首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interactions of the monovalent ions Li+, Na+, K+, NH4+, Rb+ and Cs+ with adenosine-5'-monophosphoric acid (H2-AMP), guanosine-5'-monophosphoric acid (H2-GMP) and deoxyguanosine-5'-monophosphoric acid (H2-dGMP) were investigated in aqueous solution at physiological pH. The crystalline salts M2-nucleotide.nH2O, where M = Li+, Na+, K+ NH4+, Rb+ and Cs+, nucleotide = AMP, GMP and dGMP anions and n = 2-4 were isolated and characterized by Fourier Transform infrared (FTIR) and 1H-NMR spectroscopy. Spectroscopic evidence showed that these ions are in the form of M(H2O)n+ with no direct metal-nucleotide interaction, in aqueous solution. In the solid state, Li+ ions bind to the base N-7 site and the phosphate group (inner-sphere), while the NH4+ cations are in the vicinity of the N-7 position and the phosphate group, through hydrogen bonding systems. The Na-nucleotides and K-nucleotides are structurally similar. The Na+ ions bind to the phosphate group of the AMP through metal hydration shell (outer-sphere), whereas in the Na2-GMP, the hydrated metal ions bind to the base N-7 or the ribose hydroxyl groups (inner-sphere). The Na2-dGMP contains hydrated metal-carbonyl and metal-phosphate bindings (inner-sphere). The Rb+ and Cs+ ions are directly bonded to the phosphate groups and indirectly to the base moieties (via H2O). The ribose moiety shows C2'-endo/anti conformation for the free AMP acid and its alkali metal ion salts. In the free GMP acid, the ribose ring exhibits C3'-endo/anti conformer, while a C2'-endo/anti sugar pucker was found in the Na2-GMP and K2-GMP salts and a C3'-endo/anti conformation for the Li+, NH4+, Rb+ and Cs+ salts. The deoxyribose has C3'-endo/anti conformation in the free dGMP acid and O4'-endo/anti in the Na2-dGMP, K2-dGMP and a C3'-endo/anti for the Li+, NH4+, Rb+ and Cs+ salts. An equilibrium mixture of the C2'-endo/anti and C3'-endo/anti sugar puckers was found for these metal-nucleotide salts in aqueous solution.  相似文献   

2.
The self-aggregation of the mononucleotides AMP, CMP, and UMP with Mg2+ added (nucleotide concentration = Mg2+ concentration) up to 0.4 molal or to their solubility limit in 2H2O has been monitored through self-diffusion measurements, using the Fourier transform NMR pulsed-gradient spin-echo multicomponent-self-diffusion technique. Also, purine, cytidine, uridine, purine with Mg2+ added and both cytidine and uridine with Mg2+, Zn2+ or Cd2+ added, were studied in the same way. The experimental data were fitted to two different aggregation models. For the mononucleotides with Mg2+ added a cooperative indefinite aggregation model, where the first (dimerization) aggregation constant is a magnitude lower than those for the higher aggregation step gives the best agreement between simulations and experiment. Typical values are 0.3 and 12 kg mol(-1), respectively. The latter value is about twice that found for the uncomplexed nucleotides. Also, purine and the nucleosides, cytidine and uridine, with divalent metal ions added fit best with this model. The degree of aggregation is increased upon metal ion addition, as previously shown for the mononucleotides. For purine, cytidine and uridine without metal ions added an 'isodesmic', indefinite aggregation model, with the aggregation constant for each step equal, fits the data as well. Here the application of the 'semi-isodesmic' model results in a higher first (dimerization) aggregation constant than is found for the nucleotides. The typical value is 2 kg mol(-1). In this case, the evaluated aggregation constants for the higher step become only about twice as large as those of the first step. The same measurements on isopropylcytidine, isopropyluridine and theophylline-7-acetic acid in water show that these three compounds aggregate to the same extent as the nucleosides, cytidine and uridine. Pyrimidine diffusion data reveal no aggregation at all; the application of either model results in essentially zero aggregation constants.  相似文献   

3.
The self-aggregation of the mononucleotides (AMP, CMP, GMP and UMP) and caffeine up to their solubility limit in 2H2O has been monitored through self-diffusion measurements, using the Fourier transform NMR pulsed-gradient spin-echo self-diffusion technique. The data were iteratively fitted to a number of aggregation models. It was concluded that the best agreement between simulations and experiment for the mononucleotides was obtained for a 'semi-isodesmic', indefinite aggregation model (also known as a Type III SEK or cooperative indefinite self-association model), where the first (dimerization) aggregation constant is a magnitude lower than those for the higher aggregation steps. Typical values were 0.4 and 6 l mol-1, respectively. Under these conditions, the main fraction of solute is monomeric throughout the concentration range and the distribution of higher oligomers is very broad. Caffeine self-aggregation is clearly different and is consistent with several aggregation models. The mixed aggregation of caffeine (at a low total concentration) and the mononucleotides was successfully monitored in an extension of the basic study. It was found that caffeine binding to mononucleotide aggregates increases in the series UMP, CMP, GMP and AMP.  相似文献   

4.
We used 7Li NMR spin-lattice relaxation times and 31P NMR chemical shifts to study the binding of Li+ and Mg2+ to the phosphate moieties of ATP and ADP. To examine the binding of Li+ and Mg2+ to the base and ribose moieties, we used 1H and 13C NMR chemical shifts. The 7Li NMR relaxation times of Li+/Mg2+ mixtures of ATP or ADP increased with increasing concentrations of Mg2+, suggesting competition between the two ions for adenine nucleotides. No significant binding of Li+ and Mg2+ to the base and ribose moieties occurred. At the pH and ionic strength used, 2:1 and 1:1 species of the Li(+)-ATP and Li+-ADP complexes were present, with the 2:1 species predominating. In contrast, 1:1 species predominated for the Mg(2+)-ADP and Mg(2+)-ATP complexes. We calculated the Li(+)-nucleotide binding constants in the presence and absence of Mg2+ and found them to be somewhat greater in the presence of Mg2+. Although competition between Li+ and Mg2+ for ATP and ADP phosphate binding sites in solution is consistent with the 31P chemical shift data, the possibility that the Li+ and Mg2+ form mixed complexes with the phosphate groups of ATP or ADP cannot be ruled out.  相似文献   

5.
The yeast plasma membrane H+-ATPase isolation procedure was improved; a highly pure enzyme (90-95%) was obtained after centrifugation on a trehalose concentration gradient. H+-ATPase kinetics was slightly cooperative: Hill number = 1.5, S0.5 = 800 microM ATP, and turnover number = 36 s-1. In contrast to those of other P-type ATPases, H+-ATPase fluorescence was highly sensitive to nucleotide binding; the fluorescence decreased 60% in the presence of both 5 mM ADP and AMP-PNP. Fluorescence titration with nucleotides allowed calculation of dissociation constants (Kd) from the binding site; Kd values for ATP and ADP were 700 and 800 microM, respectively. On the basis of amino acid sequence and homology model analysis, we propose that binding of the nucleotide to the N-domain is coupled to the movement of a loop beta structure and to the exposure of the Trp505 residue located in the loop. The recombinant N-domain also displayed a large hyperbolic fluorescence quenching when ATP binds; however, it displayed a higher affinity for ATP (Kd = 100 microM). We propose for P-type ATPases that structural movements during nucleotide binding could be followed if a Trp residue is properly located in the N-domain. Further, we propose the use of trehalose in enzyme purification protocols to increase the purity and quality of the isolated protein and to perform structural studies.  相似文献   

6.
The K+ channel of sarcoplasmic reticulum. A new look at Cs+ block.   总被引:10,自引:2,他引:8       下载免费PDF全文
K+-selective ion channels from mammalian sarcoplasmic reticulum were inserted into planar phospholipid bilayers, and single-channel currents measured in solutions containing Cs+. Current through this channel can be observed in symmetrical solutions containing only Cs+ salts. At zero voltage, the Cs+ conductance is approximately 15-fold lower than the corresponding K+ conductance. The open channel rectifies strongly in symmetrical Cs+ solutions, and the Cs+ currents are independent of Cs+ concentration in the range 18-600 mM. Biionic (Cs+/K+) reversal potentials are only 10 mV, showing that Cs+ is nearly as permeant as K+, though much less conductive. Addition of Cs+ to symmetrical K+ solutions reduces current through the channel in a voltage-dependent way. The results can be explained by a free energy profile in which the channel's selectivity filter acts in two ways: to provide binding sites for the conducting ions and to serve as a major rate-determining structure. According to this picture, the main difference between high-conductance K+ and low-conductance Cs+ is that Cs+ binds to an asymmetrically positioned site approximately 20-fold more tightly than does K+.  相似文献   

7.
G M Ananyev  A Murphy  Y Abe  G C Dismukes 《Biochemistry》1999,38(22):7200-7209
The size and charge density requirements for metal ion binding to the high-affinity Mn2+ site of the apo-water oxidizing complex (WOC) of spinach photosystem II (PSII) were studied by comparing the relative binding affinities of alkali metal cations, divalent metals (Mg2+, Ca2+, Mn2+, Sr2+), and the oxo-cation UO22+. Cation binding to the apo-WOC-PSII protein was measured by: (1) inhibition of the rate and yield of photoactivation, the light-induced recovery of O2 evolution by assembly of the functional Mn4Ca1Clx, core from its constituent inorganic cofactors (Mn2+, Ca2+, and Cl-); and by (2) inhibition of the PSII-mediated light-induced electron transfer from Mn2+ to an electron acceptor (DCIP). Together, these methods enable discrimination between inhibition at the high- and low-affinity Mn2+ sites and the Ca2+ site of the apo-WOC-PSII. Unexpectedly strong binding of large alkali cations (Cs+ > Rb+ > K+ > Na+ > Li+) was found to smoothly correlate with decreasing cation charge density, exhibiting one of the largest Cs+/Li+ selectivities (>/=5000) for any known chelator. Both photoactivation and electron-transfer measurements at selected Mn2+ and Ca2+ concentrations reveal that Cs+ binds to the high-affinity Mn2+ site with a slightly greater affinity (2-3-fold at pH 6.0) than Mn2+, while binding about 10(4)-fold more weakly to the Ca2+-specific site required for reassembly of functional O2 evolving centers. In contrast to Cs+, divalent cations larger than Mn2+ bind considerably more weakly to the high-affinity Mn2+ site (Mn2+ > Ca2+ > Sr2+). Their affinities correlate with the hydrolysis constant for formation of the metal hydroxide by hydrolysis of water: Me2+aq --> [MeOH]+aq + H+aq. Along with the strong stimulation of the rate of photoactivation by alkaline pH, these metal cation trends support the interpretation that [MnOH]+ is the active species that forms upon binding of Mn2+aq to apo-WOC. Further support for this interpretation is found by the unusually strong inhibition of Mn2+ photooxidation by the linear uranyl cation (UO22+). The intrinsic binding constant for [MnOH]+ to apo-WOC was determined using a thermodynamic cycle to be K = 4.0 x 10(15) M-1 (at pH 6.0), consistent with a high-affinity, preorganized, multidentate coordination site. We propose that the selectivity for binding [MnOH]+, a linear low charge-density monocation, vs symmetrical Me2+ dications is functionally important for assembly of the WOC by enabling: (1) discrimination against higher charge density alkaline earth cations (Mg2+ and Ca2+) and smaller alkali metal cations (Na+ and K+) that are present in considerably greater abundance in vivo, and thus would suppress photoactivation; and (2) higher affinity binding of the one Ca2+ ion or the remaining three Mn2+ ions via coordination to form mu-hydroxo-bridged intermediates, apo-WOC-[Mn(mu-OH)2Mn]3+ or apo-WOC-[Mn(mu-OH)Ca]3+, during subsequent assembly steps of the native Mn4Ca1Clx core. In contrast to more acidic Me2+ divalent ion inhibitors of the high-affinity Mn2+ site, like Ca2+ and Sr2+, Cs+ does not accelerate the decay of the first light-induced intermediate, IM1, formed during photoactivation (attributed to apo-WOC-[Mn(OH)2]+). The inability of Cs+ to promote decay of IM1, despite having comparable affinity as Mn2+, is consistent with its considerably weaker Lewis acidity, resulting in the reprotonation of IM1 by water becoming the rate-limiting step for decay prior to displacement of Mn2+. All four different lines of evidence provide a self-consistent picture indicating that the initial step in assembly of the WOC involves high-affinity binding of [MnOH]+.  相似文献   

8.
Complexation and phase transfer of nucleotides by gramicidin S   总被引:1,自引:0,他引:1  
E M Krauss  S I Chan 《Biochemistry》1983,22(18):4280-4291
Gramicidin S (GrS), an amphiphilic cyclosymmetric decapeptide produced by Bacillus brevis G-B and Nagano, binds nucleotides in water to yield a complex which partitions into organic solvents. The observed phase-transfer efficiencies at a given pH increase in the order AMP less than ADP less than ATP. The lipophilic complexes have well-defined stoichiometries, which were determined to be 1:1 for ADP-GrS at pH 7 and ATP-GrS at pH 3 and 1:2 for ATP-GrS at pH 7. The interaction is primarily ionic, involving coordination of the ornithine N delta H3+ groups of the peptide and the phosphoryl groups of the nucleotide, with little contribution from the nucleoside moiety. Exchange of organic and inorganic phosphates was also found to be mediated by GrS. The nucleotide complexes are sparingly soluble in water and self-associate extensively in CHCl3, most likely by cross-beta-aggregation, to yield large, ribbonlike aggregates which give rise to broad NMR resonances. Structures for the 1:1 and 1:2 complexes are proposed. In the latter, two GrS molecules envelop the nucleotide, orienting their apolar faces externally in opposite directions, while the lateral faces retain considerable polar character and direct aggregation in organic media. The 1:1 complex possesses a single apolar face and is less lipophilic. Binding constants were estimated by simulation of the extraction data. For the 1:1 complexes, K1:1 congruent to 4 X 10(4) M-1 for either ADP or ATP. Phase transfer of the ATP complex at pH 7 could be modeled either by stochastically independent binding to two noninteracting sites on the nucleotide with K1 approximately K2 approximately K1:1 or by a sequential process with K1 approximately K1:1 and K2/K1 less than 100. It is concluded that the apparent selectivity of GrS for ATP over ADP is a consequence of the greater lipophilicity and tendency to aggregate of the 1:2 complex, rather than an intrinsically higher binding affinity for triphosphates. GrS is, to our knowledge, the first peptide known to possess phase-transfer activity toward nucleotides; this is, in addition, the first molecular recognition process in which GrS is demonstrated to participate in vitro at physiologically active concentrations.  相似文献   

9.
The aggregation behavior of guanylyl-(3'-5')-guanosine, GpG, in the form of the tetramethylammonium (TMA), Li, Na, and K salts in aqueous solution has been investigated by NMR and FTIR techniques. The salts were prepared by a cation-exchange method. The ability of the cations to induce aggregate formation is TMA+ < Li+ < Na+ < K+, where TMA+ has only a weakly promoting action and K+ has a very strong effect. Three types of aggregates have been observed: (a) small aggregates which are in rapid exchange with respect to the NMR time scale; (b) intermediate-sized aggregates which are slow to exchange; (c) very large aggregates which can only be observed by FTIR. In all cases the aggregated species are held together by base stacking and guanine-guanine hydrogen bonding. A stoichiometry of 2 GpG per K+ has been determined by a 1H NMR titration of TMAGpG with KCl. Models have been proposed for the various-sized species. These include stacked dimers, stacked tetramers (similar to G-tetrads), and species in which K+ ion bridges between phosphates in separate tetramers.  相似文献   

10.
Consideration is given to the interactions of a ligand with self-associating acceptor systems for which preferential binding is an ambiguous term in that ligand-mediated self-association does not necessarily imply a greater binding constant for polymeric acceptor--even in instances where binding sites are preserved in the self-association process. This dilemma is shown to arise in situations involving the binding of ligand to monomeric and polymeric forms of an acceptor that also coexist in equilibrium with inactive isomeric states. For example, the ten-fold increase in the measured dimerization constant for prothrombin Fragment 1 in the presence of a saturating concentration of Ca2+ ion may well reflect the existence of a 12% greater binding constant for the interaction of metal ion with dimeric acceptor. However, that result, as well as the detailed form of the sigmoidal binding curve, are also reasonably described by another extreme model in which the monomeric and dimeric forms of the acceptor possess equal affinities for Ca2+ ion. Likewise, the fact that the same experimental dimerization constant applies to prothrombin and its Ca(2+)-saturated complex does not preclude the possibility that the active form of dimeric zymogen exhibits a 12% greater affinity for metal ion. Numerical simulations have established that characterization of the dimerization behaviour as a function of free ligand concentration should allow greater discrimination between such models of the interplay between calcium binding and self-association of prothrombin and Fragment 1. Finally, by illustrating the likelihood that the disparity in self-association behaviour of prothrombin and Fragment 1 merely reflects minor differences in the relative magnitudes of isomerization constants and/or binding constants for monomeric and dimeric states of the two acceptors, the present investigation serves to allay concern about the validity of employing the proteolytic fragment as a model of the intact zymogen.  相似文献   

11.
Large unitary conductance Ca2+-activated K+ channels from smooth muscle membrane were incorporated into phospholipid planar bilayers, and the blockade induced by internally and externally applied Cs+ was characterized. Internal Cs+ blockade is voltage dependent and can be explained on the basis of a Cs+ binding to a site that senses 54% of the applied voltage, with an apparent dissociation constant, Kd(0), of 70 mM. On the other hand, external Cs+ blocks the channel in micromolar amounts, and the voltage dependence of blockade is a function of Cs+ concentration. The fractional electrical distance can be as large as 1.4 at 10 mM Cs+. This last result suggests that the channel behaves as a multi-ion pore. At large negative voltages the I-V relationships in the presence of external Cs+ show an upturn, indicating relief of Cs+ block. External Cs+ blockade is relieved by increasing the internal K+ concentration, but can be enhanced by increasing the external K+. All the characteristics of external Cs+ block can be explained by a model that incorporates a "knock-on" of Cs+ by K+.  相似文献   

12.
The hydration and temperature dependencies of the 23Na+, 133Cs+, and 7Li+ quadrupolar splitting have been determined in hydrated, macroscopically oriented DNA fibers. At low water contents the quadrupolar splitting is found to decrease as the water content increases, regardless of counterion, while at high water contents the hydration dependence is reversed. The 23Na+ and 133Cs+ quadrupolar splittings decrease as the temperature increases, while the 7Li+ splitting shows the opposite behavior. At high water contents the 23Na+ and 133Cs+ splittings decrease, and then, after passing zero splitting, increase as the temperature increases. The interpretation of the temperature dependence is discussed in terms of a two-site model (free and bound ions) and a three-site model (free ions and specifically or nonspecifically bound ions). It is suggested that a three-site model is more consistent with the data for the present system. At high water contents, the temperature dependence of the 7Li+ splitting vanishes, indicating counterion condensation. The behavior of the 7Li+ splitting is confirmed by measurements on DNA fibers in equilibrium with a C2H5OD-D2O-LiCl solution. The salt dependence in this system is weak. The counterion quadrupolar splitting is seen to be very sensitive to structural transitions in double-helical DNA.  相似文献   

13.
The verapamil receptor associated with the voltage-dependent calcium channel of rabbit skeletal muscle transverse tubule membranes has the following properties. (i) This receptor is stereospecific and discriminates between the different stereoisomers of verapamil, gallopamil and diltiazem. (ii) Inorganic divalent cations inhibit the binding of [3H]verapamil to its receptor in an apparently non-competitive fashion. The rank order of potency is: Ca2+ = Mn2+ greater than Mg2+ greater than Sr2+ greater than Ba2+ much greater than Co2+ much greater than Ni2+. Ca2+ and Mn2+ have inhibition constants of 0.3 mM. Binding of [3H]verapamil is also sensitive to monovalent cations such as Cs+, K+, Li+ and Na+. The most active of these cations (Cs+ and K+) have inhibition constants in the range of 30 mM. (iii) Binding of [3H]verapamil is pH-dependent and reveals the presence on the verapamil receptor of an essential ionizable group with a pKa of 6.5. (iv) A low-affinity binding site for verapamil and for some other Ca2+ channel blockers is detected by studies of dissociation kinetics of the [3H]verapamil receptor in the presence of high concentrations of verapamil, gallopamil, bepridil and diltiazem. (v) GTP and nucleoside analogs change the properties of [3H]verapamil binding to verapamil binding sites. High-affinity binding sites seem to be transferred into low-affinity sites. Dissociation constants obtained from inhibition studies of [3H]verapamil binding are in the range of 0.1-0.3 mM for GTP, ATP and Gpp(NH)p.  相似文献   

14.
H L Casal  H H Mantsch  H Hauser 《Biochemistry》1987,26(14):4408-4416
The thermotropic phase behavior of fully hydrated Na+ and/or NH4+ salts of 1,2-dimyristoyl-sn-glycero-3-phospho-L-serine (DMPS) was determined by temperature-dependent infrared spectra. The molecular level properties and thermal phase behavior of DMPS-Li+ complexes were also characterized by infrared spectroscopy. With increasing concentrations of Li+, the infrared spectra reveal the appearance of a second, more ordered, lipid phase which shows a gel to liquid-crystal transition at significantly higher temperatures (75-95 degrees C) than the Na+ or NH4+ salts of DMPS (39 degrees C). Li+ binds to the phosphate and carboxylate groups of DMPS, resulting in the following changes: (1) water of hydration is lost from both the carboxylate and phosphate groups; (2) there are changes in the conformation of the glycerol backbone but not in the P-O ester bonds of the phosphate group which remain in the gauche-gauche conformation; and (3) the packing of the fatty acyl chains becomes more ordered. In addition, the properties of the DMPS-Ca2+ complex were studied by infrared spectroscopy. While the DMPS-Ca2+ complex is also characterized by rigidly packed, well-ordered fatty acyl chains, the mode of Ca2+ binding to the DMPS head groups differs significantly from that of Li+ binding. By comparison, with dry DMPS-Ca2+ [Casal, H. L., Mantsch, H. H., Paltauf, F., & Hauser, H. (1987) Biochim. Biophys. Acta (in press)], the phosphate group undergoes a conformational change, probably to the antiplanar-antiplanar conformation, and loses its water of hydration.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The plasma membrane of yeasts contains an H+-ATPase similar to the other cation transport ATPases of eukaryotic organisms. This enzyme has been purified and shows H+ transport in reconstituted vesicles. In the presence of Mg2+, formycin triphosphate (FTP) is hydrolyzed by the H+-ATPase and supports H+ transport. When combined with terbium ion, FTP (Tb-FTP) and ATP (Tb-ATP) are no longer hydrolyzed. Competition between Mg-ATP and Tb-FTP for ATP hydrolysis indicates that terbium-associated nucleotides bind to the catalytic site of the H+-ATPase. The fluorescent properties of the Tb-FTP complex were used to study the active site of the H+-ATPase. Fluorescence of Tb-FTP is greatly enhanced upon binding into the nucleotide site of H+-ATPase with a dissociation constant of 1 microM. Tb-ATP, Tb-ADP, and Tb-ITP are competitive inhibitors of Tb-FTP binding with Ki = 4.5, 5.0, and 6.0 microM, respectively. Binding of Tb-FTP is observed only in the presence of an excess of Tb3+ with an activation constant Ka = 25 microM for Tb3+. Analysis of the data reveals that the sites for Tb-FTP and Tb3+ binding are independent entities. In standard conditions these sites would be occupied by Mg-ATP and Mg2+, respectively. These findings suggest an important regulatory role of divalent cations on the activity of H+-ATPase. Replacement of H2O by D2O in the medium suggests the existence of two types of nucleotide binding sites differing by the hydration state of the Tb3+ ion in the bound Tb-FTP complex.  相似文献   

16.
The role of Ca2+ binding in the self-aggregation of laminin-nidogen complexes   总被引:11,自引:0,他引:11  
Laminin-nidogen complexes were found to aggregate in the presence of divalent cations in a manner dependent on ion concentration. This effect shows a selectivity for Ca2+, as half-maximal aggregation is achieved already at about 10 microM Ca2+, while Mg2+ induces aggregation at 10-fold higher ion concentrations and always to a lesser extent. When binding of Ca2+ to laminin-nidogen complexes was measured by equilibrium dialysis, a total of about 16 binding sites with dissociation constants in the range of 5-300 microM could be identified. At 50 microM Ca2+, where the aggregation is maximal, only two to three Ca2+ ions are bound to laminin-nidogen complexes, indicating that the aggregation reaction is induced by the binding of Ca2+ to a small number of sites and possibly to a single distinct site. Analysis of Ca2+ binding to various proteolytic fragments of laminin allowed the tentative localization of a high affinity binding site to a large fragment comprising two of the short arms connected by the central part of the laminin molecule.  相似文献   

17.
Environmental factors of physiological relevance such as pH, calcium, ionic strength, and temperature can affect the state of self-aggregation of surfactant protein A (SP-A). We have studied the secondary structure of different SP-A aggregates and analyzed their fluorescence characteristics. (a) We found that self-aggregation of SP-A can be Ca(2+)-dependent. The concentration of Ca(2+) needed for half-maximal self-association (K(a)(Ca)()2+) depended on the presence of salts. Thus, at low ionic strength, K(a)(Ca)()2+ was 2.3 mM, whereas at physiological ionic strength, K(a)(Ca)()2+ was 2.35 microM. Circular dichroism and fluorescence measurements of Ca(2+)-dependent SP-A aggregates indicated that those protein aggregates formed in the absence of NaCl are structurally different from those formed in its presence. (b) We found that self-aggregation of SP-A can be pH-dependent. Self-aggregation of SP-A induced by H(+) was highly influenced by the presence of salts, which reduced the extent of self-association of the protein. The presence of both salts and Ca(2+) attenuated even more the effects of acidic media on SP-A self-aggregation. (c) We found that self-aggregation of SP-A can be temperature-dependent. At 20 degrees C, SP-A underwent self-aggregation at physiological but not at low ionic strength, in the presence of EDTA. All of these aggregates were dissociated by either adding EDTA (a), increasing the pH to neutral pH (b), or increasing the temperature to 37 degrees C (c). Dissociation of Ca(2+)-induced protein aggregates at low ionic strength was accompanied by an irreversible loss of both SP-A secondary structure and SP-A-dependent lipid aggregation properties. On the other hand, temperature-dependent experiments indicated that a structurally intact collagen-like domain was required for either Ca(2+)- or Ca(2+)/Na(+)-induced SP-A self-aggregation but not for H(+)-induced protein aggregation.  相似文献   

18.
Infrared spectroscopy has been used to characterize the thermal-phase behavior of fully hydrated 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-serine (POPS) and 1,2-dioleoyl-sn-glycero-3-phospho-L-serine (DOPS) as well as their interaction with Li+ and Ca2+. The order-disorder transition of POPS-NH4+ is at 17 degrees C; in the presence of Li+ a POPS-Li+ complex is formed, and the transition temperature of this complex is 40 degrees C. DOPS-NH4+ has an order-disorder transition at -11 degrees C, and unlike POPS the addition of Li+ has no effect on the thermal behavior of DOPS-NH4+. This indicates that the binding of Li+ to DOPS is negligible or very weak. Li+ binds to the phosphate and carboxylate groups of POPS, and as a result these groups lose their water of hydration. Li+ binding induces a conformational change, probably in the glycerol backbone of POPS; however, the conformation of the two P-O ester bonds remains gauche-gauche as in POPS-NH4+. Both POPS and DOPS form crystalline complexes with Ca2+. As a result of Ca2+ binding to the phosphate, this group loses its water of hydration and there is a conformational change in the P-O ester bonds from gauche-gauche to antiplanar-antiplanar. In contrast to the POPS-Li+ complex, the carboxylate group remains hydrated in the Ca2+ complexes. Furthermore, in these PS-Ca2+ complexes a new hydrogen bond is formed between one of the ester C=O groups and probably water. Such a situation is not found in the NH4+ and Li+ salts of phosphatidylserine.  相似文献   

19.
A major site of regulation of polypeptide chain initiation is the binding of Met-tRNA to 40 S ribosomal subunits which is mediated by eukaryotic initiation factor 2 (eIF-2). The formation of ternary complex, eIF-2.GTP.Met-tRNA, is potently inhibited by GDP. Measurement of the parameters for guanine nucleotide binding to eIF-2 is critical to understanding the control of protein synthesis by fluctuations in cellular energy levels. We have compared the dissociation constants (Kd) of eIF-2.GDP and eIF-2.GTP and find that GDP has a 400-fold higher affinity for GDP than GTP. The Kd for GDP is almost an order of magnitude less than has been reported previously. The difference between the Kd values for the two nucleotides is the result of a faster rate constant for GTP release, the rate constants for binding being approximately equal. This combination of rate constants and low levels of contaminating GDP in preparations of GTP can explain the apparently unstable nature of eIF-2.GTP observed by others. Mg2+ stabilizes binary complexes slowing the rates of release of nucleotide from both eIF-2.GDP and eIF-2.GTP. The competition between GTP and GDP for binding to eIF-2.guanine nucleotide exchange factor complex has been measured. A 10-fold higher GTP concentration than GDP is required to reduce [32P] GDP binding to eIF-2.guanine nucleotide exchange factor complex by 50%. The relevance of this competition to the regulation of protein synthesis by energy levels is discussed.  相似文献   

20.
Molecular dynamics simulations of the [d(ATGCAGTCAG]2 fragment of DNA, in water and in the presence of three different counter-ions (Li+, Na+ and Cs+) are reported. Three-dimensional hydration structure and ion distribution have been calculated using spatial distribution functions for a detailed picture of local concentrations of ions and water molecules around DNA. According to the simulations, Cs+ ions bind directly to the bases in the minor groove, Na+ ions bind prevailing to the bases in the minor groove through one water molecule, whereas Li+ ions bind directly to the phosphate oxygens. The different behavior of the counter-ions is explained by specific hydration structures around the DNA and the ions. It is proposed how the observed differences in the ion binding to DNA may explain different conformational behavior of DNA. Calculated self-diffusion coefficients for the ions agree well with the available NMR data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号