首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The effect of Zn-induced metallothionein (MT) on the toxicity, uptake, and subcellular distribution of cadmium (Cd) was examined in rat primary hepatocyte cultures and compared to results obtained earlier in this laboratory from intact animals. Hepatocytes were isolated and grown in monolayer culture for 22 h and subsequently treated with ZnCl2 (100 μM) for 24 h, which increased MT concentration about 15-fold. After Zn pretreatment, hepatocytes were exposed to Cd for 24 h. Cytotoxicity was assessed by enzyme leakage, intracellular potassium loss, and cellular glutathione content. The toxicity of Cd was much less in Zn-pretreated cells than in control cells, similar to that previously demonstrated in the intact animal. Zn pretreatment had no appreciable effect on the hepatocellular uptake of109Cd, but markedly altered its subcellular distribution, with more Cd accumulating in the cytosol and less in the nuclear, mitochondrial, and microsomal fractions. In the cytosol of Zn-pretreated cells, Cd was associated mainly with MT; in contrast, cytosolic Cd in control cells was mainly associated with non-MT macromolecules. Zn-induced changes in the subcellular distribution of Cd in vitro are identical to those observed in vivo in Zn-pretreated rats challenged with Cd. In summary, Zn pretreatment of rat primary hepatocyte cultures protects cells against Cd toxicity. Protection seems to be due to MT-promotes sequestration of Cd and reduction of the amount of Cd associated with critical organelles and proteins. These observations are similar to those noted in the whole animal. These results indicate that cultured hepatocytes are an ideal model for examining MT-induced tolerance to Cd hepatotoxicity. This work was supported by grant ES-01142, and WCK was supported by training grant ES-07079, both from the Public Health Service, Department of Health and Human Services.  相似文献   

2.
1. The induction of metallothionein (MT) protein by TPA (O-tetradecanoyl phorbol acetate), a protein kinase C activator, was demonstrated in vivo in rat liver and in vitro in rat hepatocytes in primary culture. In vivo half maximal induction at 25 hr was seen at 26 nmol TPA/kg body wt. Five- to seven-fold inductions were seen in vivo. De novo protein synthesis was required for this induction as demonstrated by cycloheximide inhibition of [35S]cysteine incorporation into MT protein. 2. TPA induction of MT protein in primary cultures of rat hepatocytes reached levels of 2.6-4.1-fold, as assessed by [35S]cysteine incorporation, 1.34-2.20-fold, as assessed by 109Cd binding in a metal displacement/HPLC assay, and 2.5-5-fold, as assessed by 109Cd binding in a metal displacement/Sephadex G-75 Superfine assay. 3. The induction of MT mRNA by TPA was demonstrated in vivo in rat liver and in vitro in 2 rat hepatoma cell lines, EC3 and 2M. MT mRNA was quantitated using dot blot and Northern gel assays. In vivo TPA induced hepatic MT mRNA 2.36-5.88-fold (dot blot) and 7.4-22-fold (Northern gels). In vitro TPA induced MT mRNA 1.71-15.26-fold in EC3 cells and 2.23-8.43-fold in 2M cells. MT mRNA was 0.54 kb, and alpha-tubulin mRNA was 1.62 kb in size on Northern gels. 4. TPA induction of MT protein and mRNA in vivo and in vitro is rapid and persistent and occurs at low concentrations. The 2 rat hepatoma cell lines provide a useful system in which to study MT induction in vitro without confounding secondary effects which can occur in vivo.  相似文献   

3.
The control of metallothionein (MT) synthesis was investigated in freshly prepared rat hepatocytes in experiments of short-term duration. Viability and metabolic function were maintained in incubations of 6-h duration. MT synthesis was measurable in hepatocytes from fed rats at Zn concentrations down to 1 μM. Zn and dexamethasone induced concentration-dependent increases in the synthesis of MT with maximal increases above the 5-h control of 3.2- and 2.5-fold, respectively. Zn induction of MT was first measurable at 2 h and was inhibited by actinomycin C. Although initial (0 h) MT concentrations in hepatocytes from fasted rats were double those from fed rats, after 6-h incubation in the presence of 50 μM Zn, the fasted rat hepatocytes showed only half the MT concentrations of the fed rat hepatocytes. Glucagon and interleukin-6 (IL-6) were less effective inducers and increased MT synthesis by 28 and 17%, respectively. IL-6 (100 U/mL) was found to have an additive effect on MT synthesis above that of Zn alone (1–50 μM) or Zn plus dexamethasone (1 μM). A supernatant from LPS-stimulated macrophages increased MT synthesis by 40%. The basal MT synthesis was not increased by either tumor necrosis factor-α (TNF-α) or interleukin-1 (IL-1). All incubations were carried out in the presence of RPMI 1640 medium with Hepes (20 mM), bicarbonate (24 mM), and fatty acid-free albumin (FAFA; 0.5% w/v). MT synthesis was also seen using Krebs bicarbonate buffer with glucose (10 mM), Hepes (20 mM), and FAFA (0.5% w/v), and although the level of MT synthesis was less than in RPMI, the increases in concentrations of MT at 5 h were 225, 139, 36 and 20% for Zn, dexamethasone, glucagon, and control, respectively. It is concluded that MT synthesis occurs in freshly prepared hepatocytes and that these cells are responsive to some of the established inducers of MT. This system enables the study of MT synthesis in individual rats in various metabolic and pathological states.  相似文献   

4.
5.
Cadmium-2-acetylaminofluorene interaction in isolated rat hepatocytes   总被引:1,自引:0,他引:1  
Cadmium (Cd) is a non-essential, highly toxic heavy metal and a ubiquitous environmental contaminant. Evidence exists that Cd can affect parameters which are of great importance in the response towards xenobiotics. However, there is a lack of information about the mechanisms that take place at the cellular and molecular levels upon dual exposure to Cd and other toxins. The purpose of the present work was therefore to examine the biochemical interactions between Cd and a well-known genotoxic hepatocarcinogen, 2-acetylaminofluorene (AAF) in isolated rat hepatocytes. The cells were incubated for 10 hr with a sub-cytotoxic concentration (0.22 M) of 109Cd. This was followed by a 10 hr exposure to 1 M [3H]AAF. Cellular distribution of Cd and 3H was determined. Sephadex G-75 elution profiles of the cytosol showed that Cd was almost entirely associated with the intermediate molecular weight (IMW) fractions containing metallothionein (MT) (>80%), and with high molecular weight proteins. In parallel, the highest proportion of 3H was found in the low molecular weight components. Further analysis of IMW fractions by DEAE A-25 anion-exchange chromatography revealed that, in addition to Cd, there was some 3H which coeluted along with MT-I and MT-II isoforms, but preferentially with MT-I. Moreover, Cd pretreatment caused a 1.6-fold increase in MT level, as measured by the silver-saturation assay. Under these conditions, there was a 17% lower binding of 3H to the DNA. This reduced binding was neither accompanied by diminished AAF uptake nor by inhibition of cytochrome P-450 activity. Taken together, these results suggest that Cd exposure has a protective effect against the genotoxicity of AAF. MT, whose synthesis is induced, could play a role in the Cd-AAF interaction through scavenging of reactive metabolites.Abbreviations AAF 2-acetylaminofluorene - Cd cadmium - DMSO dimethyl sulfoxide - HBSS Hank's balanced salt solution - LDH lactate dehydrogenase - MT metallothionein - UDS unscheduled DNA synthesis  相似文献   

6.
Cryo-microprobe analysis of quench-frozen fronds of a Zn-tolerant clone of Lemna minor exposed to a high level of Zn (300 μM) showed the presence of cellular deposits consisting of Zn, Mg, K and P or Zn, K and P (Zn phytate). The same Zn-tolerant clone of Lemna minor, when exposed to a high level of Cd (30 μM), showed the presence of globular deposits consisting of Cd, K and P in mature fronds, but the immature cells of the enclosed daughter fronds contained relatively large deposits with Cd and S as the main components (Cd-phytochelatin?). Selection for Zn tolerance in a population of Lemna minor was easily achieved but selection for Cd tolerance has so far not been successful. The Zn-tolerant clone also tolerates high levels of phosphate.  相似文献   

7.
Goosefish islets were homogenized in 0.25 M sucrose and separated into nuclear, mitochondrial + secretion granule, microsomal, and supernatant fractions. Eighty per cent of the cytochrome oxidase activity and 75 per cent of the bioassayed insulin activity were found in the mitochondrial + secretion granule fraction (6000 g for 10 minutes). The mitochondrial + secretion granule fraction was further subfractionated by centrifugation (2 hours at 100,000 g and 0°C) using a continuous linear density gradient 1.0–2.0 M sucrose). Eighteen to 20 subfractions were collected by piercing the bottom of the tube and collecting drops. The total protein was distributed into a bimodal curve consisting of a high density component, which contained 90 per cent of the insulin (secretion granules), and a lower density component, which contained the cytochrome oxidase activity (mitochondria).  相似文献   

8.
The binding of gold(I) to metallothionein, MT, has been unambiguously established by the reaction of Na2AuTM with purified horse kidney MT. Zinc was displaced more readily than cadmium although the latter could be displaced using large Au/Cd ratios. The metal exchange reactions were complete within 2 hr of mixing. Further evidence that such reactions might be physiologically significant were obtained by studying in vitro metal displacements in the liver cytosol of in vivo metal treated rats: When Na2AuTM was added to the cytosol of rats administered CdCl2 in vivo, zinc, copper and cadmium were displaced in 2/1/1 ratios from the metallothionein fraction. The zinc and cadmium displacement provide direct evidence that the gold was binding to MT. Addition of Cd+2 to liver cytosol of gold-treated rats resulted in displacement of copper and zinc, but not gold, from the MT fractions. When liver MT is prepared from rats exposed to Au or Cd, the Cd/protein ratio increased during the preparation, but the Au/protein ratio decreased. The Mt-bound metals account for 95% of the cytosolic Cd but only 15%–30% of the cytosolic gold in these studies. Thus, the nonspecific binding of gold to MT in vivo should be considered as one aspect in its equilibration among protein binding sites, which include, inter alia, metallothionein. Gold was found to coelute with zinc and cadmium in the MT fraction of rat kidney cytosol, when both Cd and Na2AuTM were administered to the rats. The possible significance of gold binding to MT in the treatment of rheumatoid arthritis-chrysotherapy-is briefly discussed.  相似文献   

9.
The induction of cytochrome P-450 by phenobarbital was studied in primary cultures of chick embryo hepatocytes. The rate of the de novo synthesis of the induced form of cytochrome P-450 was measured directly and specificially, using form-specific anti-cytochrome antibodies that quantitatively immunoprecipitated this form from the radiolabeled hepatocytes. Additionally, the steady-state levels of the cytochrome were estimated spectrophotometrically and electrophoretically. In the presence of phenobarbital the synthesis of cytochrome P-450PB by cultured hepatocytes was markedly accelerated. Furthermore, the same cytochrome P-450PB form was induced by phenobarbital in vivo in chicken liver and in the cultured chick embryo hepatocytes. Their identity was judged from immunological and electrophoretic properties of these induced cytochromes. Immunological cross-reactivity was also detected between the cytochrome P-450PB forms from chick embryo hepatocytes and from adult rat liver. The immunological cross-reactivity observed between the phenobarbital-induced cytochrome P-450 forms from different species was not observed between the different cytochrome forms with the same liver (Thomas, P.E., Reik, L.M., Ryan, D.E. and Levin, W. (1981) J. Biol. Chem. 256, 1044–1052). Implications as to the evolutionary origin of the different cytochrome forms are discussed.  相似文献   

10.
An HPLC method has been developed and validated for the determination of dextromethorphan, dextrorphan, 3-methoxymorphinan and 3-hydroxymorphinan in urine samples. Deconjugated compounds were extracted on silica cartridges using dichloromethane/hexane (95:05, v/v) as an eluent. Chromatographic separation was accomplished on a Phenyl analytical column serially connected with a Nitrile analytical column. The mobile phase consisted of a mixture of an aqueous solution, containing 1.5% acetic acid and 0.1% triethylamine, and acetonitrile (75:25, v/v). Compounds were monitored using a fluorescence detector. Calibration curves were linear over the range investigated (0.2–8.0 μM) with correlation coefficients >0.999. The method was reproducible and precise. Coefficients of variation and deviations from nominal values were both below 10%. For all the analytes, recoveries exceeded 77% and the limits of detection were 0.01 μM. The validated assay proved to be suitable for the determination of DEM metabolic indexes reported to reflect the enzymatic activity of the cytochrome P450s, CYP2D6 and CYP3A, both in vivo, when applied to urine samples from patients, and in vitro, when applied to samples from the incubation of liver microsomes with dextromethorphan.  相似文献   

11.
Exposure of rat hepatocytes to cadmium below 50 μM for a short period (10 min) resulted in cellular acidification. Conversely, exposure to Cd more than 50 μM for a long period (60 min) caused cellular alkalinization accompanied by membrane damage as reflected by decrease in cellular K content and loss of intracellular lactic dehydrogenase. In hepatocytes exposed to 5 μM Cd, a concentration sufficient to induce acidification without cytotoxicity, the metal was preferentially associated with the crude nuclei and cell debris fractions, suggesting an interaction between Cd and cell membranes to cause acidification. Omission of bicarbonate from the incubation medium induced cellular acidification. The presence of Cd in this medium did not potentiate the medium-induced acidification. Mg-ATP (25 μM) induced cellular acidification in relation to an increase in the concentration of cytosolic free Ca. The coexistence of Mg-ATP and Cd at the concentrations which had no effect on cellular pH in the presence of either agants induced cellular acidification. These observations suggest that Cd induced cellular acidification by modulating the process connected with the rise in cytosolic free Ca via interaction with plasma membranes. This acidification had no strong immediate cytotoxic actions but led to subsequent cellular alkalinization accompanied with severe cytotoxicity and membrane breakage.  相似文献   

12.
Recently, in two separate studies we have observed cadmium (Cd)-induction of prostatic tumors (PT) in rats. Cd (sc or im) at doses nontoxic to the testes markedly increased PT formation (2.5 μmol/kg, sc, 8 PT/29 exposed, 28%; 30 μmol/kg, im, 11/26, 42%; control 14/127, 11%). The administration of zinc (Zn; 1 mmol/kg, sc, at ?6, 0 and +18 h) to prevent testicular toxicity and tumors from Cd (30 μmol/kg, sc, 0 h) also resulted in an elevated incidence of PT (8/27, 30%). The nature of the metal-binding proteins in the prostate has not been defined, although metallothionein (MT), a low Mr Cd-binding protein that confers tolerance to Cd, is deficient in other target tissues of Cd carcinogenesis, such as the rat testes. Using a technique that extracts MT from liver, a low-Mr Cd-binding protein was extracted from both ventral (VP) and dorsal prostate (DP) and isolated by gel filtration. In contrast to the two forms of rat MT, reverse phase HPLC of VP and DP extract eluted 1 and 5 forms, respectively. The amino acid compositions of the VP and DP proteins were quite distinct from MT, with much less cys than MT and the presence of residues not found in MT (leu, tyr, phe). Thus Cd-induction of PT appears to be dependent on functional testes and, as is the case with Cd-induced testicular formation, appears to be associated with a deficiency of MT.  相似文献   

13.
The in vitro affinity of metals for metallothionein (MT) is Zn less than Cd less than Cu less than Hg. In a previous study Cd(II) and Hg(II) displaced Zn(II) from rat hepatic Zn7-MT in vivo and ex vivo (Day et al., 1984, Chem. Biol. Interact. 50, 159-174). The ability of Cd(II) or Hg(II) to displace Zn(II) and/or Cu(II) from metallothionein in copper-preinduced rat liver (Zn, Cu-MT) was assessed. Cd(II) and Hg(II) can displace zinc from (Zn, Cu)-MT both in vivo and ex vivo. The in vitro displacement of copper from MT by Hg(II) was not confirmed in vivo and ex vivo. Cd(II) treatment did not alter copper levels in (Zn, Cu)-MT, as expected. Hg(II) treatment, however, did not decrease copper levels in MT, but rather increased them. The sum of the copper increase and mercury incorporation into MT matched the zinc decrease under in vivo conditions and actually exceeded the zinc decrease under ex vivo conditions. Short-term exposure of rat liver to exogenous metals can result in incorporation of these metals into MT by displacement of zinc from pre-existing MT. Displacement of copper from pre-existing MT by mercury, as predicted by in vitro experiments, was not confirmed under the conditions of our in vivo and ex vivo experiments. This result is explainable based on the differing affinities and/or preferences of the two metal clusters in MT.  相似文献   

14.
NADPH-cytochrome c reductase of vitamin D3-deficient chick kidney mitochondria has been purified approximately 1100-fold to a specific activity of 788 nmol cytochrome c reduced/min/mg protein. Analytical gel electrophoresis of the purified enzyme revealed two bands when stained for protein, but only the more anodic band demonstrated NADPH-tetrazolium reductase activity. The relative ease of solubilization of the reductase without the use of lipases, proteases, or detergents was the first line of evidence that suggested a novel mitochondrial localization for this previously unreported NADPH-linked cytochrome c reductase. The apparent properties of the reductase suggest that the enzyme is a component of kidney mitochondrial outer membrane. The kinetic determination of Michaelis constants with respect to NADPH, cytochrome c, and NADH gave the following values: KmNADPH = 1.7 μM, Kmcytc = 3.4 μM, and KmNADH = 20 mM. These constants were different from those of the intact kidney microsomal reductase: KmNADPH = 5.5 μM, Kmcytc = 10.5 μM, and KmNADH = 13.3 μM. The mitochondrial as well as the intact microsomal reductases exhibited a ping-pong kinetic mechanism for NADPH-mediated cytochrome c reduction. Spectrofluorometric measurements demonstrated the presence of equimolar amounts of FAD and FMN. The oxidized enzyme has absorption maxima at 280 and 450 nm with a shoulder at 415 nm. Upon reduction with NADPH a distinct loss in the 450-nm absorption was observed. Ouchterlony immunodiffusion studies with rabbit antiserum to chick renal mitochondrial ferredoxin did not reveal cross-reactivity when the purified reductase was the antigen. This excludes the involvement of a ferredoxin-type iron-sulfur protein in the NADPH-mediated reduction of cytochrome c by the purified reductase.  相似文献   

15.
Zinc (Zn) deficiency in utero has been shown to cause a variety of disease states in children in developing countries, which prompted us to formulate the hypothesis that fetal epigenetic alterations are induced by zinc deficiency in utero. Focusing on metallothionein (MT), a protein that contributes to Zn transport and homeostasis, we studied whether and how the prenatal Zn status affects gene expression. Pregnant mice were fed low-Zn (IU-LZ, 5.0 μg Zn/g) or control (IU-CZ, 35 μg Zn/g) diet ad libitum from gestation day 8 until delivery, with a regular diet thereafter. Bisulfite genomic sequencing for DNA methylation and chromatin immunoprecipitation assay for histone modifications were performed on the MT2 promoter region. We found that 5-week-old IU-LZ mice administered cadmium (Cd) (5.0 mg/kg b.w.) have an elevated abundance of MT2 mRNA compared with IU-CZ mice. Alteration of histone modifications in the MT2 promoter region having metal responsive elements (MREs) was observed in 1-day-old and 5-week-old IU-LZ mice compared with IU-CZ mice. In addition, prolongation of MTF1 binding to the MT2 promoter region in 5-week-old IU-LZ mice upon Cd exposure is considered to contribute to the enhanced MT2 induction. In conclusion, we found for the first time that Zn deficiency in utero induces fetal epigenetic alterations and that these changes are being stored as an epigenetic memory until adulthood.  相似文献   

16.
Cd is one of the most common pollutants in the environment that also induces the apoptosis. To explore the mechanism of apoptosis in the hepatopancreas, freshwater crab S . henanense were treated with 0, 3.56, 7.12, 14.25, 28.49 and 56.98 mg/L Cd for 72 h. Apoptosis was noticeable in every treatment group and necrosis was observed clearly in the high concentration Cd groups. Classical apoptotic bodies were found by transmission electronic microscopy, which revealed chromatin condensation under nuclear membrane and mitochondrial membrane rupture. An increasing number of autolysosomes, damaged rough endoplamic reticulum and Golgi complex were observed as the Cd concentration increase. Brown colored apoptotic cells were detected by the TUNEL test in all Cd-treatment groups. The apoptosis index increased following the elevation of Cd concentration and got 32.9% in the highest Cd group. Caspase-9 and caspase-3 activities increased in the lower Cd treatment groups but no changes in the higher Cd concentration groups (comparing to the control group). The activity of caspase-8 did not change significantly. No significant change in the content of mitochondrial cytochrome c (cyt c) in Cd exposed groups except the decrease in the 56.98 mg/L group. In crabs treated with 3.56, 7.12 and 14.25 mg/L Cd, hyperpolarization of mitochondrial membrane potential (Δψ m) significantly increased. These results implied that apoptosis in the hepatopancreas induced by Cd occurrs through the mitochondrial caspase-dependent pathway. However, whether there are other apoptotic pathways needs to be studied further.  相似文献   

17.
Bovine diabetogenic protein has been further purified by gel filtration yielding a fraction (Mr 25 000–28 000) having increased diabetogenic and in vitro lipolytic activity. Using rat epididymal fat pads, this fraction was shown to be lipolytic at concentrations as low as 1–10 μg/ml. The in vitro lipolytic effect was unaffected by the nutritional state of the animals, was not potentiated by dexamethasone, could be demonstrated in the presence and absence of glucose and was not mediated by α- and β-adrenergic receptors. A lag phase of > 1 h was observed before diabetogenic protein induced lipolysis occurred, suggesting that protein synthesis might be involved. Cycloheximide (10 μg/ml), added initially, prevented the diabetogenic protein-induced lipolysis. This direct effect of the purified protein on adipose tissue helps explain the elevation of free fatty acids seen when bovine diabetogenic hormone is administered in vivo and suggests that this anterior pituitary protein may be a new lipid-mobilizing hormone.  相似文献   

18.
The impact on palmiped Cairina moschata of two levels of dietary cadmium (Cd) contamination (C1: 1 mg kg−1 and C10: 10 mg kg−1) was investigated on liver gene expression by real-time PCR. Genes involved in mitochondrial metabolism, in antioxidant defences, detoxification and in DNA damage repair were studied. Metallothionein (MT) protein levels and Cd bioaccumulation were also investigated in liver, kidneys and muscle. Male ducks were subjected to three periods of exposure: 10, 20 and 40 days. Cd was mainly bioaccumulated in kidneys first and in liver. The concentrations in liver and kidneys appeared to reach a stable level at 20 days of contamination even if the concentrations in muscle still increased. Cd triggered the enhancement of mitochondrial metabolism, the establishment of antioxidant defences (superoxide dismutase Mn and Cu/Zn; catalase) and of DNA repair from 20 days of contamination. Discrepancies were observed in liver between MT protein levels and MT gene up-regulation. MT gene expression appeared to be a late hour biomarker.  相似文献   

19.
Cadmium (Cd) is an important industrial and environmental pollutant. In animals, the liver is the major target organ of Cd toxicity. In this study, rat hepatocytes were treated with 2.5~10 μM Cd for various durations. Studies on nuclear morphology, chromatin condensation, and apoptotic cells demonstrate that Cd concentrations ranging within 2.5~10 μM induced apoptosis. The early-stage marker of apoptosis, i.e., decreased mitochondrial membrane potential, was observed as early as 1.5 h at 5 μM Cd. Significant (P?P?2+ concentration ([Ca2+] i ) of Cd-exposed cells significantly increased (P?2+] i may play an important role in apoptosis. Overall, these results showed that oxidative stress and Ca2+ signaling were critical mediators of the Cd-induced apoptosis of rat hepatocytes.  相似文献   

20.
The effects of acriflavine on the fine structure and function of the mitochondria and the kinetoplast in Crithidia fasciculata have been investigated. A mitochondrial fraction was prepared by differential centrifugation of cells broken by grinding with neutral alumina. Isolated mitochondria or intact cells revealed by spectrophotometric measurements the presence of cytochromes a + a 3, b, c 555 and o. After cells were grown in acriflavine for 3–4 days, the fine structure of the mitochondria and their cytochrome content were affected. Cells grown in 5.0 µM acriflavine had a threefold decrease in cytochrome a + a 3 and decreased respiratory activity. The mitochondrial preparation from these cells had a fivefold decrease in cytochrome a + a 3 and a less but significant decrease of other cytochromes present. There was also a decrease in the mitochondrial enzyme activities of NADH, succinic and L-α-glycerophosphate oxidases, and succinic and L-α-glycerophosphate dehydrogenases. Dyskinetoplastic cells could be demonstrated after growth in 1.0 µM acriflavine. At 5 µM, 80–90% of the cells were dyskinetoplastic. The kinetoplastic DNA was condensed, nonfibrillar, and did not incorporate thymidine-3H. The mitochondria in these cells had few cristae and were shorter and more swollen than the controls. Acriflavine may induce the fine structure effects we have observed and may affect the formation of the mitochondria in C. fasciculata.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号