首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Design of antisense oligonucleotides stabilized by locked nucleic acids   总被引:24,自引:14,他引:10  
The design of antisense oligonucleotides containing locked nucleic acids (LNA) was optimized and compared to intensively studied DNA oligonucleotides, phosphorothioates and 2′-O-methyl gapmers. In contradiction to the literature, a stretch of seven or eight DNA monomers in the center of a chimeric DNA/LNA oligonucleotide is necessary for full activation of RNase H to cleave the target RNA. For 2′-O-methyl gapmers a stretch of six DNA monomers is sufficient to recruit RNase H. Compared to the 18mer DNA the oligonucleotides containing LNA have an increased melting temperature of 1.5–4°C per LNA depending on the positions of the modified residues. 2′-O-methyl nucleotides increase the Tm by only <1°C per modification and the Tm of the phosphorothioate is reduced. The efficiency of an oligonucleotide in supporting RNase H cleavage correlates with its affinity for the target RNA, i.e. LNA > 2′-O-methyl > DNA > phosphorothioate. Three LNAs at each end of the oligonucleotide are sufficient to stabilize the oligonucleotide in human serum 10-fold compared to an unmodified oligodeoxynucleotide (from t1/2 = ~1.5 h to t1/2 = ~15 h). These chimeric LNA/DNA oligonucleotides are more stable than isosequential phosphorothioates and 2′-O-methyl gapmers, which have half-lives of 10 and 12 h, respectively.  相似文献   

2.
‘Locked nucleic acids’ (LNAs) are known to introduce enhanced bio- and thermostability into natural nucleic acids rendering them powerful tools for diagnostic and therapeutic applications. We present the 1.9 Å X-ray structure of an ‘all LNA’ duplex containing exclusively modified β-d-2′-O-4′C-methylene ribofuranose nucleotides. The helix illustrates a new type of nucleic acid geometry that contributes to the understanding of the enhanced thermostability of LNA duplexes. A notable decrease of several local and overall helical parameters like twist, roll and propeller twist influence the structure of the LNA helix and result in a widening of the major groove, a decrease in helical winding and an enlarged helical pitch. A detailed structural comparison to the previously solved RNA crystal structure with the corresponding base pair sequence underlines the differences in conformation. The surrounding water network of the RNA and the LNA helix shows a similar hydration pattern.  相似文献   

3.
We recently reported double-stranded DNA-templated cleavage of oligonucleotides as a sequence-specific DNA-detecting method. In this method, triplex-forming oligonucleotides (TFOs) modified with 5′-amino-2′,4′-BNA were used as a DNA-detecting probe. This modification introduced a P3′→N5′ linkage (P–N linkage) in the backbone of the TFO, which was quickly cleaved under acidic conditions when it formed a triplex. The prompt fission of the P–N linkage was assumed to be driven by a conformational strain placed on the linkage upon triplex formation. Therefore, chemical modifications around the P–N linkage should change the reactivity by altering the microenvironment. We synthesized 5′-aminomethyl type nucleic acids, and incorporated them into TFOs instead of 5′-amino-2′,4′-BNA to investigate the effect of 5′-elongation. In addition, 2′,4′-BNA/LNA or 2′,5′-linked DNA were introduced at the 3′- and/or 5′-neighboring residues of 5′-amino-2′,4′-BNA to reveal neighboring residual effects. We evaluated the triplex stability and reaction properties of these TFOs, and found out that chemical modifications around the P–N linkage greatly affected their reaction properties. Notably, 2′,5′-linked DNA at the 3′ position flanking 5′-amino-2′,4′-BNA brought significantly higher reactivity, and we succeeded in indicating that a TFO with this modification is promising as a DNA analysis tool.  相似文献   

4.
Aptamers constitute a potential class of therapeutic molecules typically selected from a large pool of oligonucleotides against a specific target. With a scope of developing unique shorter aptamers with very high biostability and affinity, locked nucleic acid (LNA) nucleotides have been investigated as a substrate for various polymerases. Various reports showed that some thermophilic B-family DNA polymerases, particularly KOD and Phusion DNA polymerases, accepted LNA-nucleoside 5′-triphosphates as substrates. In this study, we investigated the docking of LNA nucleotides in the active sites of RB69 and KOD DNA polymerases by molecular docking simulations. The study revealed that the incoming LNA-TTP is bound in the active site of the RB69 and KOD DNA polymerases in a manner similar to that seen in the case of dTTP, and with LNA structure, there is no other option than the locked C3′-endo conformation which in fact helps better orienting within the active site.  相似文献   

5.
RNase H mediated cleavage of RNA by cyclohexene nucleic acid (CeNA)   总被引:1,自引:1,他引:0       下载免费PDF全文
Cyclohexene nucleic acid (CeNA) forms a duplex with RNA that is more stable than a DNA–RNA duplex (ΔTm per modification: +2°C). A cyclohexenyl A nucleotide adopts a 3′-endo conformation when introduced in dsDNA. The neighbouring deoxynucleotide adopts an O4′-endo conformation. The CeNA:RNA duplex is cleaved by RNase H. The Vmax and Km of the cleavage reaction for CeNA:RNA and DNA:RNA is in the same range, although the kcat value is about 600 times lower in the case of CeNA:RNA.  相似文献   

6.
Duchenne muscular dystrophy (DMD) is a progressive muscle-wasting disease caused by out-of-frame or nonsense mutation in the dystrophin gene. It begins with a loss of ambulation between 9 and 14 years of age, followed by various other symptoms including cardiac dysfunction. Exon skipping of patients’ DMD pre-mRNA induced by antisense oligonucleotides (AOs) is expected to produce shorter but partly functional dystrophin proteins, such as those possessed by patients with the less severe Becker muscular dystrophy. We are working on developing modified nucleotides, such as 2′-O,4′-C-ethylene-bridged nucleic acids (ENAs), possessing high nuclease resistance and high affinity for complementary RNA strands. Here, we demonstrate the preclinical characteristics (exon-skipping activity in vivo, stability in blood, pharmacokinetics, and tissue distribution) of renadirsen, a novel AO modified with 2′-O-methyl RNA/ENA chimera phosphorothioate designed for dystrophin exon 45 skipping and currently under clinical trials. Notably, systemic delivery of renadirsen sodium promoted dystrophin exon skipping in cardiac muscle, skeletal muscle, and diaphragm, compared with AOs with the same sequence as renadirsen but conventionally modified by PMO and 2′OMePS. These findings suggest the promise of renadirsen sodium as a therapeutic agent that improves not only skeletal muscle symptoms but also other symptoms in DMD patients, such as cardiac dysfunction.  相似文献   

7.
Triplex-induced recombination and repair in the pyrimidine motif   总被引:2,自引:2,他引:0  
Triplex-forming oligonucleotides (TFOs) bind DNA in a sequence-specific manner at polypurine/polypyrimidine sites and mediate targeted genome modification. Triplexes are formed by either pyrimidine TFOs, which bind parallel to the purine strand of the duplex (pyrimidine, parallel motif), or purine TFOs, which bind in an anti-parallel orientation (purine, anti-parallel motif). Both purine and pyrimidine TFOs, when linked to psoralen, have been shown to direct psoralen adduct formation in cells, leading to mutagenesis or recombination. However, only purine TFOs have been shown to mediate genome modification without the need for a targeted DNA-adduct. In this work, we report the ability of a series of pyrimidine TFOs, with selected chemical modifications, to induce repair and recombination in two distinct episomal targets in mammalian cells in the absence of any DNA-reactive conjugate. We find that TFOs containing N3′→P5′ phosphoramidate (amidate), 5-(1-propynyl)-2′-deoxyuridine (pdU), 2′-O-methyl-ribose (2′-O-Me), 2′-O-(2-aminoethyl)-ribose, or 2′-O, 4′-C-methylene bridged or locked nucleic acid (LNA)-modified nucleotides show substantially increased formation of non-covalent triplexes under physiological conditions compared with unmodified DNA TFOs. However, of these modified TFOs, only the amidate and pdU-modified TFOs mediate induced recombination in cells and stimulate repair in cell extracts, at levels comparable to those seen with purine TFOs in similar assays. These results show that amidate and pdU-modified TFOs can be used as reagents to stimulate site-specific gene targeting without the need for conjugation to DNA-reactive molecules. By demonstrating the potential for induced repair and recombination with appropriately modified pyrimidine TFOs, this work expands the options available for triplex-mediated gene targeting.  相似文献   

8.
The in vivo potency of antisense oligonucleotides (ASO) has been significantly increased by reducing their length to 8–15 nucleotides and by the incorporation of high affinity RNA binders such as 2′, 4′-bridged nucleic acids (also known as locked nucleic acid or LNA, and 2′,4′-constrained ethyl [cET]). We now report the development of a novel ASO design in which such short ASO monomers to one or more targets are co-synthesized as homo- or heterodimers or multimers via phosphodiester linkers that are stable in plasma, but cleaved inside cells, releasing the active ASO monomers. Compared to current ASOs, these multimers and multi-targeting oligonucleotides (MTOs) provide increased plasma protein binding and biodistribution to liver, and increased in vivo efficacy against single or multiple targets with a single construct. In vivo, MTOs synthesized in both RNase H-activating and steric-blocking oligonucleotide designs provide ≈4–5-fold increased potency and ≈2-fold increased efficacy, suggesting broad therapeutic applications.  相似文献   

9.
DNA-based aptamers that contain 2′-O,4′-C-methylene-bridged/linked bicyclic ribonucleotides (B/L nucleotides) over the entire length were successfully obtained using a capillary electrophoresis systematic evolution of ligands by exponential enrichment (CE-SELEX) method. A modified DNA library was prepared with an enzyme mix of KOD Dash and KOD mutant DNA polymerases. Forty 2′-O,4′-C-methylene bridged/locked nucleic acid (2′,4′-BNA/LNA) aptamers were isolated from an enriched pool and classified into six groups according to their sequence. 2′,4′-BNA/LNA aptamers of groups V and VI bound human thrombin with Kd values in the range of several 10 nanomolar levels.  相似文献   

10.
We analyzed the effect of 2′-O,4′-C-methylene bridged nucleic acid (2′,4′-BNA) modification of triplex-forming oligonucleotide (TFO) on pyrimidine motif triplex formation at neutral pH, a condition where pyrimidine motif triplexes are unstable. The binding constant of the pyrimidine motif triplex formation at pH 6.8 with 2′,4′-BNA modified TFO was about 20 times larger than that observed with unmodified TFO. The observed increase in the binding constant at neutral pH by the 2′,4′-BNA modification resulted from the considerable decrease in the dissociation rate constant.  相似文献   

11.
Fully modified 4′-thioDNA, an oligonucleotide only comprising 2′-deoxy-4′-thionucleosides, exhibited resistance to an endonuclease, in addition to preferable hybridization with RNA. Therefore, 4′-thioDNA is promising for application as a functional oligonucleotide. Fully modified 4′-thioDNA was found to behave like an RNA molecule, but no details of its structure beyond the results of circular dichroism analysis are available. Here, we have determined the structure of fully modified 4′-thioDNA with the sequence of d(CGCGAATTCGCG) by NMR. Most sugars take on the C3′-endo conformation. The major groove is narrow and deep, while the minor groove is wide and shallow. Thus, fully modified 4′-thioDNA takes on the A-form characteristic of RNA, both locally and globally. The only structure reported for 4′-thioDNA showed that partially modified 4′-thioDNA that contained some 2′-deoxy-4′-thionucleosides took on the B-form in the crystalline form. We have determined the structure of 4′-thioDNA in solution for the first time, and demonstrated unexpected differences between the two structures. The origin of the formation of the A-form is discussed. The remarkable biochemical properties reported for fully modified 4′-thioDNA, including nuclease-resistance, are rationalized in the light of the elucidated structure.  相似文献   

12.
Synthesis and antisense activity of oligonucleotides modified with 2′-O-[2-[(N,N-dimethylamino)oxy] ethyl] (2′-O-DMAOE) are described. The 2′-O-DMAOE-modified oligonucleotides showed superior metabolic stability in mice. The phosphorothioate oligonucleotide ‘gapmers’, with 2′-O-DMAOE- modified nucleoside residues at the ends and 2′-deoxy nucleosides residues in the central region, showed dose-dependent inhibition of mRNA expression in cell culture for two targets. ‘Gapmer’ oligonucleotides have one or two 2′-O-modified regions and a 2′-deoxyoligonucleotide phosphorothioate region that allows RNase H digestion of target mRNA. To determine the in vivo potency and efficacy, BalbC mice were treated with 2′-O-DMAOE gapmers and a dose-dependent reduction in the targeted C-raf mRNA expression was observed. Oligonucleotides with 2′-O-DMAOE modifications throughout the sequences reduced the intercellular adhesion molecule-1 (ICAM-1) protein expression very efficiently in HUVEC cells with an IC50 of 1.8 nM. The inhibition of ICAM-1 protein expression by these uniformly modified 2′-O-DMAOE oligonucleotides may be due to selective interference with the formation of the translational initiation complex. These results demonstrate that 2′-O-DMAOE- modified oligonucleotides are useful for antisense-based therapeutics when either RNase H-dependent or RNase H-independent target reduction mechanisms are employed.  相似文献   

13.
Modified nucleotides are useful tools to study the structures, biological functions and chemical and thermodynamic stabilities of nucleic acids. Derivatives of 2,6-diaminopurine riboside (D) are one type of modified nucleotide. The presence of an additional amino group at position 2 relative to adenine results in formation of a third hydrogen bond when interacting with uridine. New method for chemical synthesis of protected 3′-O-phosphoramidite of LNA-2,6-diaminopurine riboside is described. The derivatives of 2′-O-methyl-2,6-diaminopurine and LNA-2,6-diaminopurine ribosides were used to prepare complete 2′-O-methyl RNA and LNA-2′-O-methyl RNA chimeric oligonucleotides to pair with RNA oligonucleotides. Thermodynamic stabilities of these duplexes demonstrated that replacement of a single internal 2′-O-methyladenosine with 2′-O-methyl-2,6-diaminopurine riboside (DM) or LNA-2,6-diaminopurine riboside (DL) increases the thermodynamic stability (ΔΔG°37) on average by 0.9 and 2.3 kcal/mol, respectively. Moreover, the results fit a nearest neighbor model for predicting duplex stability at 37°C. D-A and D-G but not D-C mismatches formed by DM or DL generally destabilize 2′-O-methyl RNA/RNA and LNA-2′-O-methyl RNA/RNA duplexes relative to the same type of mismatches formed by 2′-O-methyladenosine and LNA-adenosine, respectively. The enhanced thermodynamic stability of fully complementary duplexes and decreased thermodynamic stability of some mismatched duplexes are useful for many RNA studies, including those involving microarrays.  相似文献   

14.
Locked nucleic acids (LNAs) and double-stranded small interfering RNAs (siRNAs) are rather new promising antisense molecules for cell culture and in vivo applications. Here, we compare LNA–DNA–LNA gapmer oligonucleotides and siRNAs with a phosphorothioate and a chimeric 2′-O-methyl RNA–DNA gapmer with respect to their capacities to knock down the expression of the vanilloid receptor subtype 1 (VR1). LNA–DNA–LNA gapmers with four or five LNAs on either side and a central stretch of 10 or 8 DNA monomers in the center were found to be active gapmers that inhibit gene expression. A comparative co-transfection study showed that siRNA is the most potent inhibitor of VR1–green fluorescent protein (GFP) expression. A specific inhibition was observed with an estimated IC50 of 0.06 nM. An LNA gapmer was found to be the most efficient single-stranded antisense oligonucleotide, with an IC50 of 0.4 nM being 175-fold lower than that of commonly used phosphorothioates (IC50 ~70 nM). In contrast, the efficiency of a 2′-O-methyl-modified oligonucleotide (IC50 ~220 nM) was 3-fold lower compared with the phosphorothioate. The high potency of siRNAs and chimeric LNA–DNA oligonucleotides make them valuable candidates for cell culture and in vivo applications targeting the VR1 mRNA.  相似文献   

15.
LNA (locked nucleic acids, i.e. oligonucleotides with a methyl bridge between the 2′ oxygen and 4′ carbon of ribose) and 2,6-diaminopurine were incorporated into 2′-O-methyl RNA pentamer and hexamer probes to make a microarray that binds unpaired RNA approximately isoenergetically. That is, binding is roughly independent of target sequence if target is unfolded. The isoenergetic binding and short probe length simplify interpretation of binding to a structured RNA to provide insight into target RNA secondary structure. Microarray binding and chemical mapping were used to probe the secondary structure of a 323 nt segment of the 5′ coding region of the R2 retrotransposon from Bombyx mori (R2Bm 5′ RNA). This R2Bm 5′ RNA orchestrates functioning of the R2 protein responsible for cleaving the second strand of DNA during insertion of the R2 sequence into the genome. The experimental results were used as constraints in a free energy minimization algorithm to provide an initial model for the secondary structure of the R2Bm 5′ RNA.  相似文献   

16.
Substitution of oxygen atoms by sulfur at various locations in the nucleic acid framework has led to analogs such as the DNA phosphorothioates and 4′-thio RNA. The phosphorothioates are excellent mimics of DNA, exhibit increased resistance to nuclease degradation compared with the natural counterpart, and have been widely used as first-generation antisense nucleic acid analogs for applications in vitro and in vivo. The 4′-thio RNA analog exhibits significantly enhanced RNA affinity compared with RNA, and shows potential for incorporation into siRNAs. 2-Thiouridine (s2U) and 5-methyl-2-thiouridine (m5s2U) are natural nucleotide analogs. s2U in tRNA confers greater specificity of codon–anticodon interactions by discriminating more strongly between A and G compared with U. 2-Thio modification preorganizes the ribose and 2′-deoxyribose sugars for a C3′-endo conformation, and stabilizes heteroduplexes composed of modified DNA and complementary RNA. Combination of the 2-thio and sugar 2′-O-modifications has been demonstrated to boost both thermodynamic stability and nuclease resistance. Using the 2′-O-[2-(methoxy)ethyl]-2-thiothymidine (m5s2Umoe) analog, we have investigated the consequences of the replacement of the 2-oxygen by sulfur for base-pair geometry and duplex conformation. The crystal structure of the A-form DNA duplex with sequence GCGTAT*ACGC (T* = m5s2Umoe) was determined at high resolution and compared with the structure of the corresponding duplex with T* = m5Umoe. Notable changes as a result of the incorporation of sulfur concern the base-pair parameter ‘opening’, an improvement of stacking in the vicinity of modified nucleotides as measured by base overlap, and a van der Waals interaction between sulfur atoms from adjacent m5s2Umoe residues in the minor groove. The structural data indicate only minor adjustments in the water structure as a result of the presence of sulfur. The observed small structural perturbations combined with the favorable consequences for pairing stability and nuclease resistance (when combined with 2′-O-modification) render 2-thiouracil-modified RNA a promising candidate for applications in RNAi.  相似文献   

17.
To develop antisense oligonucleotides, novel nucleosides, 2'-O,4'-C-ethylene nucleosides and their corresponding phosphoramidites, were synthesized as building blocks. The 1H NMR analysis showed that the 2'-O,4'-C-ethylene linkage of these nucleosides restricts the sugar puckering to the N-conformation as well as the linkage of 2'-O,4'-C-methylene nucleosides which are known as bridged nucleic acids (BNA) or locked nucleic acids (LNA). The ethylene-bridged nucleic acids (ENA) showed a high binding affinity for the complementary RNA strand (DeltaT(m)=+5.2 degrees C/modification) and were more nuclease-resistant than natural DNA and BNA/LNA. These results indicate that ENA have better properties as antisense oligonucleotides than BNA/LNA.  相似文献   

18.
We report here the solid phase synthesis of RNA and DNA oligonucleotides containing the 2′-selenium functionality for X-ray crystallography using multiwavelength anomalous dispersion. We have synthesized the novel 2′-methylseleno cytidine phosphoramidite and improved the accessibility of the 2′-methylseleno uridine phosphoramidite for the synthesis of many selenium-derivatized DNAs and RNAs in large scales. The yields of coupling these Se-nucleoside phosphoramidites into DNA or RNA oligonucleotides were over 99% when 5-(benzylmercapto)-1H-tetrazole was used as the coupling reagent. The UV melting study of A-form dsDNAs indicated that the 2′-selenium derivatization had no effect on the stability of the duplexes with the 3′-endo sugar pucker. Thus, the stems of functional RNA molecules with the same 3′-endo sugar pucker appear to be the ideal sites for the selenium derivatization with 2′-Se-C and 2′-Se-U. Crystallization of the selenium-derivatized oligonucleotides is also reported here. The results demonstrate that this 2′-selenium functionality is suitable for RNA and A-form DNA derivatization in X-ray crystallography.  相似文献   

19.
The synthesis of N4-benzoyl-5′-O-dimethoxytrityl-2′,3′-dideoxy-3′-thiocytidine and its phosphorothioamidite is described for the first time, together with a shortened procedure for the preparation of 5′-O-dimethoxytrityl-3′-deoxy-3′-thiothymidine and its corresponding phosphorothioamidite. The first fully automated coupling procedure for the incorporation of a phosphorothioamidite into a synthetic oligodeoxynucleotide has been developed, which conveniently uses routine activators and reagents. Coupling yields using this protocol were in the range of 85–90% and good yields of singularly modified oligonucleotides were obtained. Coupling yields were also equally good when performed on either a 0.2 or 1 µmol reaction column, thus facilitating large scale syntheses required for mechanistic studies.  相似文献   

20.
Hybrids of RNA and arabinonucleic acid (ANA) as well as the 2′-fluoro-ANA analog (2′F-ANA) were recently shown to be substrates of the enzyme RNase H. Although RNase H binds to double-stranded RNA, no cleavage occurs with such duplexes. Therefore, knowledge of the structure of ANA/RNA hybrids may prove helpful in the design of future antisense oligonucleotide analogs. In this study, we have determined the NMR solution structures of ANA/RNA and DNA/RNA hairpin duplexes and compared them to the recently published structure of a 2′F-ANA/RNA hairpin duplex. We demonstrate here that the sugars of RNA nucleotides of the ANA/RNA hairpin stem adopt the C3′-endo (north, A-form) conformation, whereas those of the ANA strand adopt a ‘rigid’ O4′-endo (east) sugar pucker. The DNA strand of the DNA/RNA hairpin stem is flexible, but the average DNA/RNA hairpin structural parameters are close to the ANA/RNA and 2′F-ANA/RNA hairpin parameters. The minor groove width of ANA/RNA, 2′F-ANA/RNA and DNA/RNA helices is 9.0 ± 0.5 Å, a value that is intermediate between that of A- and B-form duplexes. These results rationalize the ability of ANA/RNA and 2′F-ANA/RNA hybrids to elicit RNase H activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号