首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An analysis of flows through primary root and first node root tissues of plants grown under conditions of salinity and nutrient deficiency induced by temperature gradients was carried out using. a mathematical model. The results obtained show that high KNO3 concentration in Knop’s nutrient solution (salinity) causes an inhibition of volume and heat flows and that the omission of KNO3 from Knop’s nutrient solution (deficiency) stimulates these flows. The causes of the inhibition lay in the fact that salinity reduced hydraulic, electric, and osmotic conductivity when compared with the control (Knop’s solution), but relative to nutrient deficiency, it increased osmotic conductivity, electrodiffusion, diffusion, and filtration of heat flow induced by the electric and heat power. The causes of the stimulation were that deficiency partially decreased conductivities, similarly as salinity when compared with the control, and also decreased osmotic abilities of the system. By contrast, it increased heat conductivity and corresponding filtrations (diffusion-thermal, thermoosmotic). In first node root tissues, it increased all conductivities with the exception of electric conductivity, then osmotic, electroosmotic, diffusion, electrodiffusion, and filtration of heat flow and current flow, that is the number of possible ways of solution transport through root tissues increased. Part II.  相似文献   

2.
The root pressure probe was used for the first time to measure the hydraulic properties of entire root systems of youngPicea abies. Hydraulic conductance was measured by osmotic and hydrostatic pressure relaxation techniques. Osmotic experiments were conducted by changing the nutrient solution and hydrostatic experiments by causing flow across the root with the pressure probe and with external pressure applied to the root system or to the cut stem of the excised root system. Usually,Picea abies root systems did not develop appreciable root pressure (< 0.02 MPA) and could be induced to reach a root pressure of 0.07 MPa by treating with KNO3. In general, hydraulic conductance of the root system was large, but it was much smaller in the osmotic than in the hydrostatic experiments. Both hydrostatic techniques gave similar results. The results were explainable by a composite transport model of the root.  相似文献   

3.
Water relations, mineral composition, growth and root morphology were studied in pepper plants (Capsicum annuum L. cv California Wonder). Two NaCl concentrations (30 and 60 mM) and two nutrient solutions in which the concentrations of macronutrients were increased were used to assess the ionic and osmotic effects of NaCl in these plants. The hydraulic conductivity (Lo), stomatal conductance (gs), percentage of open stomata and pressure potential (Ψp) decreased with all treatments, in a similar way for 30 mM NaCl and for its iso-osmotic solution of macronutrients, however, the decrease was higher for 60 mM NaCl than for its iso-osmotic solution. Ion analyses also revealed that nutrient concentrations were altered greatly at 60 mM NaCl. Also, changes in morphology, such as increases in cortex cell size and in intercellular spaces, were detected. Therefore, at low salinity, the effect of NaCl was mainly osmotic, however, under higher salinity also the toxicity of Na+ and Cl participate.  相似文献   

4.
采用压力室和冰点渗透压计测定了三角叶滨藜在不同浓度NaCl的根系环境溶液中根木质部的压力势和伤流液的渗透势,并利用原子吸收分光光度计测定了植株和伤流液以及环境溶液中Na 含量。结果表明:随着根环境溶液NaCl浓度的增加,三角叶滨藜植株和木质部伤流液中Na 含量虽呈上升趋势,但根系的过滤系数和体内Na 相对累积量逐渐降低,说明三角叶滨藜根细胞对盐分有很强的过滤作用;木质部伤流液的渗透势随着环境溶液渗透势的降低而降低,但根木质部溶液的水势则逐渐高出根外环境溶液的渗透势;表明三角叶滨藜能够利用较低的木质部负压来抵抗根外溶液的低渗透势而反渗透吸水,并利用根细胞对盐分的过滤作用来避免从环境摄取过量的盐分。  相似文献   

5.
Soil water cotent and salinity levels are seldom uniform inthe field, particularly with the use of micro-irrigation systemsthat may water only a portion of the root zone. For studyingnon-uniform salinity, a split-root experiment was designed toevaluate growth and water relations when half of the root systemof sour orange (Citrus aurantium) seedlings was stressed withsodium chloride (NaCl) or polyethylene glycol (PEG). This studyalso determined if non-stressed portions of the root systemcompensated for the decrease in water uptake by the stressedportions. One or both halves of the root system were treated for fourmonths with nutrient solution adjusted with NaCl or PEG to osmoticpotentials of –0.10, –0.20, or –0.35 MPa.Shoot dry weight was reduced by only 9% when half of the rootsystem was irrigated with saline solution at –0.10 MPa,but with both halves of the root system at –0.10 MPa,shoot and root dry weights were reduced as much as 45%. Similarly,leaf water and osmotic potentials were also more disturbed underuniform salinity than under non-uniform salinity conditions. Plant growth, leaf water potential, osmotic potential, stomatalconductance, and evapotranspiration decreased with increasingNaCl and PEG concentrations in the nutrient solution. Turgorpotential and leaf thickness increased in response to NaCl treatments.Microscopic examination showed that the increase in leaf thicknesswas due to the development of larger cells in the spongy mesophyll. Shoot growth did not correlate with the average osmotic potentialof the two root halves. Seedlings with one stressed half-rootsystem had shoot dry weight and leaf water potential valuescloser to those of the non-stressed control than to those withthe completely stressed root system. Key words: Non-uniform salinity, water relations, citrus  相似文献   

6.
The addition of 10 mM KNO3 to the solution bathing the roots of young nitrogen-starved seedlings of Zea mays L. enhanced root water transfer within 15 h, compared with 10 mM KCl addition. The free exudation flux was 2.2–3.9 times higher in excised KNO3-treated roots than in KCl-treated ones. Cryo-osmometry data for xylem sap suggested that, compared with chloride, nitrate treatment increased the steady solute flux into the xylem, but did not modify the osmotic concentration of sap. Root growth was not significantly modified by nitrate within 15 h. Root hydraulic conductances were measured by using either hydrostatic-pressure or osmotic-gradient methods. During hydrostatic experiments, the conductance (kp), which is thought to refer mainly to the apoplasmic pathway, was 1.6 times larger in KNO3-than in KCl-treated plants. From experiments in which polyethylene glycol (PEG) 8000 was used as external osmolyte, osmotic conductances (ks) were found to be smaller by 5–20 times than kp for the two kinds of plants. The KCl-treated roots were characterized by a low ks which was the same for influx or efflux of water. By contrast, KNO3-treated roots exhibited two distinct conductances ks1 and ks2, indicating that influx of water was easier than efflux when the water flow was driven by the osmotic pressure gradient. Infiltration of roots with KNO3 solution supported the idea that nitrate might enhance the efficiency of the cell-to-cell pathway. The low ks value of KCl-treated roots and the existence of two contrasting ks values (ks1 and ks2) for KNO3-treated roots are discussed in terms of reversible closing of water channels.  相似文献   

7.
We measured the content of hormones, the rate of growth, and some parameters of water regime (water content, transpiration, and stomatal and hydraulic conductivities) one and two days after wheat plant transfer from 10 to 1% Hoagland-Arnon nutrient medium. It was shown that, a day after dilution of nutrient solution, the content of various cytokinin forms decreased in the xylem sap, shoots, and roots. This decrease was most pronounced in the case of zeatin in the xylem sap and zeatin riboside in the mature zone of the first leaf. ABA was found to accumulate in shoots. A day after dilution of nutrient solution, we observed root elongation evidently induced by mineral nutrient deficiency, and this accelerated root growth was maintained later. Two days after dilution of nutrient solution, we observed the slowing of shoot weight accumulation, whereas root weight remained unchanged. Plant growth response could be related to ABA accumulation in shoots and cytokinin depletion in the whole plant. A reduced hydraulic conductivity and water content in the growing leaf zone was detected only two days after dilution of nutrient solution. Thus, changes in the growth rates and hormone contents could not result from disturbances in water regime induced by mineral nutrient deficiency.  相似文献   

8.
On the basis of proportionality between flow and its conjugated force a mathematical model for volume, current and osmotic flows was designed and a method for the experimental measurement of flows, the transbarrier (trans-segmental) potential and the rate of flow was devised. The results obtained experimentally as well as using the mathematical model indicate that the plant root is differentiated not only according to localization, but also according to the conductivity, permeability and selectivity of these tissues.  相似文献   

9.
A root pressure probe has been used to measure the root pressure (Pr) exerted by excised main roots of young maize plants (Zea Mays L.). Defined gradients of hydrostatic and osmotic pressure could be set up between root xylem and medium to induce radial water flows across the root cylinder in both directions. The hydraulic conductivity of the root (Lpr) was evaluated from root pressure relaxations. When permeating solutes were added to the medium, biphasic root pressure relaxations were observed with water and solute phases and root pressure minima (maxima) which allowed the estimation of permeability (PSr) and reflection coefficients (σsr) of roots. Reflection coefficients were: ethanol, 0.27; mannitol, 0.74; sucrose, 0.54; PEG 1000, 0.82; NaCl, 0.64; KNO3, 0.67, and permeability coefficients (in 10−8 meters per second): ethanol, 4.7; sucrose, 1.6; and NaCl, 5.7. Lpr was very different for osmotic and hydrostatic gradients. For hydrostatic gradients Lpr was 1·10−7 meters per second per megapascal, whereas in osmotic experiments the hydraulic conductivity was found to be an order of magnitude lower. For hydrostatic gradients, the exosmotic Lpr was about 15% larger than the endosmotic, whereas in osmotic experiments the polarity in the water movement was reversed. These results either suggest effects of unstirred layers at the osmotic barrier in the root, an asymmetrical barrier, and/or mechanical effects. Measurements of the hydraulic conductivity of individual root cortex cells revealed an Lp similar to Lpr (hydrostatic). It is concluded that, in the presence of external hydrostatic gradients, water moves primarily in the apoplast, whereas in the presence of osmotic gradients this component is much smaller in relation to the cell-to-cell component (symplasmic plus transcellular transport).  相似文献   

10.
The interactions between NaCl and other major nutrients have been generally observed in plants. Decreases of nutrient uptake under saline conditions normally appear in tomato plants grown under saline conditions. In this work, the effect of increased external Ca, K and Mg concentrations under saline conditions has been investigated. Tomato plants (Lycopersicon esculentum, Mill) were grown in a greenhouse, in 120 L capacity containers, filled with continuously aerated Hoagland nutrient solution. Treatments were added to observe the combined effect of two NaCl levels (30 and 60 mM) and three levels of Ca, K and Mg (in mM ratios of 4:6:1, 7:9:2 and 10:12:3; treatments C1, C2 and C3 respectively) on growth, fruit yield and water relations. Saline treatments decreased the growth, which was partly restored with the C2 treatment and totally with the C3 treatment. A good association was observed between the electric conductivity of the medium and the water or osmotic potential of the leaves, independent of the type of treatment (salinity or cation ratio). Salinity at 30 and 60 mM NaCl reduced the fruit yield compared with that obtained at 0 mM NaCl. However, there was an increase, as a consequence of the application of treatments C2 and C3, in each saline treatment. At a high salinity level (60 mM), the ratios Na/K, Na/Ca and Na/Mg in young leaves decreased as a consequence of cation treatments. Higher concentrations of sugars in leaves and fruits were obtained after increasing the salinity and cation concentrations. Also, sucrose phosphate synthase activity in leaves and fruits was increased after the treatments, but there was no measurable invertase activity in fruits. Therefore, the concentrations of Ca, K and Mg in the nutrient solution could be important factors in the hydroponic culture of tomato grown under saline conditions.  相似文献   

11.
Hordeum maritimum (Poacea) is a facultative halophyte potentially useful for forage production in saline zones. Here, we assessed whether moderate NaCl-salinity can modify the plant response to phosphorus (P) shortage. Plants were cultivated for 55 days under low or sufficient P supply (5 or 60 μmol plant−1 week−1 KH2PO4, respectively), with or without 100 mM NaCl. When individually applied, salinity and P deficiency significantly restricted whole-plant growth, with a more marked effect of the latter stress. Plants subjected to P deficiency showed a significant increase in root growth (as length and dry weight) and root/shoot DW ratio. Enhanced root growth and elongation presumably correspond to the well-known root adaptive response to mineral deficiency. However, leaf relative water content, leaf P concentration, and leaf gas exchange parameters were significantly restricted. The interactive effects of salinity and P deficiency were not added one to another neither on whole plant biomass nor on plant nutrient uptake. Indeed, 100 mM NaCl-addition to P-deficient plants significantly restored the plant growth and improved CO2 assimilation rate, root growth, K+/Na+ ratio and leaf proline and soluble sugar concentrations. It also significantly enhanced leaf total antioxidant capacity and leaf anthocyanin concentration. This was associated with significantly lower leaf osmotic potential, leaf Na+ and malondialdehyde (MDA) concentration. Taken together, these results suggest that mild salinity may mitigate the adverse effects of phosphorus deficiency on H. maritimum by notably improving the plant photosynthetic activity, the osmotic adjustment capacity, the selective absorption of K+ over Na+ and antioxidant defence.  相似文献   

12.
The size of the spring barley root system was studied on the basis of its electric capacity in plants grown in nutrient solutions either lacking or containing nitrogen in the form of nitrate or ammonium. Root electric capacity changed in dependence on nutrition from Day 12 after emergence, when F values increased in the root systems of plants exposed to nitrate and ammonium salts. In plants grown in H2O, the values of electric capacity statistically significantly decreased on Days 15 to 17, in plants grown in PK solution lacking nitrogen on Day 20. Root electric capacity of plants grown in full nutrient solution gradually increased on Day 18 after emergence. Then a marked increase in root electric capacity values followed with no statistically significant differences between NH4 + and NO3 - nutrition. Nitrate nutrition of barley plants only resulted in an increased root to shoot mass ratio.  相似文献   

13.
The effects of anoxia on water and solute transport across excised roots of young maize plants (Zea mays L. cv. Tanker) grown hydroponically have been studied. With the aid of the root pressure probe, root pressure (Pr), root hydraulic conductivity (Lpr), and root permeability (Psr), and reflection ( sr) coefficients were measured using potassium nitrate (a typical nutrient salt) and sodium nitrate (an atypical nutrient salt) as solutes. During a period of 10–15 h, anaerobic treatment (0.0–0.2 g O2·m-3 in root medium) caused a decrease of root pressure by 0.01–0.28 MPa (by 10–80% of original root pressure) after a short transient increase. For a time period of 5 h, the decrease in the stationary root pressure was not reversible. Under anaerobic conditions, roots still behaved like osmometers and were not leaky. The root hydraulic conductivity measured in osmotic experiments (osmotic solute: NaNO3) was smaller by one to two orders of magnitude than that measured in the presence of hydrostatic gradients. Both the osmotic and hydrostatic hydraulic conductivity decreased during anaerobic treatment by 28 and 44%, respectively, at a constant reflection coefficient of the solutes ( sr=0.3–1.0). As with root pressure, changes in root permeability to water and solutes were not reversible within 5 h. Under aerobic conditions and at low external concentrations (31–59 mOsmol·kg-1), osmotic response curves were monophasic for KNO3, i.e. there was no passive uptake of solutes. Response curves became biphasic at higher concentrations (100–150 mOsmol·kg-1)- For NaNO3, response curves were biphasic at all concentrations. Presumably, this pattern was a consequence of the fact that potassium had already accumulated in the xylem. During anoxia, accumulation of potassium in the xylem was reduced, and biphasic responses were also obtained at lower potassium concentrations applied to the medium. The results are discussed in terms of a pump/leak model of the root in which anoxia affects both the active ion pumping and the permeability of the root to nutrient salts (leakage). The effects of anaerobiosis on the passive transport properties of the root (Lpr, Psr, sr) are in line with the recently proposed composite transport model of the root.Abbreviations and Symbols Ar root surface area - Lpr root hydraulic conductivity - Lprh hydrostatic hydraulic conductivity of root - Lpro osmotic hydraulic conductivity of root - Pr root pressure - Psr permeability coefficient of root - sr reflection coefficient of root The authors thank Mr. Walter Melchior for the curve-fitting program used to work out Lprh values from root pressure relaxations and Mr. Mohammad Hajirezai (Lehrstuhl für Pflanzenphysiologie, Universität Bayreuth) for making the ATP measurements. The assistance of Mrs. Libuse Badewitz in making the drawings and the technical help of Mr. Burkhard Stumpf are also gratefully acknowledged.  相似文献   

14.
Water uptake by roots: effects of water deficit   总被引:35,自引:0,他引:35  
The variable hydraulic conductivity of roots (Lp(r)) is explained in terms of a composite transport model. It is shown how the complex, composite anatomical structure of roots results in a composite transport of both water and solutes. In the model, the parallel apoplastic and cell-to-cell (symplastic and transcellular) pathways play an important role as well as the different tissues and structures arranged in series within the root cylinder (epidermis, exodermis, cortex, endodermis, stelar parenchyma). The roles of Casparian bands and suberin lamellae in the root's endo- and exodermis are discussed. Depending on the developmental state of these apoplastic barriers, the overall hydraulic resistance of roots is either more evenly distributed across the root cylinder (young unstressed roots) or is concentrated in certain layers (exo- and endodermis in older stressed roots). The reason for the variability of root Lp(r), is that hydraulic forces cause a dominating apoplastic flow of water around protoplasts, even in the endodermis and exodermis. In the absence of transpiration, water flow is osmotic in nature which causes a high resistance as water passes across many membranes on its passage across the root cylinder. The model allows for a high capability of roots to take up water in the presence of high rates of transpiration (high demands for water from the shoot). By contrast, the hydraulic conductance is low, when transpiration is switched off. Overall, this results in a non-linear relationship between water flow and forces (gradients of hydrostatic and osmotic pressure) which is otherwise hard to explain. The model allows for special root characteristics such as a high hydraulic conductivity (water permeability) in the presence of a low permeability of nutrient ions once taken up into the stele by active processes. Low root reflection coefficients are in line with the idea of some apoplastic bypasses for water within the root cylinder. According to the composite transport model, the switch from the hydraulic to the osmotic mode is purely physical. In the presence of heavily suberized roots, the apoplastic component of water flow may be too small. Under these conditions, a regulation of radial water flow by water channels dominates. Since water channels are under metabolic control, this component represents an 'active' element of regulation. Composite transport allows for an optimization of the water balance of the shoot in addition to the well-known phenomena involved in the regulation of water flow (gas exchange) across stomata. The model is employed to explain the responses of plants to water deficit and other stresses. During water deficit, the cohesion-tension mechanism of the ascent of sap in the xylem plays an important role. Results are summarized which prove the validity of the coehesion/tension theory. Effects of the stress hormone abscisic acid (ABA) are presented. They show that there is an apoplastic component of the flow of ABA in the root which contributes to the ABA signal in the xylem. On the other hand, (+)-cis-trans-ABA specifically affects both the cell level (water channel activity) and water flow driven by gradients in osmotic pressure at the root level which is in agreement with the composite transport model. Hydraulic water flow in the presence of gradients in hydrostatic pressure remains unchanged. The results agree with the composite transport model and resemble earlier findings of high salinity obtained for the cell (Lp) and root (Lp(r)) level. They are in line with known effects of nutrient deprivation on root Lp(r )and the diurnal rhythm of root Lp(r )recently found in roots of LOTUS.  相似文献   

15.
Apoplastic transport across young maize roots: effect of the exodermis   总被引:27,自引:0,他引:27  
The uptake of water and of the fluorescent apoplastic dye PTS (trisodium 3-hydroxy-5,8,10-pyrenetrisulfonate) by root systems of young maize (Zea mays L.) seedlings (age: 11–21 d) has been studied with plants which either developed an exodermis (Casparian band in the hypodermis) or were lacking it. Steady-state techniques were used to measure water uptake across excised roots. Either hydrostatic or osmotic pressure gradients were applied to induce water flows. Roots without an exodermis were obtained from plants grown in hydroponic culture. Roots which developed an exodermis were obtained using an aeroponic (=mist) cultivation method. When the osmotic concentration of the medium was varied, the hydraulic conductivity of the root (Lp r in m3 · m−2 · MPa−1 · s−1) depended on the osmotic pressure gradient applied between root xylem and medium. Increasing the gradient (i.e. decreasing the osmotic concentration of the medium; range: zero to 40 mM of mannitol), increased the osmotic Lp r. In the presence of hydrostatic pressure gradients applied by a pressure chamber, root Lp r was constant over the entire range of pressures (0–0.4 MPa). The presence of an exodermis reduced root Lp r in hydrostatic experiments by a factor of 3.6. When the osmotic pressure of the medium was low (i.e. in the presence of a strong osmotic gradient between xylem sap and medium), the presence of an exodermis caused the same reduction of root Lp r in osmotic experiments as in hydrostatic ones. However, when the osmotic concentration of the medium was increased (i.e. the presence of low gradients of osmotic pressure), no marked effect of growth conditions on osmotic root Lp r was found. Under these conditions, the absolute value of osmotic root Lp r was lower by factors of 22 (hydroponic culture) and 9.7 (aeroponic culture) than in the corresponding experiments at low osmotic concentration. Apoplastic flow of PTS was low. In hydrostatic experiments, xylem exudate contained only 0.3% of the PTS concentration of the bathing medium. In the presence of osmotic pressure gradients, the apoplastic flow of PTS was further reduced by one order of magnitude. In both types of experiments, the development of an exodermis did not affect PTS flow. In osmotic experiments, the effect of the absolute value of the driving force cannot be explained in terms of a simple dilution effect (Fiscus model). The results indicate that the radial apoplastic flows of water and PTS across the root were affected differently by apoplastic barriers (Casparian bands) in the exodermis. It is concluded that, unlike water, the apoplastic flow of PTS is rate-limited at the endodermis rather than at the exodermis. The use of PTS as a tracer for apoplastic water should be abandoned. Received: 9 October 1997 / Accepted: 5 February 1998  相似文献   

16.
Wheat (Triticum aestivum L.) was grown in nutrient solution with low or high N supply (NH4NO3 as N source). To further evaluate the influence of N form and its interaction with the nutrient solution pH, wheat plants were grown with NH 4 + or NO 3 - either in an conventional nutrient solution or in a nutrient solution in which the pH was maintained at pH 6.5 using a pH-stat system. The nutrient solution was inoculated with Pseudomonas fluorescens 2-79RLI, a genetically modified bacterium that contains lux genes activated by a ribosomal promoter. Cell numbers and physiological status of P. fluorescens 2-79RLI (length of the lag phase of bioluminescence) in the rhizosphere were determined at the root tip and in the lateral root zone. Nitrogen deficiency decreased both plant growth and root colonization by P. fluorescens 2-79RLI at the root tip while it had no effect on root colonization in the lateral root zone. The physiological status of P. fluorescens 2-79RLI was not affected by nitrogen deficiency. Ammonium nutrition increased root colonization by P. fluorescens 2-79RLI at the root tip and in the lateral root zone when the pH of the nutrient solution was allowed to change according to the N form provided. Under these conditions, the physiological status of P. fluorescens 2-79RLI was higher in the lateral root zone than at the root tip. In contrast, N source had no effect on root colonization or physiological status of P. fluorescens 2-79RLI in the nutrient solution maintained at pH 6.5. It is concluded that the stimulation of root colonization by NH 4 + in the nutrient solution, not maintained at a constant pH, may be due to increased leakage of solutes into the rhizosphere as a result of impaired exudate retention by high H+ concentration in the rhizosphere or the apoplast. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

17.
The effect of salinity and calcium levels on water flows and on hydraulic parameters of individual cortical cells of excised roots of young maize (Zea mays L. cv Halamish) plants have been measured using the cell pressure probe. Maize seedlings were grown in one-third strength Hoagland solution modified by additions of NaCl and/or extra calcium so that the seedlings received one of four treatments: control; +100 millimolar NaCl; +10 millimolar CaCl2; +100 millimolar NaCl + 10 millimolar CaCl2. From the hydrostatic and osmotic relaxations of turgor, the hydraulic conductivity (Lp) and the reflection coefficient (σs) of cortical cells of different root layers were determined. Mean Lp values in the different layers (first to third, fourth to sixth, seventh to ninth) of the four different treatments ranged from 11.8 to 14.5 (Control), 2.5 to 3.8 (+NaCl), 6.9 to 8.7 (+CaCl2), and 6.6 to 7.2 · 10−7 meter per second per megapascal (+NaCl + CaCl2). These results indicate that salinization of the growth media at regular calcium levels (0.5 millimolar) decreased Lp significantly (three to six times). The addition of extra calcium (10 millimolar) to the salinized media produced compensating effects. Mean cell σs values of NaCl ranged from 1.08 to 1.16, 1.15 to 1.22, 0.94 to 1.00, and 1.32 to 1.46 in different root cell layers of the four different treatments, respectively. Some of these σs values were probably overestimated due to an underestimation of the elastic modulus of cells, σs values of close to unity were in line with the fact that root cell membranes were practically not permeable to NaCl. However, the root cylinder exhibited some permeability to NaCl as was demonstrated by the root pressure probe measurements that resulted in σsr of less than unity. Compared with the controls, salinity and calcium increased the root cell diameter. Salinized seedlings grown at regular calcium levels resulted in shorter cell length compared with control (by a factor of 2). The results demonstrate that NaCl has adverse effects on water transport parameters of root cells. Extra calcium could, in part, compensate for these effects. The data suggest a considerable apoplasmic water flow in the root cortex. However, the cell-to-cell path also contributed to the overall water transport in maize roots and appeared to be responsible for the decrease in root hydraulic conductivity reported earlier (Azaizeh H, Steudle E [1991] Plant Physiol 97: 1136-1145). Accordingly, the effect of high salinity on the cell Lp was much larger than that on root Lpr.  相似文献   

18.
Arahou  M.  Diem  H.G. 《Plant and Soil》1997,196(1):71-79
The effect of iron deficiency, phosphorus, NaHCO3, chelator supply and nitrogen source on the formation of cluster (proteoid) roots was investigated in Casuarina glauca growing in water culture. The addition of iron-binding chelators (e.g. EDDHA, DTPA, EDTA) or increase in nutrient solution pH with NaHCO3 resulted in the formation of cluster roots when plants were grown in solution lacking iron. Phosphorus supply even at a concentration of 500 µM did not inhibit cluster root formation if EDDHA was added to the iron-deficient medium. Cluster root formation was influenced significantly by nitrogen source and occurred only in nitrate-fed plants.C. glauca seemed to be very sensitive to iron deficiency as shown by plant chlorosis when grown on alkaline soil. The symptoms of chlorosis decreased as the chlorophyll content in shoots and the number of cluster roots increased, suggesting that the alleviation of iron deficiency in plant tissues was correlated with cluster root formation. It appears that iron deficiency is more important than phosphorus deficiency in inducing the formation of cluster roots in C. glauca.  相似文献   

19.
Incubation of 5-d-old maize seedlings in the half-strength Hoagland's nutrient solution containing 10 mM KNO3 with FeCl3 or FeSO4 (0.5 or 2.0 mM) caused a significant increase in nitrate reductase (NR) activity and slightly increased total protein content in root, shoot and scutellum. In case of root, NADPH:NR activity was inhibited contrary to the NADH:NR activity. In spite of NR activity, nitrate uptake was inhibited from 13 to 37 % by the iron. The results presented demonstrate an isoform specific, organ specific, and to some extent salt specific responses of NR to iron.  相似文献   

20.
Exposure of plant tissues to nitrite ion or nitrite-derived NO at acidic pH results in the degradation of important macromolecules and may lead to the formation of reactive molecular species. Polyamines as free radical scavengers protect plant tissues against membrane and DNA damage during stress and may contribute to the acclimation processes caused by nitrite as an abiotic stressor at acidic pH. The putrescine content of wheat roots grown under low salt conditions increased only transiently at pH 7.0 when the nutrient solution was replaced by 1mM KNO2, KNO3, NaNO2 or NaNO3, but the concentration of this diamine remained high after a 24-hour incubation at pH 4.0. The acid stress-induced putrescine accumulation was further enhanced by an external N source, especially by nitrite. The contents of spermine and spermidine in the 24-hour samples were also higher in N-supplied roots at acidic pH. Polyamine contents were not closely correlated with the ethylene production by the intact roots. Nitrite treatment, however, significantly decreased the ethylene release from the root apex, but not from the basal parts at pH 4.0. The peroxidative capacities of the tissues in the soluble fractions were also inhibited by nitrite in the apical zones, which might modify the H2O2-coupled oxidative processes. Nitrite ion at acidic pH may react directly with guaiacol-like phenolic compounds and in this way interfere with the lignification process. The low ethylene release by the apical zones in acidic environment may be a symptom of the nitrite-induced inhibition of root extension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号