首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Effect of catabolite repression on the mer operon   总被引:4,自引:2,他引:2       下载免费PDF全文
The plasmid-determined mer operon, which provides resistance to inorganic mercury compounds, was subject to a 2.5-fold decrease in expression when glucose was administered at the same time as the inducer HgCl2. This glucose-mediated transient repression of the operon was overcome by the addition of cyclic AMP. Permanent catabolite repression of the operon was observed in the 1.6- to 1.9-fold decrease in expression in mutants lacking either adenyl cyclase (cya) or the catabolite activator protein (crp). The effect of the cya mutation on mer expression could be overcome by the addition of cyclic AMP at the time of induction, In addition to these effects on the whole cells of a wild-type strains, we examined the effect of catabolite repression on the expression of the mercuric ion [Hg(II)] reductase enzyme, assayable in cell extracts, and on the Hg(II) uptake system, assayable in a mutant strain which lacked reductase activity. There was a two- to threefold effect of repression on the Hg(II) reductase enzyme assayable in vitro after induction under catabolite repressing conditions (either with glucose or in the crp and cya mutants). We did not find a similar repressing effect on the induction of the Hg(II) uptake system, which is also determined by the mer operon.  相似文献   

4.
1. Acute transient catabolite repression of beta-galactosidase synthesis, observed when glucose is added to glycerol-grown cells of Escherichia coli (Moses & Prevost, 1966), requires the presence of a functional operator gene (o) in the lactose operon. Total deletion of the operator gene abolished acute transient repression, even in the presence of a functional regulator gene (i). 2. Regulator constitutives (i(-)) also show transient repression provided that the operator gene is functional. Regulator deletion mutants (i(del)), with which to test specifically the role of the i gene, have not so far been available. 3. The above mutants, showing various changes in the lactose operon, show no alteration in the effect of glucose on induced tryptophanase synthesis. Glucose metabolism, as measured in terms of the release of (14)CO(2) from [1-(14)C]glucose and [6-(14)C]glucose, also showed no differences between strains exhibiting or not exhibiting transient repression. This suggests no change in the operation of the pentose phosphate cycle, a metabolic activity known to be of paramount importance for glucose repression of beta-galactosidase synthesis (Prevost & Moses, 1967). 4. Chronic permanent repression by glucose of beta-galactosidase synthesis (less severe in degree than acute transient repression) persists in strains in which transient repression has been genetically abolished. Constitutive alkaline-phosphatase synthesis, which shows no transient repression, also demonstrates chronic permanent repression by glucose. 5. Chloramphenicol repression also persists in mutants with no transient repression, and also affects alkaline phosphatase. It is suggested that chronic permanent repression and chloramphenicol repression are non-specific, and that they do not influence beta-galactosidase synthesis via the regulatory system of the lactose operon.  相似文献   

5.
Two classes of D-serine deaminase (Dsdase)-specific secondary mutants of Escherichia coli K-12 were isolated from a Dsdase low constitutive nonhyperinducible mutant as types which could grow in the presence of both D-serine and glucose. These strains contain cis dominant, nonsuppressible mutations in the dsdO (operator-initiator) region. In the first class of mutants (e.g., FB4010), Dsdase synthesis is completely insensitive to catabolite repression, and synthesis occurs at a high constitutive rate in the absence of cyclic adenosine 5'-monophosphate. In the second class (e.g., FB4005), Dsdase synthesis is partially insensitive to catabolite repression, and catabolite repression is reversed by the addition of cyclic adenosine 5'-monophosphate. Dsdase synthesis in strain FB4005 is partially independent of the cyclic adenosine 5'-monophosphate binding protein, as constitutive synthesis is reduced only 65% (relative to the cap+ strain) in strains unable to synthesize the cyclic adenosine 5'-monophosphate binding protein. Surprisingly, the constitutive rate of Dsdase synthesis is fourfold higher in all mutants of both classes than in the parent, indicating a close interrelationship between the sites of response to induction and catabolite repression.  相似文献   

6.
Galactose appears to be the physiological inducer of the chromosomal lac operon in Klebsiella aerogenes. Both lactose and galactose are poor inducers in strains having a functional galactose catabolism (gal) operon, but both are excellent inducers in gal mutants. Thus the slow growth of K. aerogenes on lactose reflects the rapid degradation of the inducer. Several pts mutations were characterized and shown to affect both inducer exclusion and permanent catabolite repression. The beta-galactosidase of pts mutants cannot be induced at all by lactose, and pts mutants appear to have a permanent and constitutive inducer exclusion phenotype. In addition, pts mutants show a reduced rate of glucose metabolism, leading to slower growth on glucose and a reduced degree of glucose-mediated permanent catabolite repression. The crr-type pseudorevertants of pts mutations relieve the constitutive inducer exclusion for lac but do not restore the full level of glucose-mediated permanent catabolite repression and only slightly weaken the glucose-mediated inducer exclusion. Except for weakening the glucose-mediated permanent catabolite repression, pts and crr mutations have no effect on expression of the histidine utilization (hut) operons.  相似文献   

7.
Acetylated amino sugars, normally used in the biosynthesis of cell walls and cell membranes, were found to play a role as corepressors for catabolite repression of the lac operon in Escherichia coli. This conclusion was derived from studies conducted on mutants of E. coli that were able to assimilate an exogenous source of N-acetylglucosamine (AcGN) but were unable to dissimilate or grow on this compound. At concentrations less than 10(-4)m, AcGN caused severe catabolite repression of beta-galactosidase synthesis in cultures grown under either nonrepressed or partially repressed conditions. This repression occurred in the absence of any effect of AcGN on either the carbon and energy metabolism or the growth of the organism. In addition, this repression by AcGN occurred in a mutant strain that is constitutive for beta-galactosidase production, demonstrating that the AcGN effect does not involve the uptake of inducer. This model for the corepressor system of catabolite repression is discussed in relation to the existing theories on repression of the lac operon.  相似文献   

8.
Transient Repression of the lac Operon   总被引:20,自引:9,他引:11       下载免费PDF全文
Severe transient repression of constitutive or induced beta-galactosidase synthesis occurs upon the addition of glucose to cells of Escherichia coli growing on glycerol, succinic acid, or lactic acid. Only mutants particularily well adapted to growth on glucose exhibit this phenomenon when transferred to a glucose-containing medium. No change in ribonucleic acid (RNA) metabolism was observed during transient repression. We could show that transient repression is pleiotropic, affecting all products of the lac operon. It occurs in a mutant insensitive to catabolite repression. It is established much more rapidly than catabolite repression, and is elicited by glucose analogues that are phosphorylated but not further catabolized by the cell. Thus, transient repression is not a consequence of the exclusion of inducer from the cell, does not require catabolism of the added compound, and does not involve a gross change in RNA metabolism. We conclude that transient repression is distinct from catabolite repression.  相似文献   

9.
Paradoxical effect of weak inducers on the lac operon of Escherichia coli   总被引:1,自引:1,他引:0  
Previously, we reported the existence of a group of compounds whose function in the regulation of the lac operon was "paradoxical" in that they acted as either inducers or repressors depending on the circumstances. We now show that this group of compounds does not repress the lac operon by catabolite repression, transient repression, or by preventing the uptake of inducers. A model is presented which shows that "paradoxical" behavior is to be expected if a weak inducer is present at a concentration that is high relative to its binding affinity for the regulatory macromolecule. This model depends on the assumptions that the regulatory macromolecule is an allosteric protein which undergoes a transition between two conformational states and that the rate of enzyme synthesis depends on the fraction of protein molecules in each state. The previous observations on the responses of lac regulatory mutants to weak inducers have been extended to a series of such mutants. Weak inducers repress beta-galactosidase synthesis in several i(-) mutants. When this happens, enzyme synthesis can be reinduced by using a strong inducer such as isopropyl-beta-d-thiogalactoside. These compounds induce operator constitutives and the i(t) mutant more easily than they induce a wild-type strain.  相似文献   

10.
Two independent mutants resistant to l-arabinose inhibition only in the presence of d-glucose were isolated from an l-arabinose-sensitive strain containing the araD139 mutation. Preliminary mapping studies indicate that these mutations are closely linked to the araIOC region. Addition of d-glucose to growing cultures of these mutants results in a 95 to 98% repression of ara operon expression, as compared to a 50% repression of the parental control. Since cultures of both mutant and parental strains undergo a 50% repression of lac operon expression upon addition of glucose, the hypersensitivity to catabolite repression exhibited by these mutants is specific for the ara operon. Addition of cyclic adenosine monophosphate reverses the catabolite repression of the ara operon in both mutant and parent strains to 70 to 80% of the control. It is suggested that in these mutants the affinity of the ara operon initiator region for the cAMP-catabolite-activator protein complex may have been altered.  相似文献   

11.
Strains were constructed that contain mutational alterations affecting two distinct functional domains within the araC gene protein. The araCi (catabolite repression insensitivity) and araCh (catabolite repression hypersensitivity) mutations were used to alter the catabolite repression sensitivity domain, and mutation to D-fucose resistance was used to alter the inducer binding domain. araCh, D-fucose-resistant double mutants never exhibited constitutive ara operon expression, whereas all of the araCi, D-fucose-resistant double mutants did exhibit constitutivity. When L-arabinose was used as an inducer, most of the double mutants exhibited the sensitivity to catabolite repression associated with the araCi or araCh mutation. However, when D-fucose was used as an inducer, changes in sensitivity to catabolite repression were observed that were attributed to interactions between the two protein domains. The roles of catabolite activator protein and araC gene protein in the induction of the araBAD operon were discussed.  相似文献   

12.
13.
The araBAD operon of Escherichia coli B/r is positively and negatively regulated by the araC+ regulatory protein. Mutations in gene araC can result in a variety of different regulatory phenotypes: araC null mutants (those carrying a null allele exhibiting no repressor or activator activity) are unable to achieve operon induction; araC-constitutive (araCc) mutants are partially constitutive, inducible by D-fucose, and resistant to catabolite repression; araCh mutants are hypersensitive to catabolite repression; and araCi mutants are resistant to catabolite repression. Various mutant alleles of gene araC were cloned into a derivative of plasmid pBR322 by in vivo recombination. Various heterozygous araC allelic combinations were constructed by transformation. Analysis of isomerase (araA) specific activity levels under various growth conditions indicated the following dominance relationships with regard to sensitivity to catabolite repression: araCh greater than araC+ greater than (araCc and araCi) greater than araC. It was concluded that the araCh protein may form a repressor complex that is refractory to removal by cyclic AMP receptor protein-cyclic AMP complex. This was interpreted in terms of the known nucleoprotein interactions between ara regulatory proteins and ara regulatory DNA.  相似文献   

14.
d-Fucose, a nonmetabolizable analogue of l-arabinose, prevents growth of Escherichia coli B/r on a mineral salts medium plus l-arabinose by inhibiting induction of the l-arabinose operon. Mutations giving rise to d-fucose resistance map in gene araC and result in constitutive expression of the l-arabinose operon. Most of these mutations also permit d-fucose to serve as a gratuitous inducer. It is concluded that d-fucose-resistant mutants produce an araC gene product with an altered inducer specificity. Addition of l-arabinose to cells induced with the gratuitous inducer, d-fucose, resulted in severe transient repression of operon expression followed by permanent catabolite repression. Transient repression but no permanent catabolite repression was obtained when cells unable to metabolize l-arabinose were employed. It is concluded that transport of l-arabinose alone is sufficient to achieve transient repression of its own operon, but that metabolism of l-arabinose must occur to achieve permanent catabolite repression of the l-arabinose operon. This general effect has been termed "self-catabolite repression."  相似文献   

15.
Mutants constitutive for D-serine deaminase (Dsdase) synthesis were isolated by utilizing D-serine as sole nitrogen or carbon source in the chemostat. This method generated only regulatory constitutive (dsdC) mutants. The altered dsdC gene product in these strains is apparently able to bind D-serine more efficiently than the wild-type dsdC+ gene product--a selective advantage. Constitutive synthesis of Dsdase in all of these dsdC mutants is extremely sensitive to catabolite repression, and catabolite repression is reversed by the addition of D-serine. Of the 15 mutants generated by this method, none are suppressible by supD, supE, or supF. Mutations to a low level of constitutivity (maximal specific activity of 9) occur much more frequently than mutations to a high level (maximal specific activity of 79). High level constitutive synthesis of Dsdase results from the synthesis of an altered dsdC gene product--not from loss of ability to form the dsdC product. Dsdase synthesis is not regulated by the nitrogen supply in the medium, as nitrogen starvation does not result in the derepression of Dsdase synthesis.  相似文献   

16.
Carbon catabolite repression of several catabolic operons in Bacillus subtilis is mediated by the repressor CcpA. An inactivation of the ccpA gene has two distinct phenotypes: (i) catabolite repression of catabolic operons is lost and (ii) the growth of bacteria on minimal medium is severely impaired. We have analyzed the physiological properties of a ccpA mutant strain and show that the ccpA mutation does not affect sugar transport. We have isolated extragenic suppressors of ccpA that suppress the growth defect (sgd mutants). Catabolite repression of beta-xylosidase synthesis was, however, not restored suggesting that the suppressor mutations allow differentiation between the phenotypes of the ccpA mutant. A close inspection of the growth requirements of the ccpA mutant revealed the inability of the mutant to utilize inorganic ammonium as a single source of nitrogen. An intact ccpA gene was found to be required for expression of the gltAB operon encoding glutamate synthase. This enzyme is necessary for the assimilation of ammonium. In a sgd mutant, gltAB operon expression was no longer dependent on ccpA, suggesting that the poor expression of the gltAB operon is involved in the growth defect of the ccpA mutant.  相似文献   

17.
18.
Carbon catabolite repression of the gnt operon of Bacillus subtilis is mediated by the catabolite control protein CcpA and by HPr, a phosphocarrier protein of the phosphotransferase system. ATP-dependent phosphorylation of HPr at Ser-46 is required for carbon catabolite repression as ptsH1 mutants in which Ser-46 of HPr is replaced with an unphosphorylatable alanyl residue are resistant to carbon catabolite repression. We here demonstrate that mutation of His-15 of HPr, the site of phosphoenolpyruvate-dependent phosphorylation, also prevents carbon catabolite repression of the gnt operon. A strain which expressed two mutant HPrs (one in which Ser-46 is replaced by Ala [S46A HPr] and one in which His-15 is replaced by Ala [H15A HPr]) on the chromosome was barely sensitive to carbon catabolite repression, although the H15A mutant HPr can be phosphorylated at Ser-46 by the ATP-dependent HPr kinase in vitro and in vivo. The S46D mutant HPr which structurally resembles seryl-phosphorylated HPr has a repressive effect on gnt expression even in the absence of a repressing sugar. By contrast, the doubly mutated H15E,S46D HPr, which resembles the doubly phosphorylated HPr because of the negative charges introduced by the mutations at both phosphorylation sites, had no such effect. In vitro assays substantiated these findings and demonstrated that in contrast to the wild-type seryl-phosphorylated HPr and the S46D mutant HPr, seryl-phosphorylated H15A mutant HPr and H15E,S46D doubly mutated HPr did not interact with CcpA. These results suggest that His-15 of HPr is important for carbon catabolite repression and that either mutation or phosphorylation at His-15 can prevent carbon catabolite repression.  相似文献   

19.
Intracellular concentration of cAMP regulates the synthesis of enzymes sensitive to catabolite repression. The relationship between the single and multiple induction of beta-galactosidase (EC 3.2.1.23), L-tryptophanase (EC 4.1.99.1), D-serine deaminase (EC 4.2.1.14), L-asparaginase (EC 3.5.1.1) and L-malate dehydrogenase (EC 1.1.1.37) was studied and the effect of cAMP level on the induction in Escherichia coli Crookes (ATCC 8739) was investigated. A varying degree of catabolite repression was observed during induction of individual enzymes induced separately on different energy sources. The synthesis of l-tryptophanase was most sensitive, whereas l-asparaginase was not influenced at all. Exogenous cAMP was found to overcome partially the catabolite repression of beta-galactosidase and D-serine deaminase, both during single induction. The synthesis of l-malate dehydrogenase was negatively influenced by the multiple induction even in the presence of cAMP; on the other hand, the synthesis of l-tryptophanase was stimulated, independently of the level of the exogenous cAMP. Similarly, the activity of L-asparaginase slightly but significantly increased during the multiple induction of all five enzymes; here too the activity increase did not depend on exogenous cAMP.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号