共查询到20条相似文献,搜索用时 0 毫秒
1.
To determine whether self-excited oscillations in a Starling resistor are relevant to physiological situations, a collapsible tube conveying an aqueous flow was externally pressurized along only a central segment of its unsupported length. This was achieved by passing the tube through a shorter and wider collapsible sleeve which was mounted in Starling resistor fashion in a pressure chamber. The tube size and material, and all other experimental parameters, were as used in our previous Starling resistor studies. Both low- and high-frequency self-excited oscillations were observed, but the low-frequency oscillations were sensitive to the sleeve type and length relative to unsupported distance. Pressure-flow characteristics showed multiple oscillatory modes, which differed quantitatively from those observed in comparable Starling resistors. Slow variation of driving pressure gave differing behavior according to whether the pressure was rising or falling, in accord with the hysteresis noted on the characteristics and in the tube law. The results are discussed in terms of the various possible mechanisms of collapsible tube instability, and reasons are presented for the absence of the low-frequency mode under most physiological circumstances. 相似文献
2.
3.
Nunan D Wassertheurer S Lasserson D Hametner B Fleming S Ward A Heneghan C 《BMC cardiovascular disorders》2012,12(1):48
ABSTRACT: BACKGROUND: Large artery stiffening and wave reflections are independent predictors of adverse events. To date, their assessment has been limited to specialised techniques and settings. A new, more practical method allowing assessment of central blood pressure from waveforms recorded using a conventional automated oscillometric monitor has recently been validated in laboratory settings. However, the feasibility of this method in a community based setting has not been assessed. METHODS: One-off peripheral and central haemodynamic (systolic and diastolic blood pressure (BP) and pulse pressure) and wave reflection parameters (augmentation pressure (AP) and index, AIx) were obtained from 1,903 volunteers in an Austrian community setting using a transferfunction like method (ARCSolver algorithm) and from waveforms recorded with a regular oscillometric cuff. We assessed these parameters for known differences and associations according to gender and age deciles from <30 years to >80 years in the whole population and a subset with a systolic BP < 140 mmHg. RESULTS: We obtained 1,793 measures of peripheral and central BP, PP and augmentation parameters. Age and gender associations with central haemodynamic and augmentation parameters reflected those previously established from reference standard non-invasive techniques under specialised settings. Findings were the same for patients with a systolic BP below 140 mmHg (i.e. normotensive). Lower values for AIx in the current study are possibly due to differences in sampling rates, detection frequency and/or averaging procedures and to lower numbers of volunteers in younger age groups. CONCLUSION: A novel transfer-function like algorithm, using brachial cuff-based waveform recordings, provides robust and feasible estimates of central systolic pressure and augmentation in community-based settings. 相似文献
4.
Fetal umbilical artery flow was measured with Doppler ultrasound technique in 206 cases of the uncomplicated pregnancy. Indices A/B and R.I. were calculated. It was shown that vascular resistance in the umbilical artery is decreasing in the normal pregnancy parallel to its development and is manifested by the changes in A/B and R.I. values. 相似文献
5.
The interesting problem is considered of a comatose alcoholic diabetic with an extremely high systolic blood pressure, as determined by the usual means, who was subsequently found to have severe medial calcinosis and normal intraarterial blood pressure. The syndrome of the noncompressible brachial artery surely accounts for this patient''s falsely elevated blood pressure reading. Though infrequently reported, this condition can be one cause of “difficult to control” hypertension in the elderly and in the diabetic patient. 相似文献
6.
7.
8.
Daniel Green Craig Cheetham Chris Reed Lawrie Dembo Gerry O'Driscoll 《Journal of applied physiology》2002,93(1):361-368
We describe a novel software system that utilizes automated algorithms to perform edge detection and wall tracking of high-resolution B-mode arterial ultrasound images, combined with synchronized Doppler waveform envelope analysis, to calculate conduit arterial blood flow (BF) across the cardiac cycle. Furthermore, we describe changes in brachial arterial BF to the resting forearm during incremental cycle ergometry in eight subjects. During exercise, peak BF during the cardiac cycle increased at each workload (P < 0.001), because of increased velocity in the presence of unaltered cross-sectional area. In contrast, mean BF calculated across each cardiac cycle decreased at lower workloads before increasing at 100 and 160 W (P < 0.001). Differences in the pattern of peak and mean cardiac cycle flows were due to the influence of retrograde diastolic flow, which had a larger impact on mean flows at lower workloads. In conclusion, BF can be measured with high temporal resolution across the cardiac cycle in humans. Resting brachial arterial flow, including retrograde flow, increases during lower limb exercise. 相似文献
9.
Blood flow dynamics under physiologically realistic pulsatile conditions plays an important role in the growth, rupture, and surgical treatment of intracranial aneurysms. The temporal and spatial variations of wall pressure and wall shear stress in the aneurysm are hypothesized to be correlated with its continuous expansion and eventual rupture. In addition, the assessment of the velocity field in the aneurysm dome and neck is important for the correct placement of endovascular coils. This paper describes the flow dynamics in two representative models of a terminal aneurysm of the basilar artery under Newtonian and non-Newtonian fluid assumptions, and compares their hemodynamics with that of a healthy basilar artery. Virtual aneurysm models are investigated numerically, with geometric features defined by beta = 0 deg and beta = 23.2 deg, where beta is the tilt angle of the aneurysm dome with respect to the basilar artery. The intra-aneurysmal pulsatile flow shows complex ring vortex structures for beta = 0 deg and single recirculation regions for beta = 23.2 deg during both systole and diastole. The pressure and shear stress on the aneurysm wall exhibit large temporal and spatial variations for both models. When compared to a non-Newtonian fluid, the symmetric aneurysm model (beta = 0 deg) exhibits a more unstable Newtonian flow dynamics, although with a lower peak wall shear stress than the asymmetric model (beta = 23.2 deg). The non-Newtonian fluid assumption yields more stable flows than a Newtonian fluid, for the same inlet flow rate. Both fluid modeling assumptions, however, lead to asymmetric oscillatory flows inside the aneurysm dome. 相似文献
10.
11.
12.
Henry FS Küpper C Lewington NP 《Computer methods in biomechanics and biomedical engineering》2002,5(3):207-217
Unnatural temporal and spatial distributions of wall shear stress in the anastomosis of distal bypass grafts have been identified as possible factors in the development of anastomotic intimal hyperplasia in these grafts. Distal bypass graft anastomoses with an autologus vein cuff (a Miller cuff) interposed between the graft and artery have been shown to alleviate the effects of intimal hyperplasia. In this study, pulsatile flow through models of a standard end-to-side anastomosis and a Miller cuff anastomosis are computed and the resulting wall shear stress and pressure distributions analysed. The results are inconclusive, and could be taken to suggest that the unnatural distributions of shear stress that do occur along the anastomosis floor may not be particularly important in the development of intimal hyperplasia. However, it seems more likely that the positive effects of the biological and material properties of the vein cuff, which are not considered in this study, somehow outweigh the negative effects of the shear stress distributions predicted to occur on the floor of the Miller-cuff graft. 相似文献
13.
D A MacDonald 《Journal of biomechanics》1986,19(3):239-249
A model is presented for the physiological problem of a catheter which is inserted in a femoral artery to measure the pressure gradient. As the catheter will modify the pressure distribution in the artery, the pressure gradient which would be recorded by a perfect pressure transducer attached to it would differ from that in the uncatheterised artery. To estimate the magnitude of this error, it is assumed that the rates of flow of blood through the catheterised and the uncatheterised artery are described by the same known periodic function of time. 相似文献
14.
A.-W. Pan J. He Y. Kinouchi Hisao Yamaguchi Hiroshi Miyamoto 《European journal of applied physiology and occupational physiology》1997,75(5):388-395
The present study investigated the mechanism of diving bradycardia. A group of 14 healthy untrained male subjects were examined
during breath-holding either out of the water (30–33°C), in head-out immersion, or in whole-body submersion (27–29°C) in a
diving pool. Blood velocity, blood volume flow in the carotid artery, diastolic blood pressure and electrocardiogram were
measured and recorded during the experiments. The peak blood velocity increased by 13.6% (P < 0.01) and R-wave amplitude increased by 57.1% (P < 0.005) when the subjects entered water from air. End-diastolic blood velocity in the carotid artery increased significantly during breath-holding, e.g. increased from 0.20 (SD 0.02) m · s−1 at rest to 0.33 (SD 0.04) m · s−1 (P < 0.001) at 50.0 s in breath-hold submersion to a 2.0-m depth. Blood volume flow in the carotid artery increased by 26.6%
(P < 0.05) at 30 s and 36.6% (P < 0.001) at 40 s in breath-hold submersion to a 2.0-m depth. Diastolic blood pressure increased by 15.4% (P < 0.01) at 60 s during breath-holding in head-out immersion. Blood volume flow, and diastolic blood pressure increased significantly more and faster during breath-holding in submersion than out of the
water. There was a good negative correlation with the heart rate: the root mean square correlation coefficient r was 0.73 (P < 0.001). It was concluded that an increased accumulation of blood in the aorta and arteries at end-diastole and decreased
venous return, caused by an increase in systemic peripheral resistance during breath-holding, underlies diving bradycardia.
Accepted: 22 November 1996 相似文献
15.
A theoretical and experimental study concerning two-component fluid pulsating flow through cylindrical ducts having a slight constriction is presented. The model corresponds to blood flows through small diameter vessels (smaller than 400 micron) affected by a singular stenosis. The theoretical approach is based on a asymptotical expansion of the stream function. The physical hypotheses used were based on findings from simultaneous visualization methods. The influence of geometrical, hydrodynamical and structural parameters is systematically examined and related to velocity profiles, hydrostatic pressure, surface stresses. 相似文献
16.
Andrea Aliverti Iacopo Iandelli Roberto Duranti Stephen J Cala Bengt Kayser Susan Kelly Gianni Misuri Antonio Pedotti Giorgio Scano Pawel Sliwinski Sheng Yan Peter T Macklem 《Journal of applied physiology》2002,92(5):1953-1963
To determine how decreasing velocity of shortening (U) of expiratory muscles affects breathing during exercise, six normal men performed incremental exercise with externally imposed expiratory flow limitation (EFLe) at approximately 1 l/s. We measured volumes of chest wall, lung- and diaphragm-apposed rib cage (Vrc,p and Vrc,a, respectively), and abdomen (Vab) by optoelectronic plethysmography; esophageal, gastric, and transdiaphragmatic pressures (Pdi); and end-tidal CO2 concentration. From these, we calculated velocity of shortening and power (W) of diaphragm, rib cage, and abdominal muscles (di, rcm, ab, respectively). EFLe forced a decrease in Uab, which increased Pab and which lasted well into inspiration. This imposed a load, overcome by preinspiratory diaphragm contraction. Udi and inspiratory Urcm increased, reducing their ability to generate pressure. Pdi, Prcm, and Wab increased, indicating an increased central drive to all muscle groups secondary to hypercapnia, which developed in all subjects. These results suggest a vicious cycle in which EFLe decreases Uab, increasing Pab and exacerbating the hypercapnia, which increases central drive increasing Pab even more, leading to further CO2 retention, and so forth. 相似文献
17.
Jimmy S Vantanajal Jon C Ashmead Todd J Anderson Russell T Hepple Marc J Poulin 《Journal of applied physiology》2007,102(1):87-93
Although it is known that the vasculatures of the brain and the forearm are sensitive to changes in arterial Pco(2), previous investigations have not made direct comparisons of the sensitivities of cerebral blood flow (CBF) (middle cerebral artery blood velocity associated with maximum frequency of Doppler shift; Vp) and brachial blood flow (BBF) to hypercapnia. We compared the sensitivities of Vp and BBF to hypercapnia in humans. On the basis of the critical importance of the brain for the survival of the organism, we hypothesized that Vp would be more sensitive than BBF to hypercapnia. Nine healthy males (30.1 +/- 5.2 yr, mean +/- SD) participated. Euoxic hypercapnia (end-tidal Po(2) = 88 Torr, end-tidal Pco(2) = 9 Torr above resting) was achieved by using the technique of dynamic end-tidal forcing. Vp was measured by transcranial Doppler ultrasound as an index of CBF, whereas BBF was measured in the brachial artery by echo Doppler. Vp and BBF were measured during two 60-min trials of hypercapnia, each trial separated by 60 min. Since no differences in the responses were found between trials, data from both trials were averaged to make comparisons between Vp and BBF. During hypercapnia, Vp and BBF increased by 34 +/- 8 and 14 +/- 8%, respectively. Vp remained elevated throughout the hypercapnic period, but BBF returned to baseline levels by 60 min. The Vp CO(2) sensitivity was greater than BBF (4 +/- 1 vs. 2 +/- 1%/Torr; P < 0.05). Our findings confirm that Vp has a greater sensitivity than BBF in response to hypercapnia and show an adaptive response of BBF that is not evident in Vp. 相似文献
18.
Dongaonkar RM Quick CM Vo JC Meisner JK Laine GA Davis MJ Stewart RH 《American journal of physiology. Regulatory, integrative and comparative physiology》2012,302(12):R1436-R1442
Venomotion, spontaneous cyclic contractions of venules, was first observed in the bat wing 160 years ago. Of all the functional roles proposed since then, propulsion of blood by venomotion remains the most controversial. Common animal models that require anesthesia and surgery have failed to provide evidence for venular pumping of blood. To determine whether venomotion actively pumps blood in a minimally invasive, unanesthetized animal model, we reintroduced the batwing model. We evaluated the temporal and functional relationship between the venous contraction cycle and blood flow and luminal pressure. Furthermore, we determined the effect of inhibiting venomotion on blood flow. We found that the active venous contractions produced an increase in the blood flow and exhibited temporal vessel diameter-blood velocity and pressure relationships characteristic of a peristaltic pump. The presence of valves, a characteristic of reciprocating pumps, enhances the efficiency of the venular peristaltic pump by preventing retrograde flow. Instead of increasing blood flow by decreasing passive resistance, venular dilation with locally applied sodium nitroprusside decreased blood flow. Taken together, these observations provide evidence for active venular pumping of blood. Although strong venomotion may be unique to bats, venomotion has also been inferred from venous pressure oscillations in other animal models. The conventional paradigm of microvascular pressure and flow regulation assumes venules only act as passive resistors, a proposition that must be reevaluated in the presence of significant venomotion. 相似文献
19.
20.
C G Caro C L Dumoulin J M Graham K H Parker S P Souza 《Journal of biomechanical engineering》1992,114(1):147-149
The blood flow in arteries affects both the biology of the vessels and the development of atherosclerosis. The flow is three-dimensional, unsteady, and difficult to measure or to model computationally. We have used phase-shift-based magnetic resonance angiography to image and measure the flow in the common carotid arteries of a healthy human subject. There was curvature of the vessels and thin-slice dynamic flow imaging showed evidence of the presence of secondary motions. Flexing the cervical spine straightened the vessels and reduced the asymmetry of the flow. 相似文献