn considerable attention. This report presented the purification and characterization ofsoluble TRAIL, expressed as inclusion bodies in E. coli. sTRAIL inclusion bodies were solubilized andrefolded at a high concentration up to 0.9 g/L by a simple dilution method. Refolded protein was purifiedto electrophoretic homogeneity by a single-step immobilized metal affinity chromatography. The purifiedsTRAIL had a strong cytotoxic activity against human pancreatic tumor cell line 1990, with EDs0 about 1.5mg/L. Circular dichroism and fluorescence spectrum analysis showed that the refolded sTRAIL had astructure similar to that of native protein with 13-sheet secondary structure. This efficient procedure ofsTRAIL renaturation may be useful for the mass production of this therapeutically important protein.  相似文献   

2.
可溶性人TRAIL分子的制备及其抗肿瘤活性   总被引:3,自引:1,他引:2  
TRAIL(TNF relatedapoptosis inducingligand)是1 995年发现的一个新的TNF超家族成员.使人感兴趣的是该分子既可广泛介导多种组织来源的肿瘤细胞发生凋亡而基本不影响正常细胞的功能,也可引起许多对于FasL和TNF α有抗性的细胞凋亡[1 ,2 ] .因此,有可能成为一种新的抗肿瘤药物.  相似文献   

3.
肿瘤坏死因子相关的凋亡诱导配体 (TRAIL)能选择性诱导肿瘤细胞凋亡 .为利用基因工程技术获得重组TRAIL蛋白可溶性片段 (sTRAIL) ,设计 1对引物 .利用PCR技术特异性扩增出sTRAIL的cDNA ,克隆于质粒pGEM 3Zf( )的EcoRⅠ和PstⅠ位点 .经测序证明序列正确后克隆于表达质粒pBV2 2 0的EcoRⅠ和PstⅠ位点 ,转化大肠杆菌DH5α .转化菌株经温度诱导 ,SDS PAGE检测和Western印迹鉴定 ,获得重组sTRAIL的高水平非融合表达菌株 .表达量占菌体总蛋白的 2 0 % .对其表达产物进行了初步纯化 ,SDS PAGE结果显示纯度可达 90 %以上 .用L92 9细胞测定其生物学活性表明 ,重组蛋白在体外能明显诱导肿瘤细胞凋亡  相似文献   

4.
The B lymphocyte stimulator (BAFF) is a novel member of the tumor necrosis factor (TNF) ligand family which is important in B lymphocyte maturation and survival. Here, a recombinant form of the extracellular domain of the BAFF (hsBAFF) was expressed in Escherichia coli BL21(DE3) under the control of a T7 promoter. The resulting insoluble bodies were separated from cellular debris by centrifugation and solubilized with 8 M urea. A rapid and simple on-column refolding procedure was developed. It was applied and then the refolded hsBAFF was purified by anion-exchange. The purified final product was >98% pure by SDS-PAGE stained with Coomassie brilliant blue R-250. Mass spectroscopic analysis indicated the protein to be 17.5 kDa, which equalled the theoretically expected mass. The N-terminal sequencing of refolding hsBAFF showed the sequence corresponded to the designed protein. The correct refolding of the recombinant protein was verified in the recovery of its secondary and tertiary structures as assessed by circular dichroism and fluorescence emission spectra. The renatured protein displayed its immunoreactivity with the antibodies to BAFF protein by Western blotting. The final purified material was biologically active in a validated induced human B lymphocyte proliferation bioassay. The expression and in vitro refolding of hsBAFF resulted in production of an active molecule in a yield of 15 mg/L flask cultivation.  相似文献   

5.
This report presents purification and characterization of the extracellular domain of rat Fas protein, called FIP (FasL interfering protein), expressed as inclusion bodies in Escherichia coli. FIP was extracted from the inclusion bodies, solubilized with 8 M urea, purified by a single-step immobilized metal ion (Ni(2+)) affinity chromatography and refolded. SDS/PAGE and mass spectrometry analysis of the purified protein verified its purity. Fluorescence spectrum analysis showed that the refolding procedure caused structural changes which presumably might have led to oligomerization. The purified FIP has biological activities: it binds specifically soluble Fas ligand and protects human Jurkat lymphocytes against FasL-dependent apoptosis. This efficient procedure of FIP expression in E. coli and renaturation may be useful for production of therapeutically important proteins.  相似文献   

6.
We have constructed and optimized a high yielding Escherichia coli expression system to produce glycosylation-free human procathepsin K and have developed conditions for refolding this enzyme. Recombinant human procathepsin K (EC 3.4.22.38) was expressed in E. coli, refolded from inclusion bodies, and further purified by Superdex 75 size-exclusion chromatography. Purified procathepsin K had a [MH]+ of 35,063 Da which is in agreement with the predicted mass of the construct. Amino-terminal sequence analysis matched the predicted sequence with no secondary sequence detected. Purified procathepsin K activated under autocatalytic conditions to a final specific activity of 23 micromol 7-amido-4-methylcoumarin liberated/min/mg of enzyme using the fluorescent peptide substrate benzyloxycarbonyl-phenylalanine-arginine-7-amido-4-methylcoumarin. This expression and refolding procedure yielded 50 mg of purified, glycosylation-free human procathepsin K from 1 liter of E. coli cell culture and enabled the determination of the structure of human procathepsin K at 2.6 A resolution.  相似文献   

7.
Flavin reductase HpaC(St) catalyzes the reduction of free flavins using NADH or NADPH. High hydrostatic pressure was used for the solubilization and refolding of HpaC(St), which was expressed as inclusion bodies in Escherichia coli to achieve high yield in a flavin-free form. The refolded HpaC(St) was purified using Ni-affinity chromatography followed by a heat treatment, which gave a single band on SDS-PAGE. The purified refolded HpaC(St) did not contain FMN, unlike the same enzyme expressed as a soluble protein. After the addition of FMN to the protein solution, the refolded enzyme showed a higher activity than the enzyme expressed as the soluble protein. Crystals of the refolded enzyme were obtained by adding FMN, FAD, or riboflavin to the protein solution and without the addition of flavin compound.  相似文献   

8.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), as an anticancer protein with tumor-selective apoptotic activity, has been examined for use in clinical application. Melittin, an antibacterial peptide isolated from the bee Apis mellifera, has shown strong cytotoxicity to both tumor and normal cells. To ameliorate the cytotoxicity of melittin on cells and enhance the activity of TRAIL on cancer cells, we constructed a novel fusion protein, sTRAIL–melittin, containing a small ubiquitin-related modifier (SUMO) tag and expressed this fusion protein in Escherichia coli. Data showed that expression of the soluble fusion protein with the SUMO tag was approximately 85 % of total target protein which was much higher than that without the SUMO tag (approximately 10 %); sTRAIL–melittin was easily purified using Ni-NTA affinity chromatography and the tag was removed easily using SUMO-specific protease. To assay anticancer activity and side effects, methyl thiazolyl tetrazolium, hemolytic, and apoptosis assays were employed. Results demonstrated that sTRAIL–melittin had cytotoxic and apoptotic activity in K562 leukemia cells and HepG2 liver carcinoma cells, while it had only a minimal effect on erythrocytes and normal HEK293 cells. This indicates that the cytotoxicity of sTRAIL–melittin in normal cells was low and the anticancer activity of the fusion protein in tumor cells was significantly enhanced compared with sTRAIL (P?<?0.01). Furthermore, we found that sTRAIL–melittin also showed antibacterial activity to Staphylococcus aureus due to the presence of the melittin domain. Therefore, TRAIL fused with an antibacterial peptide may be a promising novel TRAIL-based anticancer treatment strategy.  相似文献   

9.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is considered to be a promising anticancer agent because its active form TRAIL trimer is able to induce apoptosis in different tumor cell lines while sparing normal cells. However, TRAIL trimer possesses a short half-life and low stability, which turns out to be a major obstacle for the development of clinical trials. In our present study, we constructed a recombined TRAIL trimer by genetic fusion of non-collagenous domain (NC1) of human collagen XVIII or its trimerization domain (TD) to C-terminus of TRAIL via a flexible linker, and then refolded the fusion proteins using a two-step refolding approach, namely a combination of dilution and gel filtration chromatography. As a result, both recombinant proteins, TRAIL-NC1 and TRAIL-TD, were expressed in Escherichia coli as inclusion bodies, and they exhibited difficultly to refold efficiently by conventional methods. Thereby, we applied a modified two-step refolding approach to refold fusion proteins. More than 55 % of TRAIL-NC1 and 90 % of TRAIL-TD protein activity was recovered during the two-step refolding approach, and their stability was also increased significantly. Also, size exclusion chromatography showed refolded TRAIL-NC1 was a trimer while TRAIL-TD, hexamer. However, both of them exerted good apoptosis activity on NCI-H460 cells.  相似文献   

10.
BJ-HCC-2 is one of the cancer/testis antigens that may be the most promising targets for tumor immunotherapy. To investigate the expression of BJ-HCC-2 protein in tumor cells and its capacity to elicit CTL response, the recombinant protein of BJ-HCC-2 was expressed in the inclusion bodies in Escherichia coli. The inclusion bodies were solubilized effectively with 0.3% N-lauroyl sarcosine in alkaline buffer. Under this denatured form, the BJ-HCC-2 protein carrying 6x histidine tag was purified with Ni-NTA affinity chromatography in a single step with a purity of over 97%. The yield of the purified protein was about 78%. The purified recombinant protein was refolded in a simple way. The correct refolding of the recombinant protein was verified in the recovery of its secondary and tertiary structures as assessed by circular dichroism and fluorescence emission spectra. The recovery rate of refolded protein was 92.1%. The renatured protein displayed its immunoreactivity with the antibodies to BJ-HCC-2 protein by Western blotting. This method of protein purification and refolding is easy to manipulate and may be applicable to the hydrophobic proteins that are unable to be purified by other methods.  相似文献   

11.
Availability of highly purified native beta-glucosidase Zm-p60.1 in milligram quantities was a basic requirement for analysis of structure-function relationships of the protein. Therefore, Zm-p60.1 was overexpressed to high levels as a fusion protein with a hexahistidine tag, (His)(6)Zm-p60.r, in Escherichia coli, resulting, however, in accumulation of most of the protein in insoluble inclusion bodies. Native (His)(6)Zm-p60.r was then purified either from the bacterial lysate soluble fraction or from inclusion bodies. In the first case, a single-step purification under native conditions based on immobilized metal affinity chromatography (IMAC) was developed. In the second case, a single-step purification protocol under denaturing conditions followed by IMAC-based matrix-assisted refolding was elaborated. The efficiency of the native protein purification from soluble fraction of bacterial homogenate was compared to the feasibility of purification and renaturation of the protein from inclusion bodies. Gain of authentic biological activity and quaternary structure after the refolding process was confirmed by K(m) determination and electrophoretic mobility under native conditions. The yield of properly refolded protein was assessed based on the specific activity of the refolded product.  相似文献   

12.
A DNA encoding the 6-kDa early secretory antigenic target (ESAT-6) of Mycobacterium tuberculosis was inserted into a bacterial expression vector of pQE30 resulting in a 6x His-esat-6 fusion gene construction. This plasmid was transformed into Escherichia coli strain M15 and effectively expressed. The expressed fusion protein was found almost entirely in the insoluble form (inclusion bodies) in cell lysate. The inclusion bodies were solubilized with 8M urea or 6M guanidine-hydrochloride at pH 7.4, and the recombinant protein was purified by Ni-NTA column. The purified fusion protein was refolded by dialysis with a gradient of decreasing concentration of urea or guanidine hydrochloride or by the size exclusion protein refolding system. The yield of refolded protein obtained from urea dialysis was 20 times higher than that from guanidine-hydrochloride. Sixty-six percent of recombinant ESAT-6 was successfully refolded as monomer protein by urea gradient dialysis, while 69% of recombinant ESAT-6 was successfully refolded as monomer protein by using Sephadex G-200 size exclusion column. These results indicate that urea is more suitable than guanidine-hydrochloride in extracting and refolding the protein. Between the urea gradient dialysis and the size exclusion protein refolding system, the yield of the monomer protein was almost the same, but the size exclusion protein refolding system needs less time and reagents.  相似文献   

13.
Production of correctly folded and biologically active proteins in Escherichia coli can be a challenging process. Frequently, proteins are recovered as insoluble inclusion bodies and need to be denatured and refolded into the correct structure. To address this, a refolding screening process based on a 96-well assay format supported by design of experiments (DOE) was developed for identification of optimal refolding conditions. After a first generic screen of 96 different refolding conditions the parameters that produced the best yield were further explored in a focused DOE-based screen. The refolding efficiency and the quality of the refolded protein were analyzed by RP-HPLC and SDS–PAGE. The results were analyzed by the DOE software to identify the optimal concentrations of the critical additives. The optimal refolding conditions suggested by DOE were verified in medium-scale refolding tests, which confirmed the reliability of the predictions. Finally, the refolded protein was purified and its biological activity was tested in vitro. The screen was applied for the refolding of Interleukin 17F (IL-17F), stromal-cell-derived factor-1 (SDF-1α/CXCL12), B cell-attracting chemokine 1 (BCA-1/CXCL13), granulocyte macrophage colony stimulating factor (GM-CSF) and the complement factor C5a. This procedure identified refolding conditions for all the tested proteins. For the proteins where refolding conditions were already available, the optimized conditions identified in the screening process increased the yields between 50% and 100%. Thus, the method described herein is a useful tool to determine the feasibility of refolding and to identify high-yield scalable refolding conditions optimized for each individual protein.  相似文献   

14.
Introduction and expression of foreign genes in bacteria often results accumulation of the foreign protein(s) in inclusion bodies (IBs). The subsequent processes of refolding are slow, difficult and often fail to yield significant amounts of folded protein. RHG1 encoded by rhg1 was a soybean (Glycine max L. Merr.) transmembrane receptor-like kinase (EC 2.7.11.1) with an extracellular leucine-rich repeat domain. The LRR of RHG1 was believed to be involved in elicitor recognition and interaction with other plant proteins. The aim, here, was to express the LRR domain in Escherichia coli (RHG1-LRR) and produce refolded protein. Urea titration experiments showed that the IBs formed in E. coli by the extracellular domain of the RHG1 protein could be solubilized at different urea concentrations. The RHG1 proteins were eluted with 1.0-7.0M urea in 0.5M increments. Purified RHG1 protein obtained from the 1.5 and 7.0M elutions was analyzed for secondary structure through circular dichroism (CD) spectroscopy. Considerable secondary structure could be seen in the former, whereas the latter yielded CD curves characteristic of denatured proteins. Both elutions were subjected to refolding by slowly removing urea in the presence of arginine and reduced/oxidized glutathione. Detectable amounts of refolded protein could not be recovered from the 7.0M urea sample, whereas refolding from the 1.5M urea sample yielded 0.2mg/ml protein. The 7.0M treatment resulted in the formation of a homogenous denatured state with no apparent secondary structure. Refolding from this fully denatured state may confer kinetic and/or thermodynamic constraints on the refolding process, whereas the kinetic and/or thermodynamic barriers to attain the folded conformation appeared to be lesser, when refolding from a partially folded state.  相似文献   

15.
The cDNA encoding an isoform of the cypress major pollen allergen, Cup a1.02, has been cloned and expressed in Escherichia coli as a N-terminal 6x His-tagged protein. To increase recovery, Cup a1.02 was expressed at high levels exploiting the T5 strong promoter and led to accumulate as inclusion bodies. The insoluble purified aggregates were solubilized in 6 M guanidine hydrochloride, immobilized using nickel-chelating affinity chromatography, and successfully refolded by controlled removal of the chaotropic reagent. Enhanced protein refolding was observed by reducing the protein concentration at 0.6-0.8 mg/ml. SDS-PAGE and gel filtration chromatography indicated an apparent molecular mass of approximately 40 kDa and the occurrence of the protein as monomers. The reconstituted fusion protein displayed the same immunological properties of the native Cup a1.02 protein as proven by IgE immunoreactivity. Immunoblotting, ELISA, and histamine release test showed that the tag did not preclude the protein functionality hence validating its correct three-dimensional folding. The protein fold was also assessed by CD spectroscopy and deconvolution of the spectrum allowed to estimate the secondary structure as a prevalence of beta structures (higher than 60%) and a small contribution from alpha helices (less than 12%). The reported procedure has proven to be useful for the production of multi-milligrams of recombinant Cup a1.02 allergen suitable for structural biology studies and for the molecular and functional characterization of the IgE binding sites.  相似文献   

16.
The human ADAMTS-18 (a disintegrin and metalloproteinase with thrombospondin type-1 modules 18) is a new member of the ADAMTS family. The C-terminal ADAMTS-18 fragment is highly effective at promoting platelet thrombus dissolution in murine model of ischemic stroke, showing significant clinical relevance. In this report, the C-terminal ADAMTS-18 fragment with a GST tag (named rADAMTS-351) was overexpressed mainly as inclusion bodies in Escherichia coli BL21 (DE3) pLysS. The insoluble inclusion body was solubilized and reactivated via a refolding procedure. The optimal buffers for refolding rADAMTS-351 was composed of 50 mM Tris-HCl buffer at pH 8.0, 5 mM EDTA, 150 mM NaCl, 0.1 mM DTT, 1 mM GSH, and 0.2 mM GSSG. The refolded rADAMTS-351 was dialyzed and further purified by glutathione-agarose beads. The purity of the final product reached 98% as evaluated by SDS-PAGE and Coomassie Brilliant Blue R250 staining. The recombinant protein displayed its immunoreactivity with anti-C-terminal ADAMTS-18 antibodies by Western blotting. Mass spectroscopic analysis indicated a molecular mass of 65,327 Da as theoretically expected. Purified rADAMTS-351 displayed its bioactivity by inducing platelet fragmentation, which ranged from 81-96% compared to active C-terminal ADAMTS-18 standards. The expression and refolding strategy described in this study allows convenient small-scale production of rADAMTS-351 with biological function and therapeutic potential.  相似文献   

17.
包涵体蛋白的复性是生物工程下游技术中的一个重要难题。层析法用于蛋白质复性是一种较新的、适用于大多数蛋白的方法。其原理是将层析技术应用于蛋白质复性和纯化,使变性蛋白质在层析柱上重折叠为正确的空间构象,在洗脱的同时实现部分纯化。本文详细介绍了蛋白质在5种层析柱上的复性方法、原理、应用及研究的新进展,为层析法对蛋白质复性的进一步应用提供依据。  相似文献   

18.
将含有前导肽的人神经生长因子基因(proNGF)克隆在原核表达载体pET15b中, 转化大肠杆菌BL21(DE3)pLysS, 经IPTG诱导实现了目标融合蛋白的高效表达。SDS-PAGE分析表明表达蛋白占全菌总蛋白的20%左右, 表达蛋白主要以包涵体的形式存在。用6 mol/L的盐酸胍溶解包涵体后, 通过Ni2+-NTA柱纯化, 获得纯化的目标融合蛋白, 电泳谱带扫描分析表明蛋白纯度可达90%以上。Western blotting检测显示, 表达产物有较强的免疫学活性。经肠激酶作用后得到proNGF非融合蛋白, 分子量为27 kD, 100 mL表达菌液可获得13.1 mg proNGF蛋白。用透析复性的方法将目的蛋白重折叠, 复性率为18%, 在重折叠过程中前导肽发挥了一定的积极作用。用PC12细胞进行生物活性鉴定, 结果显示复性后的proNGF蛋白具有良好的生物活性。  相似文献   

19.
将含有前导肽的人神经生长因子基因(proNGF)克隆在原核表达载体pET15b中, 转化大肠杆菌BL21(DE3)pLysS, 经IPTG诱导实现了目标融合蛋白的高效表达。SDS-PAGE分析表明表达蛋白占全菌总蛋白的20%左右, 表达蛋白主要以包涵体的形式存在。用6 mol/L的盐酸胍溶解包涵体后, 通过Ni2+-NTA柱纯化, 获得纯化的目标融合蛋白, 电泳谱带扫描分析表明蛋白纯度可达90%以上。Western blotting检测显示, 表达产物有较强的免疫学活性。经肠激酶作用后得到proNGF非融合蛋白, 分子量为27 kD, 100 mL表达菌液可获得13.1 mg proNGF蛋白。用透析复性的方法将目的蛋白重折叠, 复性率为18%, 在重折叠过程中前导肽发挥了一定的积极作用。用PC12细胞进行生物活性鉴定, 结果显示复性后的proNGF蛋白具有良好的生物活性。  相似文献   

20.
人降钙素受体胞外域是降钙素受体的药物靶点区域.本研究截取降钙素受体的N端胞外域22~140氨基酸残基区域,依据大肠杆菌偏爱密码子优化并人工合成基因,克隆至pET22b(+)载体,构建的表达质粒转入大肠杆菌BL21(DE3)中表达.表达产物经复性、纯化后进行受体-配体结合实验.结果表明,目的蛋白质绝大部分以包涵体形式存在.本研究探索出了一套高效的复性方法,经SDS-PAGE鉴定,纯化蛋白质为单一条带,质谱测定蛋白质分子量与理论分子量一致.复性后的蛋白质采用新的体外活性测定方法证实,有较强的结合鲑鱼降钙素(salmon calcitonin,sCT)的能力.这为其进一步的结构与功能研究奠定了基础.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号