首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
植物通过提高光能利用能力和光保护途径以响应环境光强的增加, 但不同植物对环境光强增加的生理响应存在差异, 从而导致植物对光环境的适应性不一致。为探讨植物对光环境变化的生理响应及其适应机制, 该文以遮阴条件下培养1年的2种杜鹃属(Rhododendron)植物比利时杜鹃(R. hybrida)和杜鹃(R. simsii)为材料, 对其由遮阴后转入全光照下培养5天时的叶片叶绿素荧光参数及其快速光曲线变化进行了比较研究, 以期从叶片吸收光能分配和光保护机制的角度探讨这2种植物对光环境变化的适应机制。结果表明: 全光照降低了喜阴植物比利时杜鹃叶片的光化学反应和热耗散能力, 且其吸收光能分配于光化学反应和调节性能量耗散部分的比例减少, 导致光系统II反应中心过量激发能积累, 造成了叶片光抑制甚至光破坏。杜鹃作为耐阴喜光植物对光环境变化具有较强的适应性, 具有较高的光化学反应、热耗散和环式电子传递能力等内在生理特性; 在遮阴和全光照两种光环境下均能维持较高的吸收光能在光化学反应和调节性能量耗散部分的分配比例, 从而保护了光合机构的正常运行, 是其全光照强光未造成叶片光抑制的原因。  相似文献   

2.
《植物生态学报》2017,41(5):570
Aims The objectives were to investigate the effects of different light intensities on photosynthetic characteristics and chlorophyll fluorescence parameters, to clarify the physiological responses and photo-protective mechanisms of Hydrangea macrophylla to changes in light regimes in view of the distribution of energy absorbed and photosynthetic characteristics.Methods Three light regimes including natural and shade (shading rate 50% and 75% of natural light) were applied to plants for 60 days. After the treatment, the gas-exchange, chlorophyll a fluorescence and photosynthesis-light curves were measured by a portable leaf gas exchange system (LI-6400).Important findings The results showed that the weak light intensity treatment reduced dark respiration rate, light compensation point and light saturation point of plant, but increased apparent quantum yield, suggesting that plants had the physiological strategy to utilize the weakening light by reducing respiration. The net photosynthetic rate, intercellular CO2 concentration, transpiration rate and water use efficiency of plants grown below 50% of natural light showed significant difference compared with natural and shading rate 75% of natural light. There were significant difference between natural and shade treatments in the maximal quantum efficiency of PSII (Fv/Fm), as indicated that it was significantly less at full light than that at 50% of natural light. Initial fluorescence intensity (Fo) of plants was higher at full light than that at 50% of natural light, suggesting that photoinhibition occurred in natural light. The non-photochemical quenching (NQP) decreased with the aggravation of shade stress, indicating that shading decreased the efficiency of photochemical reaction by reducing the fraction of incident light in photochemical energy utilization and decreased thermal dissipation through regulating energy distribution in photosystem II (PSII) in the leaves of Hydrangea macrophylla. In general, the 70% of incident light in photochemical energy utilization was distributed to thermal dissipation, 20% was distributed to non-regulated energy dissipation and 4% was distributed to effective photochemical reaction. In conclusion, responses of plants to increased irradiance are governed by strategy: to utilize a high fraction of incident light in photochemistry and regulate energy dissipation in PSII and weaken the accumulation of excess excitation energy in PSII to protect the photosynthetic apparatus in the leaves of H. macrophylla under saturated radiation.  相似文献   

3.
Seedlings of Chrysanthemum, cultivar ‘Puma Sunny’, were grown under a range of shading regimes (natural full sunlight, 55, 25, and 15% of full sunlight) for 18 days. Here, we characterized effects of varying light regimes on plant morphology, photosynthesis, chlorophyll fluorescence, anatomical traits, and chloroplast ultrastructure. We showed that leaf color was yellowish-green under full sunlight. Leaf area, internode length, and petiole length of plants were the largest under 15% irradiance. Net photosynthetic rate, water-use efficiency, PSII quantum efficiency, and starch grain were reduced with decreasing irradiance from 100 to 15%. Heavy shading resulted in the partial closure of PSII reaction centers and the CO2 assimilation was restricted. The results showed the leaves of plants were thinner under 25 and 15% irradiance with loose palisade tissue and irregularly arranged spongy mesophyll cells, while the plants grown under full sunlight showed the most compact leaf palisade parenchyma. Irradiance lesser than 25% of full sunlight reduced carbon assimilation and led to limited plant growth. Approximately 55% irradiance was suggested to be the optimal for Chrysanthemum morifolium.  相似文献   

4.
《植物生态学报》2017,41(2):196
Aims The increased atmospheric nitrogen (N) deposition due to human activity and climate change greatly causes grassland ecosystems shifting from being naturally N-limited to N-eutrophic or N-saturated, and further affecting the growth of grass species. The aims of this study are: 1) to evaluate the effects of different N addition levels on morphology and photosynthetic characteristics of Leymus chinensis; 2) to determine the critical N level to facilitate L. chinensis growth.
Methods We conducted a different N addition levels experiment in dominant species in the temperate steppe of Nei Mongol. The aboveground biomass, morphological and leaf physiological traits, pigment contents, chlorophyll a fluorescence parameters and biochemical parameters of L. chinensis were investigated.
Important findings Our results showed that aboveground biomass first increased and then decreased with the increased N, having the highest values at the 10 g N·m-2·a?1 treatment, but the 25 g N·m-2·a?1 still significantly increased the aboveground biomass relative to 0 g N·m-2·a?1. Leymus chinensis accommodate low N situation through allocating less N to carboxylation system and decreasing leaf mass per area (LMA) in order to get more light energy. Moderate N addition captured more light energy through increasing total chlorophyll (Chl) contents and decreasing the ratio of Chl a/b. Moderate N addition increased LMA, carboxylation efficiency, maximum carboxylation rate (Vcmax), maximum electron transport rate (Jmax) and decreased Jmax/Vcmax, thus allocating more N to carboxylation system to enhance carboxylation capability. Moreover, the photochemical activity of PSII was increased through higher effective quantum yield of PSII photochemistry, electron transport rate and photochemical quenching coefficient. Excessive N addition had negative effects on physiological variables of L. chinensis due to lower carboxylation capability and photochemical activity of PSII, further leading to decreased net photosynthetic rate, whereas increased non-photochemical quenching coefficient and carotenoids played the role in the dissipation of excess excitation energy. Overall, moderate N addition facilitated the photosynthetic characteristics of dominant species, but excessive N addition inhibited photosynthetic characteristics. The most appropriate N addition for the growth of L. chinensis was 5-10 g N·m-2·a?1 in the temperate steppe of Nei Mongol, China.  相似文献   

5.
《植物生态学报》2017,41(9):985
Aims The correlation between specific leaf area (SLA) and thermal dissipation reflects not only the accumulation and dissipation of plant photosynthesis, but also plants’ adaptation to their habitats and changing environment. The objective of this study is to examine the correlation between SLA and thermal dissipation of reed (Phragmites australis) under different soil moisture conditions and salt contents.Methods Our study site was located in the National Wetland Park in Qinwangchuan, Gansu Province, China. Our sampling site extends from the edge to the central of a salt marsh where the reed was the single dominant species. The study site was divided into three zones based on the distance from the water. Within each zone, six 2 m × 2 m sampling plots were randomly located to select six reed individuals in each plot (total = 18). Vegetation height, aboveground biomass, soil moisture, and soil electrical conductivity (EC) were measured, with the six reed individuals taken to the laboratory to measure leaf thickness. Leaf net photosynthetic rate (Pn), transpiration rate (Tr), and other parameters of the reeds were also measured in each plot prior to harvesting. Quantitative measures of chlorophyll fluorescence were taken after 30-min dark adaptation. Quadrat survey method was used to model the empirical relationship between the transpiration rate and leaf characteristics.Important findings Vegetation height and aboveground biomass increased with soil moisture content, but EC and photosynthetically active radiation decreased. Leaf area, Tr and Pn increased along the gradient, leaf thickness showed decreasing, but the increasing trend of SLA switched to a decreasing trend, while leaf dry mass presented an opposite trend. From plot I to III, the quantum yield of regulated energy dissipation (Y(NPQ)) and non-photochemical quenching decreased, the actual photochemical efficiency of PSII and photochemical quenching increased, and quantum yield of non-regulated energy dissipation increased before decreasing. There appeared a highly significant negative correlation (p < 0.01) between SLA and Y(NPQ) at plot I and III, and a less significant negative correlation (p < 0.05) at plot II. Along the soil moisture gradient, reed seemed using light effectively by changing leaf thermal dissipation through adjusting their leaf size and SLA—A potential self-protection mechanism in light of adapting the habitat.  相似文献   

6.
低夜温后不同光强对榕树叶片PSⅡ功能和光能分配的影响   总被引:4,自引:0,他引:4  
研究了自然低夜温后全光照与遮荫对榕树叶片PSⅡ功能及光能分配的影响。结果表明低夜温后全光照条件下叶片吸收光能分配于光化学反应部分减少,而热耗散部分和反应中心过剩光能则增加,从而导致了PSⅡ功能的下降,遮荫条件下光能分配于光化学反应的程度增加.虽然用于热耗散的比例下降了,但反应中心过剩光能相对较少,从而有利于PSⅡ功能的恢复。  相似文献   

7.
弱光胁迫影响夏玉米光合效率的生理机制初探   总被引:7,自引:0,他引:7       下载免费PDF全文
大田条件下, 以普通夏玉米(Zea mays) ‘泰玉2号’为材料, 于授粉后1-20天遮光55% (+S), 以大田自然光照条件下生长的玉米作为对照(-S), 研究了遮光及恢复过程中玉米植株的光合性能、叶绿体荧光参数、叶黄素循环以及光能分配的变化, 初步揭示夏玉米开花后弱光条件下光适应的生理机制, 为玉米高产稳产提供理论依据。结果表明, 遮光后玉米穗位叶叶绿素含量及可溶性蛋白含量均减少, RuBP羧化酶和PEP羧化酶活性显著降低, 导致穗位叶净光合速率(Pn)迅速下降, 光饱和点也明显降低; 恢复初期Pn迅速升高, 光合关键酶活性有所增强。遮光后植株的最大光化学效率(Fv/Fm)、实际光化学效率(ФPSII)显著降低, 非光化学淬灭(NPQ)则显著升高, 而恢复初期植株穗位叶ФPSII有所升高, 表明突然暴露在自然光下的光合电子传递速率明显加快, 这与其光合速率及光合酶活性的趋势保持一致; 遮光处理对穗位叶叶黄素循环库的大小(紫黄质+花药黄质+玉米黄质(V + A + Z))影响不显著, 但使叶黄素循环的脱环氧化状态(A + Z)/(V + A + Z)增加; 遮光后植株分配于光化学反应的光能明显减少, 天线耗散光能比率显著增加, 恢复过程中植株主要以过剩非光化学反应的形式耗散过剩的光能。遮光后及恢复初期, 玉米植株的PSII原初光化学活性明显下降, 限制了光合碳代谢的电子供应从而抑制了光合作用, 主要依赖叶黄素循环途径进行能量耗散, 而在光照转换后遮光的玉米叶片在适应自然光过程中的光保护机制不断完善, 光合能力逐渐得到 恢复。  相似文献   

8.
High solar radiation in the tropics is known to cause transient reduction in photosystem II (PSII) efficiency and CO(2) assimilation in sun-exposed leaves, but little is known how these responses affect the actual growth performance of tropical plants. The present study addresses this question. Seedlings of five woody neotropical forest species were cultivated under full sunlight and shaded conditions. In full sunlight, strong photoinhibition of PSII at midday was documented for the late-successional tree species Ormosia macrocalyx and Tetragastris panamensis and the understory/forest gap species, Piper reticulatum. In leaves of O. macrocalyx, PSII inhibition was accompanied by substantial midday depression of net CO(2) assimilation. Leaves of all species had increased pools of violaxanthin-cycle pigments. Other features of photoacclimation, such as increased Chl a/b ratio and contents of lutein, β-carotene and tocopherol varied. High light caused strong increase of tocopherol in leaves of T. panamensis and another late-successional species, Virola surinamensis. O. macrocalyx had low contents of tocopherol and UV-absorbing substances. Under full sunlight, biomass accumulation was not reduced in seedlings of T. panamensis, P. reticulatum, and V. surinamensis, but O. macrocalyx exhibited substantial growth inhibition. In the highly shade-tolerant understory species Psychotria marginata, full sunlight caused strongly reduced growth of most individuals. However, some plants showed relatively high growth rates under full sun approaching those of seedlings at 40?% ambient irradiance. It is concluded that shade-tolerant tropical tree seedlings can achieve efficient photoacclimation and high growth rates in full sunlight.  相似文献   

9.
Here, we tested two hypotheses: shading increases light interception efficiency (LIE) of broadleaved tree seedlings, and shade-tolerant species exhibit larger LIEs than do shade-intolerant ones. The impact of seedling size was taken into account to detect potential size-independent effects on LIE. LIE was defined as the ratio of mean light intercepted by leaves to light intercepted by a horizontal surface of equal area. Seedlings from five species differing in shade tolerance (Acer saccharum, Betula alleghaniensis, A. pseudoplatanus, B. pendula, Fagus sylvatica) were grown under neutral shading nets providing 36, 16 and 4% of external irradiance. Seedlings (1- and 2-year-old) were three-dimensionally digitized, allowing calculation of LIE. Shading induced dramatic reduction in total leaf area, which was lowest in shade-tolerant species in all irradiance regimes. Irradiance reduced LIE through increasing leaf overlap with increasing leaf area. There was very little evidence of significant size-independent plasticity of LIE. No relationship was found between the known shade tolerance of species and LIE at equivalent size and irradiance.  相似文献   

10.
《植物生态学报》2016,40(9):942
The spatial photosynthetic heterogeneity within leaves is an important prerequisite for the studies on the photosynthetic model, the mechanism(s) of photoinhibition and light protection, etc. However, currently the in vivo measurement of the spatial photosynthetic heterogeneity within leaves is difficult. The present study improved the device assembled by Vogelmann & Evans (2002), thereby acquired the photosystem II (PSII) maximum photochemical efficiency (Fv/Fm) images within leaves. Finally, these images were processed and data of Fv/Fm and its spatial variations could be obtained, with the aid of MATLAB software. Based on the innovative technique, an investigation of the effects of strong light on the Fv/Fm and its spatial heterogeneity within leaves has been carried out. It was found that Fv/Fm within leaves was not homogonous. Strong light led to a general decrease of Fv/Fm (PSII photoinhibition) across leaf section, and the palisade tissue close to the epidermis layer had high tolerance to photoinhibition. Compared with control, short-term photoinhibition caused a larger spatial variation of Fv/Fm within leaves, which may be related to the chloroplast-avoidance response induced by high-fluence. On the contrary, long-term light inhibition led to a smaller spatial variation of Fv/Fm within leaves, indicating such mechanism is no longer effective. Compared to other types of chlorophyll fluoremeter, the device in the present study can in vivo obtain the panoramic picture of Fv/Fm within leaves, providing a powerful tool for the studies on the mechanism(s) attributed to the spatial heterogeneity of photosynthetic capacity of leaf, which is critical for the understanding on several hot spots in the research field of photosynthesis.  相似文献   

11.
NaCl处理下两种引进红树的光合及抗氧化防御能力   总被引:1,自引:0,他引:1       下载免费PDF全文
在长期盐胁迫(28天, NaCl浓度从100 mmol·L-1升至400 mmol·L-1)下, 比较研究了引进的无瓣海桑(Sonneratia apetala)和拉关木(Laguncularia racemosa)幼苗叶片的气体交换、叶绿素含量、最大光化学效率(Fv/Fm)、O2-· 产生速率以及抗氧化酶的活性, 探讨了两种红树幼苗光合、抗氧化防御能力的差异与耐盐性的关系。结果显示: NaCl处理没有明显地影响两种红树幼苗的生长, 表明盐生植物对盐环境的适应性, 但两种红树的生理反应对NaCl处理存在较大的差异。在实验的第28天(苗木的NaCl累计处理浓度递增到400 mmol·L-1)时, 与对照相比, 无瓣海桑叶片的净光合速率、水分利用效率增加, 气孔导度、蒸腾速率和胞间CO2浓度/大气CO2浓度(Ci/Ca)相应降低; 然而, 拉关木叶的净光合速率、蒸腾速率和水分利用效率均回落到对照的水平, 而气孔导度和Ci/Ca均增加, 表明同样的NaCl浓度处理对拉关木叶的净光合速率影响大于无瓣海桑。在NaCl处理期间, 无瓣海桑Fv/Fm一直保持在0.8以上, 而拉关木的Fv/Fm为0.75以下, 说明无瓣海桑具有高于拉关木的潜在最大光合能力。在实验的第7天(NaCl浓度为100 mmol·L-1)和14天(苗木的NaCl累计处理浓度递增到200 mmol·L-1)时, 两种红树O2-· 产生速率迅速增加, 在实验的第28天(苗木的NaCl累计处理浓度递增到400 mmol·L-1)时, 无瓣海桑O2-· 产生速率是对照的5.3倍, 差异极显著, 此时, 拉关木叶中O2-· 产生速率已降低到低于对照的水平。盐处理诱导了两种红树叶中抗氧化酶(超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、抗坏血酸过氧化物酶(APX)、谷胱甘肽还原酶(GR)、过氧化物酶(POD))活性增加, 但拉关木增加的幅度大于无瓣海桑, 表明拉关木能响应盐胁迫并上调抗氧化酶活性, 降低盐诱导的膜脂过氧化, 提高耐盐的能力, 无瓣海桑通过提高水分利用效率来保持体内的水分, 同时, 保持PSII的最大光化学量子产量, 使得无瓣海桑在高盐处理时仍能保持高于对照水平的光合速率。  相似文献   

12.
不同生态习性热带雨林树种的幼苗对光能的利用与耗散   总被引:10,自引:2,他引:8  
研究了生长于100%、25%和8%光照条件下的热带雨林先锋树种团花、演替顶极阶段的冠层树种绒毛番龙眼和中下层树种滇南风吹楠幼苗的光合能力及光能分配特性对光强的响应。与绒毛番龙眼和滇南风吹楠相比,团花具有较高的最大光合速率和最大电子传递速率,从光能分配对光强的响应曲线可以看出,随着光强的增加,3个树种幼苗叶片吸收的光能分配到光化学反应的比例减少,分配到热耗散的比例增加,光能在光化学反应与热耗散之间的分配呈显著负相关,与其它两个种相比,100%光下的团花幼苗将较多的光能分配到光化学反应中,热耗散较弱且未达到饱和。过剩光能少,没有引起长期光抑制,绒毛番龙眼和滇南风吹楠将叶片吸收的较多光能分配到热耗散中,但生长于100%光下的幼苗过剩光能仍然较多,导致幼苗遭受长期光抑制,结果表明,不同生态习性热带雨林树种幼苗更新对光环境的要求与这些幼苗对光能的利用和耗散特性密切相关。  相似文献   

13.
Foliage construction cost (glucose requirement for formation of a unit foliar biomass, G , kg glu kg−1), chemical composition and morphology were examined along a light gradient across the canopies in five deciduous species, which ranked according to increasing shade-tolerance as Populus tremula < Fraxinus excelsior < Tilia cordata = Corylus avellana < Fagus sylvatica . Light conditions in the canopy were estimated by a hemispheric photographic technique, allowing ranking of sample locations according to long-term light input incident to the sampled leaves (relative irradiance). G and foliage carbon concentration increased with increasing relative irradiance in F. excelsior , T. cordata and C. avellana , but wereindependent of irradiance in F. sylvatica and P. tremula . However, if G of non-structural-carbohydrate-free dry mass was considered, it also increased with increasing relative irradiance in P. tremula . A positive correlation between the concentration of carbon-rich lignin and irradiance, probably a result of the acclimation to greater water stress at higher light, was the major reason for the light-dependence of G . Lignin concentrations were highest in more shade-tolerant species, resulting in greatest carbon concentrations in these species. Since carbon concentration and G are directly linked, the leaves of shade-tolerant species were also more expensive to construct. As the result of these effects, G increased faster with increasing leaf dry mass per area which was mainly determined by relative irradiance, in shade-tolerators. Given that shade-tolerant species had lower leaf dry mass per area at common irradiance and that this saturated at lower relative irradiance than leaf dry mass per area in the intolerant species, it was concluded that enhanced energy requirements for foliage construction might constrain species morphological plasticity and the upper limit of leaf dry mass per area attainable at high light.  相似文献   

14.
遮阴对闽楠叶绿素含量和光合特性的影响   总被引:1,自引:0,他引:1  
为探讨闽楠对不同光环境的光合适应机制,以2年生闽楠幼苗为材料,设置3个光照处理(全光照、遮光率50%和遮光率78%),适应6个月后,测定其叶绿素含量、气体交换和叶绿素荧光同步数据,研究不同光环境处理对闽楠叶片叶绿素含量、叶绿素荧光参数和光合特性的影响.结果表明: 3种光照处理下,闽楠叶片叶绿素a、叶绿素b、叶绿素(a+b)和类胡萝卜素含量大小次序为78%遮光率>50%遮光率>全光照,但不同光照处理对闽楠叶绿素a/b值没有显著影响.遮阴条件下,闽楠叶片光补偿点(LCP)降低,光饱和点(LSP)和表观量子效率(AQY)升高,说明遮阴条件下闽楠叶片对弱光和强光的利用能力均有所提高;最大净光合速率(Pn max)、光下暗呼吸速率(Rd)和最大电子传递速率(Jmax)均增大.在不同处理间,闽楠叶片净光合速率(Pn)、CO2气孔导度(gsc)、胞间CO2浓度(Ci)和叶肉导度(gm)均存在显著差异.Pngm的大小顺序为: 78%遮光率>50%遮光率>全光照.78%遮光率处理下gsc显著大于全光照.50%遮光率条件和78%遮光率条件下Ci均显著小于全光照.78%遮光率条件下PSⅡ实际光量子产量(Fv′/Fm′)、PSⅡ光化学效率(ΦPSⅡ)和电子传递速率(J)均显著大于50%遮光率条件和全光照.由此可知,在遮阴条件下闽楠可以通过增加叶绿素含量、AQY、Jgscgm来增大光合能力.  相似文献   

15.
In the pursuit of knowledge on the biological behavior of Brazilian Atlantic Forest tree species, this study evaluated the susceptibility of the light-demanding species, Schinus terebinthifolia Raddi., Pseudobombax grandiflorum (Cav.) A. Robyns and Joannesia princeps Vell., and of the shade-tolerant species, Hymenaea courbaril L. var. stilbocarpa and Lecythis pisonis Camb, to photoinhibition and acclimation capacity. These species were first cultivated under two irradiance conditions, I20 (20% direct sunlight radiation) and I100 (all-sky or direct sunlight) and then transferred from I20 to I100. The effects of the sudden increase in light radiation intensity on photosynthetic activity were then evaluated through chlorophyll (Chl) fluorescence imaging, HPLC xanthophylls analysis, and cell membrane lipid peroxidation measurements. Light-demanding species were found to present a higher photochemical efficiency and higher acclimation capacity under high light irradiance than shade-tolerant species. The higher photoinhibition tolerance observed in light-demanding species was associated to their higher capacity for photochemical dissipation and dissipation of excess excitation energy via the xanthophyll cycle, leading to a lower ROS generation. The obtained results suggested that a knowledge of acclimation capacity, by means of Chl fluorescence imaging yields, is a useful indicator of species successional grouping.  相似文献   

16.
《植物生态学报》2017,41(4):480
Aims Populus deltoides is an important plantation tree species in the middle and lower reaches of the Yangtze River and in Huai River Plain. The extensively cultivated varieties are consisted of both females and males of P. deltoides. The objective of this paper was to characterize the difference in cadmium (Cd) tolerance between the sexes and the effects of symbiosis with Rhizophagus intraradices on their Cd tolerance.
Methods The experiment was carried out under semi-controlled conditions in a natural light greenhouse, protected from rain. Rhizophagus intraradices was inoculated on roots of both females and males when transplanting to a sand culture substrate. After one month, half of cuttings were exposed to Cd pollution (10 mg·kg-1). All cuttings were irrigated with sterile water to avoid infection by other microorganism. About three months later, the gas exchange rate, net photosynthesis rate (Pn)-intercellular CO2 concentration (Ci) curve, chlorophyll fluorescence, osmotic adjustment and phytohormone content of both females and males of P. deltoides were measured.
Important findings Our main results are as follows: (1) when compared to the controls, decreases in Pn, stomatal conductance, Ci, transpiration rate, maximum photochemical efficiency of photosystem II (PSII), effective quantum yield of PSII, photo-chemical quenching coefficient, maximum rate of carboxylation of Rubisco, photosynthetically active radiation-saturated rate of electron transport and rate of triose phosphate utilization to a different degree in both sexes of P. deltoides under Cd pollution were found, and females exhibited a greater decrease in such parameters than males. Rhizophagus intraradices inoculation mitigated the toxic effect of Cd on such parameters to a different degree in females, not in males. (2) Under Cd pollution, there was an increase in proline content in both sexes when compared to the controls. A further increase in proline content occurred in females, not in males, when inoculated with R. intraradices. (3) When compared to the controls, there was a decrease in indoleacetic acid, but an increase in abscisic acid in leaves of both sexes when exposed to Cd pollution. The amplitude changed in both phytohormones in females was greater than that in males. Rhizophagus intraradices inoculation was helpful for recovery of phytohormone balance in females, which was not observed in males. Therefore, our results indicated that (1) there were a greater negative effect exerted by Cd pollution on gas exchange rate, carbon fixation capacity and phytohormone balance and a more impairment of photosynthetic apparatus in females when compared to males, showing a less tolerance to stress conditions in females; (2) Rhizophagus intraradices inoculation could enhance the osmotic adjustment capacity in females, thus mitigate the negative effect of Cd stress on ability of carbon fixation and phytohormone balance in females. However, such positive effects derived from R. intraradices symbiosis were not observed in males.  相似文献   

17.
通过研究生长于不同环境光强(29.8%、9.6%、5.0%、1.4%和0.2%全日照)下的2年生三七光合作用对光照强度、CO2浓度、模拟光斑的响应及叶绿素荧光和能量分配特征,研究光照强度对阴生植物三七光合特征及光适应的影响.结果表明: 29.8%全日照(FL)下三七表观量子效率(AQY)、光系统Ⅱ(PSⅡ)潜在的量子效率(Fv/Fm)、PSⅡ潜在活性(Fv/Fo)较低,最大净光合速率(Pn max)、最大电子传递速率(Jmax)、实际光化学量子效率(F/Fm′)、电子传递速率(ETR)、光化学淬灭系数(qP)和光能分配到光化学途径的比例(ΦPSⅡ)较高,但非光化学淬灭系数(NPQ)并不是最高.9.6% FL和5.0% FL处理Pn max、光补偿点(LCP)、光饱和点(LSP)、暗呼吸速率(Rd)无显著差异,但它们的AQY、羧化效率(CE)、最大羧化速率(Vc max)、Fv/FmFv/Fo较高,NPQ也相对较高.生长环境光强低于5.0%FL时,Pn max、CE、Vc maxJmax、ETR、F/Fm′、qP、NPQ和ΦPSⅡ均随生长环境光强的降低呈下降趋势,而捕获的光能分配到荧光耗散的比例(Φf,D)逐渐增加.在500 μmol·m-2·s-1光斑诱导下,生长环境光强大于5.0%FL下的三七ΦPSⅡ随诱导时间的延长缓慢增加,1.4%FL和0.2%FL下ΦPSⅡ迅速达到饱和,且Φf,D迅速增加.三七在受到长期高光胁迫的环境下,通过适度的PSⅡ光抑制和保持较高光合电子传递速率,从而提高光能的利用来保护光合机构遭受不可修复的氧化伤害;适度的遮荫能够有效保持较高的非光化学热耗散能力;但过度遮荫会使其光合能力明显降低,捕获的光能更多地通过非光化学的途径耗散,且在接受到高光照射时较容易引发光氧化伤害.  相似文献   

18.
盐沼湿地植物叶片功能性状对淹水的响应分析, 有助于探究植物叶片可塑性机制与光合生理特征间的内在关联性, 对深入理解盐沼湿地植物的生境抗逆性策略具有重要意义。根据小苏干湖湖水泛滥区静水持留时间长短分别设置: 轻度淹水区(静水持留30-90天)、中度淹水区(静水持留90-150天)、重度淹水区(静水持留150-210天) 3个试验样地, 以盐地风毛菊(Saussurea salsa)为研究对象, 研究了小苏干湖盐沼湿地盐地风毛菊叶片功能性状对淹水的响应。结果表明: 随着静水持留时间的增加, 轻度淹水区盐地风毛菊形态上采用小比叶面积(SLA)的肉质化小叶模式, 光合生理上具有高实际光合效率(Y(II))和低调节性能量耗散的量子产额(Y(NPQ))的协同变异; 重度淹水区盐地风毛菊形态和光合生理上则采用与轻度淹水区完全相反的协同变异策略; 在3个样地中, SLAY(II)、光化学淬灭(QP)和Y(NPQ)间均呈极显著相关关系; 叶绿素a含量和叶绿素b含量与调节性能量耗散的量子产额(Y(NO))均呈显著正相关关系。小苏干湖湖水泛滥区静水时空演变格局影响下, 盐地风毛菊种群通过改变叶面积、叶厚度和SLA等叶片形态特征, 适时调整叶片Y(II)和Y(NPQ)等光合生理特征, 实现植物叶片光合碳同化产物的收支平衡, 表现出对水盐异质性环境较强的耐受性, 反映了盐沼湿地植物在极端生存环境下的叶片可塑性和抗逆性机制。  相似文献   

19.
热带雨林三种树苗叶片光合机构对光强的适应   总被引:16,自引:10,他引:16  
对生长在不同光强(自然日光的8%,25%,50%)下西双版纳热带雨林3种木本植物团花(Anthocephalus chinensis)、玉蕊(Barringtonia pendala)和藤黄(Garrcinia hanburyi)幼苗光合机构的研究表明,随着生长光强的升高,植物叶片的光饱和点、补偿点、净光合速率和非光化学淬灭系数(NPQ)升高,而表现量子效率(AQY)、有效光化学量子产量(Fv/Fm)、光化学淬灭系数(qP)下降.在抗氧化系统中,超氧化物歧化酶(SOD)、抗坏血酸过氧化酶(APX)活性随着光强的升高而升高,而过氢化物酶(CAT)活性与生长光强的变化不一致.抗坏血酸(AsA)含量随着光强的升高而急剧上升。最能反映PFD的变化.可以认为,除与叶黄素循环有关的热耗散增大之外,植物叶片抗氧化系统的加强也是响应强光的一种保护措施.  相似文献   

20.
The effect of anthocyanic cells of the epidermal layer was investigated on photosynthetic activity of the higher plant Tradescantia pallida. To determine the possible indirect role of anthocyanin in photosynthesis, analysis was done on intact leaves and leaves where anthocyanic epidermal layer was removed. Energy dissipation processes related to Photosystem II (PSII) and Photosystem I (PSI) activity was done using simultaneously Chlorophyll a (Chl a) fluorescence and P700 transmittance signals change. In anthocyanic epidermal-less leaves, PSII photochemical activity was more decreased in dependence to increasing light irradiance exposure. We found that photoinhibition of PSII decreased PSI activity by reducing the electron flow toward PSI, especially under high light intensities. Under those conditions, it resulted in the accumulation of oxidized PSI reaction centers, which was stronger in leaves where the anthocyanic epidermal layer was removed. In conclusion, our results showed that the anthocyanic epidermal layer had a photoprotective effect only on the PSII and not on the PSI of T. pallida leaves, supporting the role of anthocyanin pigments in the regulation of photosynthesis for excess absorbed light irradiance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号