首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以湖南会同地区26年生杉木(Cunninghamia lanceolata)人工林为研究对象, 探讨剔除林下植被对土壤呼吸和微生物群落结构的影响。2012年6月将林下植被剔除后, 2012年7月-2014年7月每月测定一次土壤呼吸速率、5 cm土壤温度和含水量, 并分别于2013年7月和2014年7月测定了土壤微生物群落结构和土壤养分数据。研究结果表明: 杉木人工林土壤呼吸具有明显的季节变化规律, 且与5 cm深处的土壤温度呈极显著的正相关关系。林下植被剔除两年内土壤呼吸平均下降了32.8%, 2012年7月-2013年6月下降了42.9%, 2013年7月-2014年7月下降了22.2%。根据土壤呼吸与温度拟合的指数方程所计算出的土壤呼吸的温度敏感性Q10值在对照区为2.10, 林下植被剔除区为1.87, 说明在杉木人工林系统中林下植被剔除2年降低了土壤呼吸的温度敏感性。此外, 林下植被剔除也改变了土壤微生物群落结构。林下植被剔除1年后, 土壤细菌的浓度没有发生改变, 但真菌的浓度降低, 导致真菌与细菌的浓度比值下降。此外, 革兰氏阳性细菌(G+)的浓度及其与革兰氏阴性菌(G-)的比值升高。林下植被剔除2年后, G+浓度和G+与G-的浓度比值降低。该研究表明林下植被剔除可以降低土壤呼吸, 从而减少土壤向大气中释放碳; 同时可改变土壤微生物群落结构, 而且其效应受作用时间的影响。  相似文献   

2.
土壤微生物是陆地生态系统重要的分解者和地上-地下相互作用的纽带。本文以亚热带杉木(Cunninghamia lanceolateata)人工林为对象, 通过模拟林冠层氮沉降和林下灌草去除, 设置4种处理, 包括: 对照(CK)、灌草去除(UR)、氮沉降(N)和氮沉降加灌草去除(N × UR)的野外控制实验, 研究土壤微生物群落结构的响应。本实验分别于2016年4月(春季)和10月(秋季)采集0-10 cm层土壤样品, 运用磷脂脂肪酸法(PLFAs)分析土壤微生物群落结构。结果表明: (1) 10月份土壤微生物总PLFAs量及其他类群土壤微生物PLFAs量显著高于4月份(P < 0.05), 真菌/细菌比值没有显著差异。土壤微生物PLFAs中细菌占优势, 其次为真菌, 放线菌的占比最小; (2)相比CK处理, UR处理下土壤微生物总PLFAs量、细菌PLFAs量、革兰氏阴性菌PLFAs量和放线菌PLFAs量有增加趋势, 但未达到显著差异水平(P > 0.05); (3)相对CK, UR、N和N × UR处理降低了4月份土壤微生物多样性(H°)和均匀度指数(J), 但提高了10月份土壤微生物多样性指数; (4)冗余分析表明, 土壤硝态氮和总磷含量与土壤微生物群落之间呈现显著相关。本研究表明土壤微生物PLFAs在各处理下都表现出明显的季节动态; 短期内林下灌草去除对土壤微生物PLFAs影响表现出一定的促进作用, 氮沉降对土壤微生物群落影响还不甚明显, 需要长期的监测研究来评估两者及其交互作用对土壤微生物群落及其功能的影响。  相似文献   

3.
杉木人工林土壤微生物群落结构特征   总被引:10,自引:0,他引:10  
采用氯仿熏蒸法、稀释平板法和磷脂脂肪酸(phospholipid fatty acid,PLFA)方法,分析了常绿阔叶林转变成杉木人工林后土壤微生物种群数量和群落结构的变化特征.结果表明:常绿阔叶林转变为杉木人工林后,林地土壤的微生物生物量碳、可培养细菌和放线菌数降低.杉木人工林地总PLFAs、细菌PLFAs、真菌PLFAs比常绿阔叶林分别降低了49.4%、52.4%和46.6%,革兰氏阳性和阴性细菌PLFAs远低于常绿阔叶林.杉木人工林根际土壤微生物生物量碳、可培养细菌和放线菌数显著高于杉木人工林林地土壤,根际土壤中总PLFAs、细菌PLFAs、革兰氏阳性和阴性细菌PLFAs的含量也高于林地土壤,但真菌PLFAs和细菌PLFAs之比却低于林地土壤.对土壤微生物群落结构进行主成分分析发现,第1主成分和第2主成分共解释了土壤微生物群落结构变异的78.2%.表明常绿阔叶林与杉木人工林土壤的微生物群落结构间存在差异.  相似文献   

4.
中亚热带地区米槠天然林土壤微生物群落结构的多样性   总被引:1,自引:0,他引:1  
为了解土壤微生物群落的结构,采用磷脂脂肪酸方法对武夷山和建瓯的米槠(Castanopsis carlesii)天然林土壤微生物群落的结构多样性进行了研究。结果表明,两地米槠天然林的土壤微生物群落组成十分丰富,多样性指数、丰富度指数和均匀度指数分别为2.92~3.01、25.84~28.23 和0.88~0.90。0~10 cm土层的磷脂脂肪酸总量、细菌特征脂肪酸、真菌特征脂肪酸、放线菌特征脂肪酸、革兰氏阳性菌和阴性菌特征脂肪酸含量均高于10~20 cm土层的,且建瓯万木林自然保护区的高于武夷山国家级自然保护区。10~20 cm土层的革兰氏阳性菌/革兰氏阴性菌高于0~10 cm土层的;细菌特征脂肪酸含量显著高于真菌,表明细菌在土壤微生物群落结构中处于优势地位。主成分分析表明,土壤微生物群落结构的差异主要是由采样地点的不同引起。  相似文献   

5.
本研究以中亚热带地区广泛分布的毛竹林为对象,采用随机区组实验设计,分析了林下植物剔除对毛竹林土壤微生物群落结构和土壤理化特性的影响,探讨林下植物对毛竹林土壤微生物群落结构的调控机制。结果表明: 林下植物剔除对土壤理化特性产生显著影响,主要表现为土壤全氮、 硝态氮和有效磷含量增加,而土壤铵态氮、全磷含量及土壤pH值降低。此外,林下植物剔除显著降低了总微生物和细菌(B)的PLFAs,增加了真菌(F)PLFAs,从而增加了F/B值。冗余分析表明,林下植物剔除驱动下的土壤pH值降低是土壤真菌含量增加的主要原因;而全磷含量及pH值的降低是土壤细菌含量显著降低的主要原因,其中i14:0、i15:0及i16:0含量的降低主导了细菌总量的降低。毛竹林剔除林下植物降低了土壤微生物生物量,使微生物群落结构由细菌为主导向真菌为主导转移,可能降低微生物的分解功能。建议在发展毛竹人工林过程中保留林下植物。  相似文献   

6.
为揭示土壤养分和细菌群落对林下植被调控的响应机制, 调查了浙江开化3种林分密度(高密度(KH)、中密度(KM)和低密度(KL))的17年生杉木人工林林下植被和生物量, 测定土壤理化性质, 并基于16S rDNA高通量测序技术分析细菌群落结构变化。结果表明, 3种密度的杉木林下植被地上部分总生物量为0.10-2.10 t·hm-2, 且优势植物物种差异显著。理化性质测定分析发现, 高密度与低密度林分的土壤pH、有效磷含量差异显著。相关性分析表明, 土壤pH与林下植被中草本、灌木生物量及总生物量均呈显著正相关关系, 土壤有机质含量与灌木植被生物量及林下植被总生物量呈显著正相关关系, 速效钾含量与灌木植被生物量呈显著正相关关系。土壤微生物群落结构分析可知, 3种密度杉木林地土壤中酸杆菌门、变形菌门、放线菌门和绿弯菌门为优势菌群, 总相对丰度占比超过80%。冗余分析(RDA)表明土壤pH、碱解氮、有效磷和速效钾含量是土壤细菌群落结构变化的关键影响因素。酸杆菌门的优势亚群为Gp2、Gp1、Gp3和Gp6, 占酸杆菌群的51.32%-57.38%, 且随林分密度降低, 林下植被增多, Gp1占比增大, Gp2和Gp6占比下降; Gp6相对丰度与pH呈极显著负相关关系。可见, 杉木纯林经营中适度降低林分密度有利于林下植被生长和良好细菌群落结构保持, 有利于维持杉木林地土壤肥力, 实现可持续经营。  相似文献   

7.
利用磷脂脂肪酸(PLFA)生物标记法分析了中亚热带地区罗浮栲天然林和相邻的杉木人工林土壤微生物群落结构特点.结果表明: 两种植被类型的磷脂脂肪酸总量、细菌特征脂肪酸、真菌特征脂肪酸、放线菌特征脂肪酸、革兰氏阳性菌和革兰氏阴性菌特征脂肪酸含量均为0~10 cm高于10~20 cm土层,罗浮栲天然林高于杉木人工林.在两种植被类型的两个土层中,细菌PLFAs含量均显著高于真菌PLFAs含量.两种植被类型中,细菌PLFAs含量约占PLFAs总量的44%~52%,而真菌仅占6%~8%,表明细菌在该地区两种植被类型土壤中处于优势地位.主成分分析表明,土壤微生物群落结构差异主要由植被类型差异引起,土层深度的影响相对较小.相关分析显示,革兰氏阴性菌、革兰氏阳性菌以及细菌的PLFAs含量与pH呈显著负相关,与含水量呈显著正相关;土壤微生物主要类群PLFAs含量与总氮、有机碳、C/N和铵态氮均呈显著正相关.  相似文献   

8.
《植物生态学报》2021,44(12):1285
为了探讨人工林内优势乔木和林下灌草根际土壤氮矿化特征, 明确乔灌草根际土壤氮转化差异, 该研究以江西泰和千烟洲站区典型人工杉木(Cunninghamia lanceolata)、马尾松(Pinus massoniana)和湿地松(Pinus elliottii)林为对象, 在植被生长季初期(4月)和旺盛期(7月)分析3种人工林内乔木、优势灌木(檵木(Loropetalum chinense)、杨桐(Adinandra millettii)、格药柃(Eurya muricata))和草本(狗脊蕨(Woodwardia japonica)、暗鳞鳞毛蕨(Dryopteris atrata))根际土壤的净氮矿化速率、土壤化学性质及土壤微生物特征。结果发现: 1)物种、林型和取样季节显著影响了根际土壤净氮矿化速率(Nmin)、净铵化速率(Namm)和净硝化速率(Nnit)。马尾松和湿地松林内林下灌草根际土壤净氮矿化的季节敏感性高于乔木: 4月乔木根际土壤NminNamm显著高于大多数林下灌草, 而7月林下灌草根际土壤NminNamm显著提高, 与乔木不再具有显著差异, 与主成分综合得分方差分析的结果一致。一般情况下, 杉木林NminNnit显著高于马尾松林和湿地松林。7月净氮矿化显著高于4月。2)土壤铵态氮、硝态氮、全氮及土壤微生物量氮含量是影响根际土壤净氮矿化的主要因素。土壤化学性质对人工林根际土壤净氮矿化变异的贡献率为29.2%, 显著高于土壤微生物的解释率。充分考虑不同季节林下植被根际土壤的净氮矿化及其关键影响因素可为准确评估人工林生态系统养分循环状况提供重要支撑。  相似文献   

9.
为探明中亚热带地区常绿阔叶林演替序列土壤呼吸(Rs)的变化趋势及其影响机制, 在福建省建瓯市万木林自然保护区选取演替时间分别为15年(演替初期)、47年(演替中期)和110年(演替后期)三个不同演替阶段, 进行了为期1年的野外原位观测。结果发现: 演替初期、中期和后期的Rs分别为2.38、3.32和3.91 µmol·m -2·s -1, 温度敏感性(Q10值)分别为2.64、1.97和1.79; 与演替初期相比, 演替后期的Rs显著增加64.29%, Q10值显著降低32.30%; 不同演替阶段Rs的季节变化模式相似, 温度和含水量可分别解释季节变化的69.5% (初期)、81.9% (中期)和61.3% (后期); 回归分析发现, Rs与凋落物年归还量、细根生物量和土壤全氮和土壤有机质碳含量显著正相关。表明本研究区内植被演替促进了土壤碳排放, 降低了土壤呼吸的温度敏感性; 土壤碳输入增加、养分含量的提高和细根生物量增大是中亚热带常绿阔叶林Rs随演替进程逐渐增大的主要原因。  相似文献   

10.
《植物生态学报》2017,41(4):396
Aims Stem CO2 efflux (Es) is an important component of annual carbon budget in forest ecosystems, but how biotic and environmental factors regulate seasonal and inter-specific variations in Es is poorly understood. The objectives of this study were: (1) to compare seasonal dynamics in Es for four temperate coniferous tree species in northeastern China, including Korean pine (Pinus koraiensis), Korean spruce (Picea koraiensis), Mongolian pine (Pinus sylvestris var. mongolica), and Dahurian larch (Larix gmelinii); and (2) to explore factors driving the inter-specific variability in Es during the growing and non-growing seasons.
Methods Ten to twelve trees for each tree species were sampled for Es and stem temperature at 1 cm depth beneath the bark (Ts) measurements in situ with an infrared gas analyzer (LI-6400 IRGA) and a digital thermometer, respectively, from July to October 2013 and March to July 2014. The daily stem circumference increment (Si), sapwood nitrogen concentration ([N]), and related environmental factors were monitored simultaneously.
Important findings The temporal variation in Es for the four tree species overall followed the changes in Ts throughout the study period, with the maxima occurring in the summer months (late May to early July) characterized by higher temperature and more rapid stem growth and the minima in spring (late March to April) or autumn (October) having lower temperature. Ts accounted for 42%-91% and 56%-89% of variations in Es during the growing (May to September) and non-growing (other months) seasons, respectively. Furthermore, apart from Ts, we also found significant regression relationships between Es and Si, relative air humidity and [N] during the growing season, but their forms and correlation coefficients were species-dependent. These results indicated that Ts was the dominant environmental factor affecting seasonal variations in Es, but the magnitude of the effect varied with tree species and growth rhythm. Mean Es for each of the four tree species was significantly higher in the growing season than in the non-growing season, whereas within the season there were also significant differences in mean Es among the tree species (all p < 0.05). The temperature sensitivity of Es (Q10 value) did not differ significantly among the tree species during the growing season, ranging from 1.64 for Dahurian larch to 2.09 for Mongolian pine, but did differ during the non-growing season which varied from 1.80 for Korean pine to 3.14 for Dahurian larch. Moreover, Korean spruce, Mongolian pine and Dahurian larch had significantly greater Q10 values in the non-growing season than in the growing season (p < 0.05). These findings suggested that the differences of the response of Es to temperature change for different tree species were mainly from the non-growing season. Because the seasonality and inter-specific variability in Es for these temperate coniferous tree species were primarily controlled by multiple factors such as temperature, we conclude that using a single annual temperature response curve to estimate the annual Es may lead to more uncertainty.  相似文献   

11.
《植物生态学报》1958,44(8):875
温度与植物种类是生态系统土壤微生物群落组成与结构的重要影响因子。气候变暖背景下, 不同树种及树种互作对土壤微生物群落产生的影响仍不清楚。该文以西南亚高山针叶林主要建群种粗枝云杉(Picea asperata)和岷江冷杉(Abies faxoniana)为研究对象, 采用红外加热器模拟增温, 通过不同种植方式(云杉、冷杉单种和二者混种, 以及裸地对照), 研究不同物种及增温对土壤微生物磷脂脂肪酸(PLFAs)含量与群落结构的影响。结果表明: (1)无论增温与否, 与裸地相比, 云杉与冷杉单种均显著增加了土壤微生物群落主要类群及总PLFAs含量, 而混种仅在非增温条件下增加了微生物群落PLFAs含量; 另一方面, 增温显著促进了裸地真菌(F)和云杉根区革兰氏阴性菌(GN)的生长, 但对冷杉与冷杉-云杉混种小区微生物群落具有显著的抑制作用。(2)主成分分析(PCA)表明, 非增温条件下, 植物种植对土壤微生物群落组成的影响更为明显。非增温情况下云杉、冷杉单种和混种均对微生物群落结构有显著影响, 显著降低了土壤革兰氏阳性菌/阴性菌(GP/GN), 增加了土壤真菌细菌比(F/B)(64.29%-35.71%), 而增温时, 仅冷杉单种对GP/GN和F/B有显著影响。(3) PLFAs含量与土壤碳含量显著正相关, 微生物群落结构(F/B)则与土壤pH及无机氮含量有显著相关关系。以上结果说明, 在非增温情况下, 无论单种还是混种均有利于土壤微生物生长, 但在增温情况下混种对微生物群落PLFAs含量无显著影响, 两个物种对微生物群落结构的影响在增温条件下也有减弱的趋势。  相似文献   

12.
准确测定森林生态系统中CO2储存通量(Fs)对于以涡动协方差(EC)法估算生态系统碳收支具有重要意义,而Fs不同算法引起的森林碳收支估测误差还未被全面评估。本研究利用2018年帽儿山落叶阔叶林的开路EC系统和8层CO2/H2O廓线系统(AP100, Campbell Scientific Inc., USA)数据,比较了2-min平均廓线(P2 min)、30-min平均廓线(P30 min)和30-min平均EC单点法(Ps)3种不同方法估算的Fs对净生态系统交换(NEE)、生态系统呼吸(Re)和总初级生产力(GPP)估算结果的影响。结果表明: Fs估算方法对森林碳通量的影响总体上随时间尺度增大而不断增大,表明通量数据插补和拆分会进一步放大Fs估算方法的影响。在年尺度上,P2 min法和Ps法的NEE分别比P30 min法的低36.3%和29.4%;P2 min法的ReP30 min法和Ps法高8.7%;而P2 min法的GPP比P30 min法的高5.4%,Ps法则比P30 min法的低2.1%。传统的P30 min法忽略了CO2浓度的瞬时变化,Ps法缺少林冠层内部CO2浓度变化,因此两者低估了真实Re。近似瞬时廓线的方法(2-min平均)具有更高的时间与空间分辨率,能够更加准确地估算非平坦地形和复杂冠层结构的森林碳收支,这对解决EC法在复杂条件下森林Re和GPP低估、净碳汇高估具有重要启示。  相似文献   

13.
繁殖是植物生命活动的重要环节, 了解植物的繁殖特征是解释植物生态适应性和制定有效管理措施的重要依据。该研究以荒漠草原猪毛蒿(Artemisia scoparia)种群为研究对象, 通过测定不同土壤类型的理化性质和猪毛蒿的繁殖特征, 以期探讨影响其繁殖特征的主要土壤驱动因子。结果表明: 灰钙土、风沙土和基岩风化残积土的水溶性碳含量、全氮含量、全磷含量、全盐含量、土壤水分含量、土壤硬度存在显著差异。猪毛蒿平均个体大小、单株头状花序的平均质量和数量均以灰钙土生境下最大, 基岩风化残积土最小。繁殖分配在不同土壤类型下无显著差异, 但与单个头状花序质量、单株头状花序数量和质量间呈极显著正相关关系。单株头状花序数量与单个头状花序质量间呈负相关关系。在风沙土生境下, 单株头状花序质量主要受到土壤水溶性碳含量土壤水分含量以及pH值的共同影响; 单株头状花序数量受全盐含量的影响最大; 繁殖分配和单个头状花序质量主要受全碳含量的影响。灰钙土生境下, 单株头状花序质量与土壤水溶性碳含量土壤水分含量和有机碳含量呈正相关关系; 速效氮含量显著影响着单株头状花序数量。而基岩风化残积土生境下, 繁殖特征的变异主要受到土壤水溶性碳含量土壤硬度土壤水分含量全磷和速效磷含量的影响。综合分析发现, 土壤因子对猪毛蒿繁殖特征的影响程度不同, 其中单株头状花序数量和质量极显著地受到土壤水溶性碳含量和土壤水分含量的影响, 繁殖分配和单个头状花序质量与土壤水溶性碳含量、土壤水分含量呈负相关关系。因此, 土壤水溶性碳含量和土壤水分是荒漠草原地区影响猪毛蒿种群繁殖特征的主要土壤因子。  相似文献   

14.
杉木林是我国亚热带地区最主要的人工林和重要的碳汇。本研究以杉木人工林为对象,通过设置氮素添加(40 kg N·hm-2·a-1)和隔离降雨(-50%)试验分别模拟氮沉降和干旱,在夏季(7月)和冬季(1月)采集表层土壤,通过磷脂脂肪酸、平板计数、Biolog等方法综合分析土壤微生物生物量、数量及碳源利用能力。结果表明: 土壤微生物生物量及微生物组成在两季节间存在显著差异;氮添加和隔离降雨可在一定程度上减少可培养细菌和真菌的数量,细菌数量较真菌数量对氮添加和隔离降雨的响应更敏感。隔离降雨显著抑制了土壤中微生物的碳源利用能力,而氮添加无显著影响。土壤细菌数量与微生物碳源利用能力呈显著正相关,表明可培养细菌是介导微生物碳转化的关键组分。本研究强调了氮沉降和干旱对亚热带杉木人工林表层土壤微生物的影响,可为评估未来全球变化情景下亚热带森林生态系统的土壤微生物生态功能提供科学依据。  相似文献   

15.
日益加剧的氮沉降已经对陆地生态系统生产力和碳循环过程产生了显著影响。草原生态系统近90%的碳储存在土壤中, 明确土壤呼吸及其组分对氮添加的响应对评估大气氮沉降背景下草原生态系统碳平衡和土壤碳库稳定性是非常重要的。以往关于草原土壤呼吸对氮沉降响应的理解多是基于短期(<5年)和低频(每年1-2次)氮添加实验研究, 而关于长期氮添加和不同施氮频率对土壤呼吸及其组分的影响尚缺乏实验证据。该研究基于2008年建立在内蒙古半干旱草原的长期氮添加实验平台, 包括6个氮添加水平和2个施氮频率处理, 通过连续两年(2018-2019年)土壤呼吸及其组分的测定, 发现: 1)氮添加显著降低了土壤总呼吸速率(Rs), 且Rs下降程度随着氮添加量的增加而增强。土壤异养呼吸速率(Rh)的显著下降是Rs下降的主要原因。2)不同氮添加频率并未显著影响土壤呼吸及其组分对氮添加处理的响应。3)长期氮添加造成的土壤酸化降低了土壤微生物活性并改变了微生物群落结构(真菌/细菌比), 进而导致土壤呼吸及其异养组分呈现显著的负响应。以上结果表明, 长期(>10年)氮添加对土壤地下碳循环过程的抑制作用非常明显, 特别是异养呼吸组分的下降会降低土壤有机碳分解速率, 有助于土壤碳库稳定性的维持。同时, 随着氮添加处理时间的延长, 不同施氮频率影响效应的差异减弱, 表明目前长期的低频氮添加实验监测数据可以为评估自然生态系统对大气氮沉降的响应提供较为可靠的参考。  相似文献   

16.
以我国南亚热带格木、红椎和马尾松人工林为对象,采用氯仿熏蒸浸提法和磷脂脂肪酸法(PLFA)分析了林地土壤微生物生物量和微生物群落结构组成.结果表明: 林分和季节因素均显著影响土壤微生物生物量、总PLFAs量、细菌PLFAs量和真菌PLFAs量,且干季林分下的土壤微生物生物量、总PLFAs量、单个PLFA量均大于雨季.红椎人工林土壤微生物生物量碳(MBC)和总PLFAs量最高,而格木人工林土壤微生物生物量氮(MBN)最高.土壤pH值对土壤丛枝菌根真菌(16:1ω5c)的影响达到极显著正相关水平.土壤总PLFAs量、革兰氏阳性菌(G+)以及腐生真菌(18:2ω6,9c)、革兰氏阳性菌/革兰氏阴性菌(G+/G-)与土壤有机碳、全氮和全磷显著相关,表明土壤有机碳、全氮、全磷含量是影响该地区土壤微生物数量和种类的重要因素.外生菌根真菌(18:1ω9c)和丛枝菌根真菌与土壤碳氮比值呈极显著相关.  相似文献   

17.
以我国南亚热带格木人工纯林为研究对象,采用气压过程分离(BaPS)技术和磷脂脂肪酸(PLFAs)法研究了不同枯落物处理(对照、枯落物去除、枯落物加倍)下土壤碳氮转化速率和微生物群落结构的季节变化.结果表明:不同枯落物处理土壤呼吸和总硝化速率均呈现明显的季节动态,雨季显著高于旱季.枯落物处理初期,土壤呼吸和总硝化速率均随枯落物输入量的增加呈下降趋势,但随着枯落物处理时间的延长,二者随枯落物输入量的增加而增加.旱季不同枯落物处理土壤微生物PLFAs总量和各菌群PLFAs量均显著高于雨季,而雨季真菌PLFAs/细菌PLFAs明显高于旱季.在旱季,枯落物去除处理土壤微生物PLFAs总量、细菌PLFAs量、真菌PLFAs量和丛枝菌根真菌PLFAs量分别显著提高30.9%、28.8%、44.4%和31.6%.在雨季,枯落物去除处理细菌PLFAs量和丛枝菌根真菌PLFAs量分别显著降低10.6%和33.3%.土壤微生物群落结构受枯落物输入量处理和季节的双重影响,土壤微生物群落结构主要受土壤温度和铵态氮的影响.枯落物输入量处理在短期内显著影响了格木林土壤碳氮转化速率和微生物群落结构,这种影响因季节的不同而存在差异.  相似文献   

18.
Aims It has been well recognized that understory vegetation plays an important role in driving forest ecosystem processes and functioning. In subtropical plantation forests, understory removal and fertilization have been widely applied; however, our understanding on how understory removal affects soil respiration and how the process is regulated by fertilization is limited. Here, we conducted an understory removal experiment combined with fertilization to evaluate the effects of the two forest management practices and their interactions on soil respiration in subtropical forest in southern China.Methods The study was conducted in a split-plot design with fertilization as the whole-plot factor, understory removal as the subplot factor and block as the random factor in subtropical Eucalyptus plantations. In total, there were four treatments: control with unfertilized and intact understory (CK), understory removal but without fertilization (UR), with fertilization but without understory removal (FT) and with fertilization + understory removal (FT + UR). Eucalyptus above- and belowground biomass increment, fine root biomass, soil temperature, soil moisture and soil respiration were measured in the present study. Understory respiration (R U) was quantified in different ways: R u = R CK ? R UR or R u = R FT ? R (FT + UR); fertilization increased soil respiration (R FI) was also quantified in different ways: R FI = R FT ? R CK or R FI = R (FT + UR) ? R UR .Important findings Over a 2-year experiment, our data indicate that understory removal significantly decreased soil respiration, while fertilization increased soil respiration. Understory removal decreased soil respiration by 28.8% under fertilization, but only 15.2% without fertilization. Fertilization significantly increased soil respiration by 23.6% with the presence of understory vegetation, and only increased by 3.7% when understory was removed, indicating that fertilization increased soil respiration mainly by increasing the contribution of the understory. Our study advances our understanding of the interactive effects of understory management and fertilization on soil respiration in subtropical plantations.  相似文献   

19.
为了解凋落物分解过程中碎屑食物链土壤动物与微生物的相互联系,本研究以川西亚高山森林杨树和箭竹凋落叶为对象,通过原位控制试验,于2016年4月至2018年4月采用磷脂脂肪酸(PLFAs)生物标记法,研究了土壤动物对两种凋落叶分解过程中微生物丰度、群落结构和多样性的影响.结果表明: 土壤动物的参与显著影响两个树种凋落叶分解过程中微生物PLFAs含量,降低了分解前240天的PLFAs含量,增加了分解360~480 d的PLFAs含量;土壤动物的参与降低了杨树分解过程中的真菌/细菌比值,增加了革兰氏阳性菌(G+)/革兰氏阴性菌(G-)比值,对箭竹分解过程中真菌/细菌和G+/G-比值的影响作用相反;两个树种凋落叶的微生物多样性和均匀性在分解的120 d和480 d维持着较高水平,在分解的360 d和720 d急剧降低,土壤动物的参与显著影响杨树凋落叶的微生物多样性和均匀性,但对箭竹影响不显著;土壤动物对凋落叶微生物PLFAs变化的影响随分解持续时间和树种变化存在差异.亚高山森林凋落物分解过程中土壤动物与微生物群落的相互作用随季节和树种变化具有变异性.  相似文献   

20.
《植物生态学报》2015,39(12):1166
Aims As the primary pathway for CO2 emission from terrestrial ecosystems to the atmosphere, soil respiration is estimated to be 80 Pg C·a-1 to 100 Pg C·a-1, equivalent to 10 fold of fossil fuel emissions. As an important management practice in plantation forests, fertilization does not only increase primary production but also affects soil respiration. To investigate how nitrogen (N) fertilization affects total soil, root and microbial respiration, a N fertilization experiment was conducted in a five-year-old Cunninghamia lanceolata plantation in Huitong, Hunan Province, located in the subtropical region. MethodsOne year after fertilization, soil respiration was monitored monthly by LI-8100 from July 2013 to June 2014. Soil temperature and water content (0-5 cm soil depth) were also measured simultaneously. Available soil nutrients, fine root biomass and microbial communities were analyzed in June 2013. Important findings Total soil, root and microbial respiration rates were 22.7%, 19.6%, and 23.5% lower in the fertilized plots than in the unfertilized plots, respectively. The temperature sensitivity (Q10) of soil respiration ranged from 1.81 to 2.04, and the Q10 value of microbial respiration decreased from 2.04 in the unfertilized plots to 1.84 in the fertilized plots. However, neither the Q10 value nor the patterns of total soil respiration were affected by N fertilization. In the two-factor model, soil temperature and moisture accounted for 69.9%-79.7% of the seasonal variations in soil respiration. These results suggest that N fertilization reduces the response of soil organic carbon decomposition to temperature change and may contribute to the increase of soil carbon storage under global warming in subtropical plantations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号