首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
2.
3.
4.
5.
Two nontypical nucleosides, 7-β-d-ribosyl-2,6-diamino-8-azapurine and 8-β-d-ribosyl-2,6-diamino-8-azapurine, have been found to exhibit moderately good, and selective, substrate properties toward calf and bacterial (Escherichia coli) forms of purine nucleoside phosphorylase (PNP). The former compound is effectively phosphorolysed by calf PNP and the latter by PNP from E. coli. Both compounds are fluorescent with λmax ∼ 425 to 430 nm, but the reaction product, 2,6-diamino-8-azapurine, emits in a different spectral region (λmax ∼ 363 nm) with nearly 40% yield, providing a strong fluorogenic effect at 350 to 360 nm.  相似文献   

6.
3'-C-Trifloromethyl-beta-D-ribonucleoside derivatives bearing the five naturally occurring nucleic acid bases have been synthesized. All these derivatives were prepared by glycosylation reactions of purine and pyrimidine bases with a suitable peracylated 3-C-trifluoromethyl ribofuranose precursor. After deprotection, the resulting title nucleoside analogues were tested for their inhibitory properties against the replication of HIV, HBV and several RNA viruses. However, none of these compounds showed significant antiviral activity.  相似文献   

7.
Abstract

3′-C-Trifluoromethyl-β-D-ribonucleoside derivatives bearing the five naturally occurring nucleic acid bases have been synthesized. All these derivatives were prepared by glycosylation reactions of purine and pyrimidine bases with a suitable peracylated 3-C-trifluoromethyl ribofuranose precursor. After deprotection, the resulting title nucleoside analogues were tested for their inhibitory properties against the replication of HIV, HBV and several RNA viruses. However, none of these compounds showed significant antiviral activity.  相似文献   

8.
9.
The structural requirements for inhibition of bacterial RNA polymerase and rabbit liver formyltetrahydrofolate synthetase activity by a series of purine nucleoside analogs related to 6-chloro-8-aza-9-cyclopentylpurine (689) were investigated. To achieve an inhibitory effect, preincubation of the enzyme preparations with the purine analogs, prior to assay of enzyme activity, was required. The greatest inhibition was produced by analogs containing all three alterations of the purine nucleoside structure: the 6-halo, 8-aza, and 9-cyclopentyl groups. It is suggested that 689 inhibits the activity of enzymes involved in nucleic acid synthesis by a site-directed alkylation.  相似文献   

10.
Abstract

Starting from (±)-cis-2-hydroxymethylcyclohexylamine, a series of cyclohexane-derived cis-1,2-disubstituted carbonucleoside analogues with a 6- or 2,6-purine or 8-azapurine base were synthesized. The antiviral and antitumoral in vitro effects of the new compounds were evaluated.  相似文献   

11.
Starting from (+/-)-cis-2-hydroxymethylcyclohexylamine, a series of cyclohexane-derived cis-1,2-disubstituted carbonucleoside analogues with a 6- or 2,6-purine or 8-azapurine base were synthesized. The antiviral and antitumoral in vitro effects of the new compounds were evaluated.  相似文献   

12.
A series of 3'-(N-hydroxyimino)-2',3'-dideoxynucleosides bearing different nucleic bases has been prepared. In vitro antiviral activity studies showed that among these compounds the thymine derivative possesses significant activity against HIV, HSV, EBV and HBV. Conveniently 5'-protected 3'-(N-hydroxyimino)-2',3'-dideoxythymidine was further used as a synthon for the preparation of other nucleoside analogues.  相似文献   

13.
The formation of hydrogen bonded complexes between nucleic acid bases and acetamide has been studied by nuclear magnetic resonance in CDC13 at different temperatures. Pairs of hydrogen bonds are formed when acetamide binds to nucleic acid bases. Thermodynamic parameters have been computed and compared to those obtained for the association of carboxylic acids with nucleic acid bases. The role of hydrogen bonded complexes in the association of proteins with nucleic acids is discussed.  相似文献   

14.
Abstract

A series of 3′-(N-hydroxyimino)-2′,3′-dideoxynucleosides bearing different nucleic bases has been prepared. In vitro antiviral activity studies showed that among these compounds the thymine derivative possesses significant activity against HIV, HSV, EBV and HBV. Conveniently 5′-protected 3′-(N-hydroxyimino)-2′,3′-dideoxythymidine was further used as a synthon for the preparation of other nucleoside analogues.  相似文献   

15.
He J  Seela F 《Nucleic acids research》2002,30(24):5485-5496
Oligonucleotides incorporating the 7-propynyl derivatives of 8-aza-7-deaza-2′-deoxyguanosine (3b) and 8-aza-7-deaza-2′-deoxyadenosine (4b) were synthesized and their duplex stability was compared with those containing the 5-propynyl derivatives of 2′-deoxycytidine (1) and 2′-deoxyuridine (2). For this purpose phosphoramidites of the 8-aza- 7-deazapurine (pyrazolo[3,4-d]pyrimidine) nucleosides were prepared and employed in solid-phase synthesis. All propynyl nucleosides exert a positive effect on the DNA duplex stability because of the increased polarizability of the nucleobase and the hydrophobic character of the propynyl group. The propynyl residues introduced into the 7-position of the 8-aza-7-deazapurines are generally more stabilizing than those at the 5-position of the pyrimidine bases. The duplex stabilization of the propynyl derivative 4b was higher than for the bromo nucleoside 4c. The extraordinary stability of duplexes containing the 7-propynyl derivative of 8-aza-7- deazapurin-2,6-diamine (5b) is attributed to the formation of a third hydrogen bond, which is apparently not present in the base pair of the purin-2,6-diamine 2′-deoxyribonucleoside with dT.  相似文献   

16.
We investigate the changes in the solvation properties of the natural nucleic acid bases due to the formation of the canonical Watson–Crick hydrogen-bonded complexes. To this end, the changes in the free energy of solvation of the bases induced upon hydrogen-bonded dimerization are analyzed by means of the hydrophobic similarity index, which relies on the atomic contributions to the free energy of solvation determined by the partitioning method implemented in the framework of the MST continuum model. Such an index is also used to examine the hydrophobic similarity between the canonical nucleic acid bases and a series of highly apolar analogues, which have been designed as potential candidates to expand the genetic alphabet. The ability of these analogues to be incorporated into modified DNA duplexes can be related to the large reduction in the hydrophilicity of the natural bases upon formation of the canonical hydrogen-bonded dimers. The results illustrate the suitability of the hydrophobic similarity index to rationalize the role played by solvation in molecular recognition. Proceedings of “Modeling Interactions in Biomolecules II”, Prague, September 5th–9th, 2005.  相似文献   

17.
Yunhui Peng  Emil Alexov 《Proteins》2017,85(2):282-295
Protein–nucleic acid interactions play a crucial role in many biological processes. This work investigates the changes of pKa values and protonation states of ionizable groups (including nucleic acid bases) that may occur at protein–nucleic acid binding. Taking advantage of the recently developed pKa calculation tool DelphiPka, we utilize the large protein–nucleic acid interaction database (NPIDB database) to model pKa shifts caused by binding. It has been found that the protein's interfacial basic residues experience favorable electrostatic interactions while the protein acidic residues undergo proton uptake to reduce the energy cost upon the binding. This is in contrast with observations made for protein–protein complexes. In terms of DNA/RNA, both base groups and phosphate groups of nucleotides are found to participate in binding. Some DNA/RNA bases undergo pKa shifts at complex formation, with the binding process tending to suppress charged states of nucleic acid bases. In addition, a weak correlation is found between the pH‐optimum of protein–DNA/RNA binding free energy and the pH‐optimum of protein folding free energy. Overall, the pH‐dependence of protein–nucleic acid binding is not predicted to be as significant as that of protein–protein association. Proteins 2017; 85:282–295. © 2016 Wiley Periodicals, Inc.  相似文献   

18.
2',3'-Dideoxy-3'-C-methyl nucleosides bearing the five naturally occurring nucleic acid bases were synthesized. Additionally, the 3'-deoxy-3'-C-methyl nucleoside analogues bearing 5-aminoimidazole-4-carboxamide as well as 1,2,4-triazole-3-carboxamide moieties were prepared. The synthesis of the corresponding 2',3'-dideoxy-3'-C-methyl triazole derivative was also accomplished. The dideoxynucleoside derivatives were prepared by radical deoxygenation from their 3'-deoxy-3'-C-methyl parent ribonucleosides. When evaluated for their antiviral activity in cell culture experiments, none of these compounds showed any significant antiviral activity.  相似文献   

19.
Hitherto unknown restricted 3'-deoxy-3',4'-exo-methylene nucleoside derivatives bearing the nucleic acid naturally occurring pyrimidine bases have been synthesized. The compounds were tested for their activity against HIV, HBV, and several RNA viruses, but they did not show significant antiviral effect.  相似文献   

20.
The intraerythrocytic human malaria parasite, Plasmodium falciparum, requires a source of hypoxanthine for nucleic acid synthesis and energy metabolism. Adenosine has been implicated as a major source for intraerythrocytic hypoxanthine production via deamination and phosphorolysis, utilizing adenosine deaminase and purine nucleoside phosphorylase, respectively. To study the expression and characteristics of human malaria purine nucleoside phosphorylase, P. falciparum was successfully cultured in purine nucleoside phosphorylase-deficient human erythrocytes to an 8% parasitemia level. Purine nucleoside phosphorylase activity was undetectable in the uninfected enzyme-deficient host red cells but after parasite infection rose to 1.5% of normal erythrocyte levels. The parasite purine nucleoside phosphorylase was not cross-reactive with antibody against human enzyme, exhibited a calculated native molecular weight of 147,000, and showed a single major electrophoretic form of pI 5.4 and substrate specificity for inosine, guanosine and deoxyguanosine but not xanthosine or adenosine. The Km values for substrates, inosine and guanosine, were 4-fold lower than that for the human erythrocyte enzyme. In these studies we have identified two novel potent inhibitors of both human erythrocyte and parasite purine nucleoside phosphorylase, 8-amino-5'-deoxy-5'-chloroguanosine and 8-amino-9-benzylguanine. These enzyme inhibitors may have some antimalarial potential by limiting hypoxanthine production in the parasite-infected erythrocyte.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号