首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cryptic trysts, genomic mergers, and plant speciation   总被引:4,自引:0,他引:4  
  相似文献   

2.
不同外植体来源和培养条件对拟似棉植株再生的影响   总被引:12,自引:0,他引:12  
对拟似棉的不同器官(叶、叶柄、茎)在离体培养中的反应以及影响植株分化的各种因素(继代培养时间、激素、光、温度)进行了研究。结果表明:茎段作为外植体效果最佳,并且愈伤组织的诱导能力与茎段切口的面积成正比。外植体的方向性,也就是指茎表皮靠着培养基,切口面暴露于空气中为愈伤组织诱导的重要条件。愈伤组织诱导的最适培养基是MS+2mg/l IAA+1mg/l KT,最佳培养条件是强光(10,000勒克斯)、高温(29±1℃)。在MS+0.1mg/l NAA+3mg/l 2ip+0.5g/l LH分化培养基上,在4,000—5,000勒克斯的光强,28℃条件下,愈伤组织分化成小苗的频率可达20%。  相似文献   

3.
Paracoccidioides brasiliensis is the etiologic agent of paracoccidioidomycosis, a disease confined to Latin America and of marked importance in the endemic areas due to its frequency and severity. This species is considered to be clonal according to mycological criteria and has been shown to vary in virulence. To characterize natural genetic variation and reproductive mode in this fungus, we analyzed P. brasiliensis phylogenetically in search of cryptic species and possible recombination using concordance and nondiscordance of gene genealogies with respect to phylogenies of eight regions in five nuclear loci. Our data indicate that this fungus consists of at least three distinct, previously unrecognized species: S1 (species 1 with 38 isolates), PS2 (phylogenetic species 2 with six isolates), and PS3 (phylogenetic species 3 with 21 isolates). Genealogies of four of the regions studied strongly supported the PS2 clade, composed of five Brazilian and one Venezuelan isolate. The second clade, PS3, composed solely of 21 Colombian isolates, was strongly supported by the alpha-tubulin genealogy. The remaining 38 individuals formed S1. Two of the three lineages of P. brasiliensis, S1 and PS2, are sympatric across their range, suggesting barriers to gene flow other than geographic isolation. Our study provides the first evidence for possible sexual reproduction in P. brasiliensis S1, but does not rule it out in the other two species.  相似文献   

4.
Hybrids between species provide information about the evolutionary processes involved in divergence. In addition to creating hybrids in the laboratory, biologists can take advantage of natural hybrid zones to understand the factors that shape gene flow between divergent lineages. In the early stages of speciation, most regions of the genome continue to flow freely between populations. Alternatively, the subset of the genome that confers reproductive barriers between nascent species is expected to reject introgression. Now enabled by advances in genomics, this perspective is motivating detailed comparisons of gene flow across genomic regions in hybrid zones. Here, I review methods for measuring and interpreting introgression at multiple loci in hybrid zones, focusing on the problem of identifying loci that contribute to reproductive isolation. Emerging patterns from multi-locus studies of hybrid zones are highlighted, including remarkable variance in introgression across the genome. Although existing methods have been useful, there is scope for development of new analytical approaches that better connect differential patterns of gene flow in hybrid zones with current knowledge of speciation mechanisms. I outline future prospects for differential introgression studies on a genomic scale.  相似文献   

5.
Heliconius butterflies have become a model for the study of speciation with gene flow. For adaptive introgression to take place, there must be incomplete barriers to gene exchange that allow interspecific hybridization and multiple generations of backcrossing. The recent publication of estimates of individual components of reproductive isolation between several species of butterflies in the Heliconius melpomeneH. cydno clade allowed us to calculate total reproductive isolation estimates for these species. According to these estimates, the butterflies are not as promiscuous as has been implied. Differences between species are maintained by intrinsic mechanisms, while reproductive isolation of geographical races within species is mainly due to allopatry. We discuss the implications of this strong isolation for basic aspects of the hybrid speciation with introgression hypothesis.  相似文献   

6.
Phylogenetic conflicts between genetic markers can help to disentangle complex histories of phylogeography and introgression among taxa. We previously proposed that the Chinese mainland subspecies of the intermediate horseshoe bat Rhinolophus affinis himalayanus colonized Hainan Island to form the subspecies R. a. hainanus. Subsequent recolonization of the mainland formed a third taxon, R. a macrurus, and a secondary contact zone with the ancestral himalayanus. To test for historical and recurrent genetic exchange between these mainland subspecies, we sampled populations of each from two parapatric zones and undertook analyses using one mtDNA marker, three nuclear genes and 14 microsatellites. Nuclear DNA, echolocation call frequencies and morphological data all recovered two taxa; however, a mtDNA phylogeny revealed two himalayanus clades, of which one clustered with macrurus, as well as some shared or related mtDNA haplotypes in eastern populations. Isolation‐with‐migration (IM) models suggested some mtDNA gene flow from macrurus to himalayanus. However, strong population structure in himalayanus raises the possibility that macrurus captured mtDNA from a coastal population of himalayanus that has since become rare or extinct. To reconcile these two sets of results, we suggest that the IM estimates might reflect historical mtDNA gene flow among populations of himalayanus, before mtDNA was subsequently captured by macrurus. Finally, microsatellite‐based ABC analyses supported the island origin of macrurus; however, mtDNA‐based ABC analyses suggest this taxon might have evolved on the mainland. Our findings highlight the importance of understanding population history and structure for interpreting hybridization and introgression events.  相似文献   

7.
Speciation by hybridization is emerging as a significant contributor to biological diversification. Yet, little is known about the relative contributions of (i) evolutionary novelty and (ii) sorting of pre‐existing parental incompatibilities to the build‐up of reproductive isolation under this mode of speciation. Few studies have addressed empirically whether hybrid animal taxa are intrinsically isolated from their parents, and no study has so far investigated by which of the two aforementioned routes intrinsic barriers evolve. Here, we show that sorting of pre‐existing parental incompatibilities contributes to intrinsic isolation of a hybrid animal taxon. Using a genomic cline framework, we demonstrate that the sex‐linked and mitonuclear incompatibilities isolating the homoploid hybrid Italian sparrow at its two geographically separated hybrid–parent boundaries represent a subset of those contributing to reproductive isolation between its parent species, house and Spanish sparrows. Should such a sorting mechanism prove to be pervasive, the circumstances promoting homoploid hybrid speciation may be broader than currently thought, and indeed, there may be many cryptic hybrid taxa separated from their parent species by sorted, inherited incompatibilities.  相似文献   

8.
Interspecific gene flow is increasingly recognized as an important evolutionary phenomenon in plants. A surprising observation is that historical introgression is often inferred between species that presently have geographic and reproductive barriers that would appear to prohibit the inferred sexual exchange. A striking example concerns Gossypium aridum (subsection Erioxylum); previous analyses have shown that populations from Colima (southwestern Mexico) have a chloroplast genome (cpDNA) similar to that of a different taxonomic subsection (Integrifolia) that presently is confined to Baja California and the Galapagos Islands, whereas other G. aridum populations share a cpDNA lineage with each other and with other species in subsection Erioxylum. To evaluate further the possibility that this cpDNA evidence reflects introgression as opposed to some other evolutionary process, as well as to explore patterns of genetic diversity and similarity in both subsections, we conducted amplified fragment-length polymorphism (AFLP) analysis using 50 populations representing all seven species in the two subsections. Genetic diversity is high in G. aridum, and is strongly correlated with geography, as are similarities among the five species in subsection Erioxylum. This subsection is genetically distant from the two species in subsection Integrifolia, whose populations are highly similar inter se. Populations of G. aridum from Colima are genetically distinct from the remainder of the species, and exhibit a comparatively high frequency of AFLP fragments that otherwise are diagnostic of the Integrifolia lineage. These data implicate intersubsectional introgression between presently allopatric and genetically isolated clades, giving rise to a morphologically cryptic, introgressant entity. Biogeographic considerations suggest that this history was initiated following migration of one or more seeds from Baja California to the Colima coast, perhaps during the Pleistocene. We suggest that cryptic and seemingly improbable interspecific introgression and molecular differentiation may be more common than appreciated in angiosperm evolution.  相似文献   

9.
Increasing our understanding of how evolutionary processes drive the genomic landscape of variation is fundamental to a better understanding of the genomic consequences of speciation. However, genome‐wide patterns of within‐ and between‐ species variation have not been fully investigated in most forest tree species despite their global ecological and economic importance. Here, we use whole‐genome resequencing data from four Populus species spanning the speciation continuum to reconstruct their demographic histories and investigate patterns of diversity and divergence within and between species. Using Populus trichocarpa as an outgroup species, we further infer the genealogical relationships and estimate the extent of ancient introgression among the three aspen species (Populus tremula, Populus davidiana and Populus tremuloides) throughout the genome. Our results show substantial variation in these patterns along the genomes with this variation being strongly predicted by local recombination rates and the density of functional elements. This implies that the interaction between recurrent selection and intrinsic genomic features has dramatically sculpted the genomic landscape over long periods of time. In addition, our findings provide evidence that, apart from background selection, recent positive selection and long‐term balancing selection have also been crucial components in shaping patterns of genome‐wide variation during the speciation process.  相似文献   

10.
Barriers to gene flow between species result from selection against foreign linkage blocks in hybrids. When the geographic ranges of taxa meet at multiple locations, the opportunity exists for variation in the genetic architecture of isolating barriers. Hybrid zones between two sunflower species (Helianthus annuus and H. petiolaris) in Nebraska and California exhibited remarkably similar patterns of introgression of mapped molecular markers. Congruence among hybrid zones may result from limited intraspecific variation at loci contributing to isolation and from similar selective effects of alleles in the heterospecific genetic background. The observed consistency of introgression patterns across distantly separated hybrid zones suggests that intrinsic forces predominate in determining hybrid zone dynamics and boundaries between these sunflower species.  相似文献   

11.
Despite examples of homoploid hybrid species, theoretical work describing when, where, and how we expect homoploid hybrid speciation to occur remains relatively rare. Here, I explore the probability of homoploid hybrid speciation due to “symmetrical incompatibilities” under different selective and genetic scenarios. Through simulation, I test how genetic architecture and selection acting on traits that do not themselves generate incompatibilities interact to affect the probability that hybrids evolve symmetrical incompatibilities with their parent species. Unsurprisingly, selection against admixture at “adaptive” loci that are linked to loci that generate incompatibilities tends to reduce the probability of evolving symmetrical incompatibilities. By contrast, selection that favors admixed genotypes at adaptive loci can promote the evolution of symmetrical incompatibilities. The magnitude of these outcomes is affected by the strength of selection, aspects of genetic architecture such as linkage relationships and the linear arrangement of loci along a chromosome, and the amount of hybridization following the formation of a hybrid zone. These results highlight how understanding the nature of selection, aspects of the genetics of traits affecting fitness, and the strength of reproductive isolation between hybridizing taxa can all be used to inform when we expect to observe homoploid hybrid speciation due to symmetrical incompatibilities.  相似文献   

12.
The incidence of introgression during the diversification process and the timespan following divergence when introgression is possible are poorly understood in the neotropics where high species richness could provide extensive opportunities for genetic exchange. We used thousands of genome-wide SNPs to infer phylogenetic relationships, calculate ages of splitting, and to estimate the timing of introgression in a widespread avian neotropical genus of woodcreepers. Five distinct introgression events were reconstructed involving taxa classified both as subspecies and species including lineages descending from the basal–most split, dated to 7.3 million years ago. Introgression occurred between just a few hundred thousand to about 2.5 million years following divergence, suggesting substantial portions of the genome are capable of introgressing across taxa boundaries during a protracted time window of a few million years following divergence. Despite this protracted time window, we found that the proportion of the genome introgressing (6–11%) declines with the time of introgression following divergence, suggesting that the genome becomes progressively more immune to introgression as reproductive isolation increases.  相似文献   

13.
How species evolve reproductive isolation in the species-rich Amazon basin is poorly understood in vertebrates. Here, we sequenced a reference genome and used a genome-wide sample of SNPs to analyze a hybrid zone between two highly cryptic species of Hypocnemis warbling-antbirds—the Rondonia warbling-antbird (H. ochrogyna) and Spix's warbling-antbird (H. striata)—in a headwater region of southern Amazonia. We found that both species commonly hybridize, producing F1s and a variety of backcrosses with each species but we detected only one F2-like hybrid. Patterns of heterozygosity, hybrid index, and interchromosomal linkage disequilibrium in hybrid populations closely match expectations under strong postzygotic isolation. Hybrid zone width (15.4 km) was much narrower than expected (211 km) indicating strong selection against hybrids. A remarkably high degree of concordance in cline centers and widths across loci, and a lack of reduced interspecific Fst between populations close to versus far from the contact zone, suggest that genetic incompatibilities have rendered most of the genome immune to introgression. These results support intrinsic postzygotic isolation as a driver of speciation in a moderately young cryptic species pair from the Amazon and suggest that species richness of the Amazon may be grossly underestimated.  相似文献   

14.
Among animals, evidence for homoploid hybrid speciation (HHS, i.e. the creation of a hybrid lineage without a change in chromosome number) was limited until recently to the virgin chub, Gila seminuda, and some controversial data in support of hybrid status for the red wolf, Canis rufus. This scarcity of evidence, together with pessimistic attitudes among zoologists about the evolutionary importance of hybridisation, prompted the view that HHS is extremely rare among animals, especially as compared with plants. However, in recent years, the literature on animal HHS has expanded to include several new putative examples in butterflies, ants, flies and fishes. We argue that this evidence suggests that HHS is far more common than previously thought and use it to provide insights into some of the genetic and ecological aspects associated with this type of speciation among animals.  相似文献   

15.
Karyotypic differences have been used for delimiting populations or species, although whether these mutations provide strong barriers to gene flow between populations and promote speciation remains contentious. In this study, we assessed whether 11 chromosomal races of Australian morabine grasshoppers ( Vandiemenella viatica species group) represent genetically distinct populations by analyses of cytological and allozyme (35 loci) data and DNA sequences of the elongation factor-1 alpha ( EF -1α), anonymous Mvia11 , and mitochondrial cytochrome c oxidase subunit I ( COI ) loci. While the Vandiemenella chromosomal taxa generally represent genetically distinct units, a substantial portion of the total genetic variation in our samples was not explained by the chromosomal variation. Mantel tests indicated that Vandiemenella populations were spatially structured and have maintained gene flow at a local scale within each of the taxa. The group was subdivided into 13 genetic clusters; four chromosomal taxa comprised single exclusive clusters, while others comprised more than one cluster or clusters shared with other taxa. Boundaries of these cryptic population subdivisions correspond with several biogeographical barriers, such as straits, gulfs, the Murray River, and an ancient mega-lake, Lake Bungunnia. The viatica species group was previously proposed to have diversified without major geographical separation based on the stasipatric speciation model; however, the present study suggests the involvement of allopatric fragmentation. Given extensive nonmonophyly of chromosomal taxa and incomplete barriers to gene flow among taxa, all Vandiemenella chromosomal taxa and genetically distinct populations within chromosomal taxa, except Vandiemenella pichirichi , should be regarded as populations of one species: Vandiemenella viatica .  相似文献   

16.
Recently evolved species typically share genetic variation across their genomes due to incomplete lineage sorting and/or ongoing gene flow. Given only subtle allele frequency differences at most loci and the expectation that divergent selection may affect only a tiny fraction of the genome, distinguishing closely related species based on multi‐locus data requires substantial genomic coverage. In this study, we used ddRAD‐seq to sample the genomes of five recently diverged, New World “mallards” (Anas spp.), a group of dabbling duck species characterized by diagnosable phenotypic differences but minimal genetic differentiation. With increased genomic sampling, we aimed to characterize population structure within this group and identify genomic regions that may have experienced divergent selection during speciation. We analyzed 3,017 autosomal ddRAD‐seq loci and 177 loci from the Z‐chromosome. In contrast to previous studies, the ddRAD‐seq data were sufficient to assign individuals to their respective species or subspecies and to generate estimates of gene flow in a phylogenetic framework. We find limited evidence of contemporary gene flow between the dichromatic mallard and several monochromatic taxa, but find evidence for historical gene flow between some monochromatic species pairs. We conclude that the overall genetic similarity of these taxa likely reflects retained ancestral polymorphism rather than recent and extensive gene flow. Thus, despite recurring cases of hybridization in this group, our results challenge the current dogma predicting the genetic extinction of the New World monochromatic dabbling ducks via introgressive hybridization with mallards. Moreover, ddRAD‐seq data were sufficient to identify previously unknown outlier regions across the Z‐chromosome and several autosomal chromosomes that may have been involved in the diversification of species in this recent radiation.  相似文献   

17.
Adaptive radiations have helped shape how we view animal speciation, particularly classic examples such as Darwin's finches, Hawaiian fruitflies and African Great Lakes cichlids. These 'island' radiations are comparatively recent, making them particularly interesting because the mechanisms that caused diversification are still in motion. Here, we identify a new case of a recent bird radiation within a continentally distributed species group; the capuchino seedeaters comprise 11 Sporophila species originally described on the basis of differences in plumage colour and pattern in adult males. We use molecular data together with analyses of male plumage and vocalizations to understand species limits of the group. We find marked phenotypic variation despite lack of mitochondrial DNA monophyly and few differences in other putatively neutral nuclear markers. This finding is consistent with the group having undergone a recent radiation beginning in the Pleistocene, leaving genetic signatures of incomplete lineage sorting, introgressive hybridization and demographic expansions. We argue that this apparent uncoupling between neutral DNA homogeneity and phenotypic diversity is expected for a recent group within the framework of coalescent theory. Finally, we discuss how the ecology of open habitats in South America during the Pleistocene could have helped promote this unique and ongoing radiation.  相似文献   

18.
Along with manipulating habitat, the direct release of domesticated individuals into the wild is a practice used worldwide to augment wildlife populations. We test between possible outcomes of human‐mediated secondary contact using genomic techniques at both historical and contemporary timescales for two iconic duck species. First, we sequence several thousand ddRAD‐seq loci for contemporary mallards (Anas platyrhynchos) throughout North America and two domestic mallard types (i.e., known game‐farm mallards and feral Khaki Campbell's). We show that North American mallards may well be becoming a hybrid swarm due to interbreeding with domesticated game‐farm mallards released for hunting. Next, to attain a historical perspective, we applied a bait‐capture array targeting thousands of loci in century‐old (1842–1915) and contemporary (2009–2010) mallard and American black duck (Anas rubripes) specimens. We conclude that American black ducks and mallards have always been closely related, with a divergence time of ~600,000 years before present, and likely evolved through prolonged isolation followed by limited bouts of gene flow (i.e., secondary contact). They continue to maintain genetic separation, a finding that overturns decades of prior research and speculation suggesting the genetic extinction of the American black duck due to contemporary interbreeding with mallards. Thus, despite having high rates of hybridization, actual gene flow is limited between mallards and American black ducks. Conversely, our historical and contemporary data confirm that the intensive stocking of game‐farm mallards during the last ~100 years has fundamentally changed the genetic integrity of North America's wild mallard population, especially in the east. It thus becomes of great interest to ask whether the iconic North American mallard is declining in the wild due to introgression of maladaptive traits from domesticated forms. Moreover, we hypothesize that differential gene flow from domestic game‐farm mallards into the wild mallard population may explain the overall temporal increase in differentiation between wild black ducks and mallards, as well as the uncoupling of genetic diversity and effective population size estimates across time in our results. Finally, our findings highlight how genomic methods can recover complex population histories by capturing DNA preserved in traditional museum specimens.  相似文献   

19.
A molecular phylogenetic study of the plant genus Coreocarpus was conducted using nuclear (ITS) and plastid (rpl16 intron) DNA sequences, with phylogenies of the nuclear and plastid sequences highly congruent in defining a monophyletic group of six species (core Coreocarpus), although three other species often placed within the genus were excluded. Relationships within the genus are largely but not totally concordant with prior biosystematic studies. Despite strong molecular support, no morphological characters uniting the six species of core Coreocarpus have been identified; retention of plesiomorphic characters and the genetic lability of characters are two probable factors contributing to lack of consistent defining characters. The age of the core Coreocarpus is estimated at 1 million years because the basal species is endemic to a volcanic island that emerged in the past million years. Mapping the results of earlier breeding studies on the molecular phylogeny showed that use of cross-compatibility as a criterion for species delimitation would result in the recognition of paraphyletic species. Prior field, morphological, and biosystematic studies provided no indication of past hybridization in the evolution of Coreocarpus, and species in the genus appeared to be well defined morphologically. However, three instances of incongruence were observed. Two of these were between the nuclear and plastid partitions, and the third was between the morphological species assignment of one accession and the molecular data. If hybridization accounts for incongruence between the nuclear and plastid data, it occurred between species that now appear to be cross-incompatible and allopatric. The incongruence between morphological species assignment and the molecular data could be the result of parallel fixation of characters that have a simple genetic basis. This study suggests that the evolutionary history of Coreocarpus is much more complex than indicated from prior biosystematic investigations and that biosystematic and molecular phylogenetic studies may complement each other for elucidating the evolution and phylogeny of a group.  相似文献   

20.
A model for chloroplast capture   总被引:3,自引:0,他引:3  
Abstract. Chloroplast capture, the introgression of a chloroplast from one species into another, has been frequently suggested as the explanation for inconsistencies between gene trees based on nuclear and cytoplasmic markers in plants. We use a genetic model to determine the conditions for capture to occur, and we find that they are somewhat more general than those given in earlier verbal arguments. Chloroplast capture can occur if cytoplasm substitution provides an advantage in seed production. This can happen through reallocation to the female function when cytonuclear incompatibilities cause partial male sterility, but also under more general conditions. Capture is promoted by nuclear incompatibilities between the two genomes (or a low heterosis in F1 hybrids) and by partial selfing when hybridization causes a decrease in the selfing rate and inbreeding depression is strong. We discuss empirical predictions that can be used to test this mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号