首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 514 毫秒
1.
This paper describes a continuing effort to define the location and mode of action of morphogenetic determinants which direct the development of dorsal body axis structures in embryos of the frog Xenopus laevis. Earlier results demonstrated that presumptive endodermal cells in one vegetal quadrant of the 64-cell embryo can, under certain experimental conditions, induce partial or complete body axis formation by progeny of adjacent equatorial cells. (R.L. Gimlich and J.C. Gerhart, 1984, Dev. Biol. 104, 117-130). I have now assessed the importance of other blastomeres for embryonic axis formation in a series of transplantation experiments using cells from the equatorial level of the 32-cell embryo. The transplant recipients were embryos which had been irradiated with ultraviolet light before first cleavage. Without transplantation, embryos failed to develop the dorsal structures of the embryonic body axis. However, cells of these recipients were competent to respond to inductive signals from transplanted tissue and to participate in normal embryogenesis. Dorsal equatorial cells, but not their lateral or ventral counterparts, often caused partial or complete body axis development in irradiated recipients, and themselves formed much of the notochord and some prechordal and somitic mesoderm. These are the same structures that they would have formed in the normal donor. Thus, the dorsal equatorial blastomeres were often at least partially autonomous in developing according to their prospective fates. In addition, they induced progeny of neighboring host cells to contribute to the axial mesoderm and to form most of the central nervous system. The frequency with which such transplants caused complete axis formation in irradiated hosts increased when they were made at later and later cleavage stages. In contrast, the inductive activity of vegetal cells remained the same or declined during the cleavage period. These and other results suggest that the egg cytoplasmic region containing "axial determinants" is distributed to both endodermal and mesodermal precursors in the dorsal-most quadrant of the early blastula.  相似文献   

2.
For testing the autonomic differentiation abilities of dorsal equatorial blastomeres of 32-cell Xenopus embryos, their roles in head formation in normal development and the organizer-inducing capabilities of the dorsal-most vegetal cells, interspecific transplantations were made using Xenopus borealis and X. laevis . When transplanted into the ventral region, the dorsal blastomeres produced descendants that differentiated into prechordal mesoderm, notochord and somites in the recipient according to their fates. They induced formation of the secondary embryo with the head and tail. The prechordal mesoderm and notochord in the secondary structure consisted of progeny of the graft, whereas somites and the CNS were chimeric and the pronephros was composed of host cells. Replacement of the dorsal blastomeres by ventral equatorial cells caused complete arrest of head formation in the recipient. Without exception, the notochord was completely absent or very thin. These results confirm the assumption that the presumptive head organizer in the Xenopus embryo is localized in the dorsal equatorial region at the 32-cell stage and comes into existence not under the inductive influence of the dorsal-most vegetal cells, but owing to allocation of morphogenetic determinants residing in the fertilized egg to the dorsal equatorial blastomeres of the 32-cell embryo.  相似文献   

3.
W C Smith  R M Harland 《Cell》1991,67(4):753-765
Expression cloning from a pool of gastrula cDNAs identified the Wnt family member Xwnt-8 as having dorsal axis-inducing activity in Xenopus embryos. Microinjected Xwnt-8 mRNA was able to rescue the development of a dorsally complete anterior-posterior axis in embryos ventralized by exposure to UV light. Axis induction was observed in embryos injected in either marginal or vegetal blastomeres at the 32-cell stage. Vegetal blastomeres receiving Xwnt-8 mRNA contributed progeny not to the induced dorsal axis, but to the endoderm, a result consistent with Xwnt-8 causing cells to act as a Nieuwkoop center (the vegetal-inducing component of normal dorsal axis formation), rather than as a Spemann organizer (the induced dorsal marginal zone component that directly forms the dorsal mesoderm). Xwnt-8, which is normally expressed ventrally in midgastrula and neurula embryos, appears to mimic, when injected, maternally encoded dorsal mesoderm-inducing factors that act early in development.  相似文献   

4.
In Xenopus laevis, dorsal cells that arise at the future dorsal side of an early cleaving embryo have already acquired the ability to cause axis formation. Since the distribution of cytoplasmic components is markedly heterogeneous in an egg and embryo, it has been supposed that the dorsal cells are endowed with the activity to form axial structures by inheriting a unique cytoplasmic component or components localized in the dorsal region of an egg or embryo. However, there has been no direct evidence for this. To examine the activity of the cytoplasm of dorsal cells, we injected cytoplasm (dorsal cytoplasm) from dorsal vegetal cells of a Xenopus 16-cell embryo into ventral vegetal cells of a simultaneous recipient. The cytoplasm caused secondary axis formation in 42% of recipients. Histological examination revealed that well-developed secondary axes included notochord, as well as a neural tube and somites. However, injection of cytoplasm of ventral vegetal cells never caused secondary axis and most recipients became normal tailbud embryos. Furthermore, about two-thirds of ventral isolated halves injected with dorsal cytoplasm formed axial structures. These results show that dorsal, but not ventral, cytoplasm contains the component or components responsible for axis formation. This can be the first step towards identifying the molecular basis of dorsal axis formation.  相似文献   

5.
在两栖类爪蟾胚胎发育中,由受精引起的皮层转动造成了受精卵的背腹极性。为了研究受精卵细胞质的不均一分布对胚胎体轴形成的影响,我们进行了16细胞期动物极背、腹方裂球的外植和异位移植实验。16细胞期的动物极背方裂球在外植和移植到腹方位置后都表现出背方特征,如外植块培养到原肠中期时伸长,背方裂球在移植到腹方后引发第二体轴等;而16细胞期动物极腹方裂球移植到背方后其发育命运则遵循背方裂球的命运,参与背方结构的形成。我们认为在16细胞期,动物极背、腹方的裂球由于包含着不同的卵质,因而在发育能力上已经具有背、腹的差异。  相似文献   

6.
Dorsal or ventral blastomeres of the 16- and 32-cell stage animal hemisphere were labeled with a lineage dye and transplanted into the position of a ventral, vegetal midline blastomere. The donor blastomeres normally give rise to substantial amounts of head structures and central nervous system, whereas the blastomere which they replaced normally gives rise to trunk mesoderm and endoderm. The clones derived from the transplanted ventral blastomeres were found in tissues appropriate for their new position, whereas those derived from the transplanted dorsal blastomeres were found in tissues appropriate for their original position. The transplanted dorsal clones usually migrated into the host's primary axis (D1.1, 92%; D1.1.1, 69%; D1.1.2, 100%), and in many cases they also induced and populated a secondary axis (D1.1, 43%; D1.1.1, 67%; D1.1.2, 63%). Bilateral deletion of the dorsal blastomeres resulted in partial deficits of dorsal axial structures in the majority of cases, whereas deletions of ventral midline blastomeres did not. When the dorsal blastomeres were cultured as explants they elongated. Notochord and cement glands frequently differentiated in these explants. These studies show that the progeny of the dorsal, midline, animal blastomeres: (1) follow their normal lineage program to populate dorsal axial structures after the blastomere is transplanted to the opposite pole of the embryo; (2) induce and contribute to a secondary axis from their transplanted position in many embryos; (3) are important for the normal formation of the entire length of the dorsal axis; and (4) autonomously differentiate in the absence of exogenous growth factor signals. These data indicate that by the 16-cell stage, these blastomeres have received instructions regarding their fate, and they are intrinsically capable of carrying out some of their developmental program.  相似文献   

7.
Starfish blastomeres are reported to be totipotent up to the 8-cell stage. We reinvestigated the development of blastomeres of 8-cell stage embryos with a regular cubic shape consisting of two tiers of 4 blastomeres. On dissociation of the embryo by disrupting the fertilization membrane at the 8-cell stage, each of the 4 blastomeres of the vegetal hemisphere gave rise to an embryo that gastrulated, whereas blastomeres from the animal hemisphere did not. By injection of a cell lineage tracer into blastomeres of 8-cell stage embryos, we found that only those of the vegetal hemisphere formed cells constituting the archenteron. Next, we compressed 4-cell stage embryos along the animal-vegetal axis so that all the blastomeres in the 8-cell stage were in a single layer. When these 8 blastomeres were then dissociated, an average of 7 of them developed into gastrulae. By cell lineage analysis, all the blastomeres in single-layered embryos at the 8-cell stage were shown to have the capacity to form cells constituting an archenteron. Taken together, these findings indicate that the fate to form the archenteron is specified by a cytoplasmic factor(s) localized at the vegetal hemisphere, and that isolated blastomeres that have inherited this factor develop into gastrulae.  相似文献   

8.
Eggs of Xenopus laevis were exposed to ultraviolet (uv) radiation (2537 Å) on the vegetal hemisphere soon after fertilization at doses sufficient to impair greatly the subsequent development of dorsal structures. It was found that temporary orientation of irradiated eggs 90° off the natural vertical axis rescues these eggs, allowing them to develop into normal embryos. Complete rescue results when oblique orientation is initiated well before first cleavage, and eggs remain in this position until the 16-cell stage. Significant rescue is seen, however, in eggs which remain off axis for shorter periods of time or when eggs are obliquely oriented, even after first cleavage. Furthermore, a period of oblique orientation prior to uv irradiation results in insensitivity of eggs to irradiation. Ultraviolet irradiation is found to randomize the position of the dorsal side with respect to the sperm entrance point, whereas the position of the dorsal side of rescued embryos is strongly specified by the orientation of the egg during the rescue period, and not by the sperm entrance point. Other effects of uv irradiation on early development include decreased pigmentation differences among 4-cell stage blastomeres and delayed gastrulation. It is proposed (1) that oblique orientation promotes in irradiated eggs a set of internal rearrangements mimicking those normally accomplished by the unirradiated egg in a period prior to first cleavage and as part of an early dorsalization process, and (2) that the uv-sensitive targets are part of the morphogenic machinery used by the egg for internal rearrangements in this period and are not elements of a system of transmitted particulate dorsal determinants.  相似文献   

9.
To examine the nature of cytoplasm determinants for dorsal specification in zebrafish, we have developed a method in which we remove the vegetal yolk hemisphere of early fertilized eggs (vegetal removed embryos). When the vegetal yolk mass was removed at the 1-cell stage, the embryos frequently exhibited typical ventralized phenotypes: no axial structures developed. The frequency of dorsal defects decreased when the operation was performed at later stages. Furthermore, the yolk cell obtained from the vegetal-removed embryos lost the ability to induce goosecoid in normal blastomeres while the normal yolk cell frequently did so in normal and vegetal-removed embryos. These results suggested that the vegetal yolk cell mass contains the dorsal determinants, and that the dorsal-inducing ability of the yolk cell is dependent on the determinants.  相似文献   

10.
Recent studies suggest early (preimplantation) events might be important in the development of polarity in mammalian embryos. We report here lineage tracing experiments with green fluorescent protein showing that cells located either near to or opposite the polar body at the 8-cell stage of the mouse embryo retain their same relative positions in the blastocyst. Thus they come to lie on either end of an axis of symmetry of the blastocyst that has recently been shown to correlate with the anterior-posterior axis of the postimplantation embryo (see R. J. Weber, R. A. Pedersen, F. Wianny, M. J. Evans and M. Zernicka-Goetz (1999). Development 126, 5591-5598). The embryonic axes of the mouse can therefore be related to the position of the polar body at the 8-cell stage, and by implication, to the animal-vegetal axis of the zygote. However, we also show that chimeric embryos constructed from 2-cell stage blastomeres from which the animal or the vegetal poles have been removed can develop into normal blastocysts and become fertile adult mice. This is also true of chimeras composed of animal or vegetal pole cells derived through normal cleavage to the 8-cell stage. We discuss that although polarity of the postimplantation embryo can be traced back to the 8-cell stage and in turn to the organisation of the egg, it is not absolutely fixed by this time.  相似文献   

11.
Regional differences of proteins were studied by two-dimensional gel electrophoresis in early embryos of Xenopus laevis. Pairs of blastomeres on the dorso-ventral axis were isolated from 16- and 32-cell embryos. Some dorso-ventral differences have been detected at 32-cell embryos. The proteins which were clearly detectable in the vegetal cells of the ventral marginal zone were only faintly detectable or undetectable in those of the dorsal marginal zone, and a regionally specific spot was detected in dorsal blastomeres.  相似文献   

12.
To examine the spatial distribution of dorsal determinants in the early embryos of Xenopus laevis, individual cells from the 32-cell embryo were transplanted into the same tier of the ventral side of a synchronous recipient. Their abilities to initiate a secondary embryo were measured by the incidence of secondary embryos and by the length of the secondary axis relative to the primary embryo. The ability was found to be localized in all cells (A1, B1, C1, and D1) of the dorsal most column and in the vegetal cells (C2 and D2) of the dorsolateral column. Transplanted C1 (subequatorial) cells caused the highest incidence of a secondary embryo and the average relative length of the secondary embryo was also greatest. Effectiveness decreased in the order: D1, B1, D2, C2, and A1. When these results were compared with Dale and Slack's fate map of the 32-cell embryo, it was concluded that the distribution of dorsal determinants is unique and does not coincide with the prospective regions for any tissues, though it is somewhat similar to the prospective region of dorsal endoderm or notochord. From these results it seems that dorsal determinants do not determine a particular tissue in an embryo but rather the "dorsal" region of an embryo.  相似文献   

13.
The sea urchin Heliocidaris erythrogramma undergoes direct development, bypassing the usual echinoid pluteus larva. We present an analysis of cell lineage in H. erythrogramma as part of a definition of the mechanistic basis for this evolutionary change in developmental mode. Microinjection of fluoresceinated tracer dye and surface marking with vital dye are used to follow larval fates of 2-cell, 8-cell, and 16-cell blastomeres, and to examine axial specification. The animal-vegetal axis and adult dorsoventral axis are basically unmodified in H. erythrogramma. Animal cell fates are very similar to those of typically developing species; however, vegetal cell fates in H. erythrogramma are substantially altered. Radial differences exist among vegetal blastomere fates in the 8-cell embryo: dorsal vegetal blastomeres contribute proportionately more descendants to ectodermal and fewer to mesodermal fates, while ventral vegetal blastomeres have a complementary bias in fates. In addition, vegetal cell fates are more variable than in typical developers. There are no cells in H. erythrogramma with fates comparable to those of the micromeres and macromeres of typically developing echinoids. Instead, all vegetal cells in the 16-cell embryo can contribute progeny to ectoderm and gut. Alterations have thus arisen in cleavage patterns and timing of cell lineage partitioning during the evolution of direct development in H. erythrogramma.  相似文献   

14.
The independent roles of blastopore formation and dorsal mesoderm induction in dorsal axis formation of the Cynops pyrrhogaster embryo were attempted to be clarified. The blastopore-forming (bottle) cells originated mainly from the progeny of the mid-dorsal C and/or D blastomeres of the 32-cell embryo, but were not defined to a fixed blastomere. It was confirmed that the isolated dorsal C and D blastomeres autonomously formed a blastopore. Ultraviolet-irradiated eggs formed an abnormal blastopore and then did not form a dorsal axis, although the lower dorsal marginal zone (LDMZ) still had dorsal mesoderm-inducing activity. Involution of the dorsal marginal zone was disturbed by the abnormal blastopore. These embryos were rescued by artificially facilitating involution of the dorsal marginal zone. Suramin-injected and nocodazole-treated blastulae did not have involution of the dorsal marginal zone, although the blastopore was formed. Neither embryos formed the dorsal axis. The dorsal mesoderm-inducing activity of the LDMZ in the nocodazole-treated gastrulae was still active. In contrast, the LDMZ of the suramin-injected embryos lost its dorsal mesoderm-inducing activity. bra expression was activated in the nocodazole-treated embryos but not in the suramin-injected embryos. The present study suggested that (i) the dorsal determinants consist of blastopore-forming and dorsal mesoderm-inducing factors, which are not always mutually dependent; (ii) both factors are activated during the late blastula stage; (iii) the dorsal marginal zone cannot specify to an organized notochord and muscle without the involution that blastopore formation leads to; and (iv) the localization of both factors in the same place is prerequisite for dorsal axis formation.  相似文献   

15.
Cells in the dorsal marginal zone of the amphibian embryo acquire the potential for mesoderm formation during the first few hours following fertilization. An examination of those early cell interactions may therefore provide insight on the mechanisms important for organization of axial structures. The formation of mesoderm (notochord, somites, and pronephros) was studied by combining blastomeres from the animal pole region of Xenopus embryos (32- to 512-cell stages) with blastomeres from different regions of the vegetal hemisphere. The frequency of notochord and somite development was similar in combinations made with dorsal or ventral blastomeres, or with both. Our results show that during early cleavage stages the ventral half of the vegetal hemisphere has the potential to organize axial structures, a property previously believed to be limited to the dorsal region.  相似文献   

16.
Pattern regulation in defect embryos of Xenopus laevis   总被引:4,自引:0,他引:4  
Defect embryos of 24 series were prepared by removing increasing numbers of blastomeres from an 8-cell embryo of Xenopus laevis. They were cultured and their development was examined macroscopically when controls reached a tailbud stage or later. Results show that most of defect embryos of 12 series develop normally, and some of them become normal frogs. Each of these defect embryos contain at least two animal blastomeres, one dorsal, and one ventral blastomere of the vegetal hemisphere. This suggests that a set of these four blastomeres of the three types is essential for complete pattern regulation.  相似文献   

17.
In annelids, molluscs, echiurans and sipunculids the establishment of the dorsal-ventral axis of the embryo is associated with D quadrant specification during embryogenesis. This specification occurs in two ways in these phyla. One mechanism specifies the D quadrant via the shunting of a set of cytoplasmic determinants located at the vegetal pole of the egg to one blastomere of the four cell stage embryo. In this case, at the first two cleavages of embryogenesis there is an unequal distribution of cytoplasm, generating one macromere which is larger than the others at the four cell stage. The D quadrant can also be specified by a contact mediated inductive interaction between one of the macromeres at the vegetal pole with micromeres at the animal pole of the embryo. This mechanism operates at a later stage of development than the cytoplasmic localization mechanism and is associated with a pattern of cleavage in which the first two cleavages are equal. An analysis of the phylogenetic relationships within these phyla indicates that the taxa which determine the D quadrant at an early cleavage stage by cytoplasmic localization tend to be derived and lack a larval stage or have larvae with adult characters. Those taxa where the D quadrant is specified by induction include the ancestral groups although some derived groups also use this mechanism. The pulmonate mollusc Lymnaea uses an inductive mechanism for specifying the D quadrant. In these embryos each of the four vegetal macromeres has the potential of becoming the D macromere; however under normal circumstances one of the two vegetal crossfurrow macromeres almost invariably becomes the D quadrant. Experiments are described here in which the size of one of the blastomeres of the four cell stage Lymnaea embryo is increased; this macromere invariably becomes the D quadrant. These experiments suggest that developmental change in relative blastomere size during the first two cleavages in spiralian embryos that normally cleave equally may have provided a route that has led to the establishment of the cytoplasmic localization mechanism of D quadrant formation.  相似文献   

18.
To study the mechanisms of dorsal axis specification, the alteration in dorsal cell fate of cleavage stage blastomeres in axis-respecified Xenopus laevis embryos was investigated. Fertilized eggs were rotated 90° with the sperm entry point up or down with respect to the gravitational field. At the 8-cell stage, blastomeres were injected with the lineage tracers, Texas Red- or FITC-Dextran Amines. The distribution of the labeled progeny was mapped at the tail-bud stages (stages 35–38) and compared with the fate map of an 8-cell embryo raised in a normal orientation. As in the normal embryos, each blastomere in the rotated embryos has a characteristic and predictable cell fate. After 90° rotation the blastomeres in the 8-cell stage embryo roughly switched their position by 90°, but the fate of the blastomeres did not simply show a 90° switch appropriate for their new location. Four types of fate change were observed: (i) the normal fate of the blastomere is conserved with little change; (ii) the normal fate is completely changed and a new fate is adopted according to the blastomere's new position; (iii) the normal fate is completely changed, but the new fate is not appropriate for its new position; and (4) the blastomere partially changed its fate and the new fate is a combination of its original fate and a fate appropriate to its new location. According to the changed fates, the blastomeres that adopt dorsal fates were identified in rotated embryos. This identification of dorsal blastomeres provides basic important information for further study of dorsal signaling in Xenopus embryos.  相似文献   

19.
A method of detecting blastomeres that carrying the determinant for archenteron formation was established, based on the reported localization of the determinant in the vegetal cytoplasm (17, 24). The essence of the method was to co-culture a selected blastomere with an animal egg fragment-derived cell cluster, so as to generate one joined embryo. The presence of the determinant in the blastomere was assessed by the formation of the archenteron in the developed joined embryos. The vegetal blastomeres that carried the determinant sometimes induced animal egg fragment-derived cells to form part of the archenteron.  相似文献   

20.
Summary The dorsal-ventral axis inPatella vulgata embryos is established at the 32-cell stage by an inductive interaction between the animal micromeres and one vegetal macromere. This vegetal macromere, once induced, is called the 3D macromere, and marks the future dorsal side of the embryo. We examined the pattern of filamentous (F) actin in such embryos using fluorescent phalloidin and found that this dorsal 3D macromere contains more F-actin than the remainder of the cells. In addition, only one of its two daughter cells, i.e. the 4D macromere, retains this higher density. In embryos in which the establishment of the dorsal-ventral axis has been experimentally inhibited via treatment with monensin, such differences in F-actin were not found. These results suggest that the appearance of an increased density of F-actin in the dorsal 3D and 4D macromeres of normal embryos requires the inductive interactions that establish the dorsal-ventral axis. We therefore conclude that F-actin is an early marker for dorsal induction in thePatella embryo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号