首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Abstract

We propose that the angular unfolding of atomic density distributions exposes some main features of liquid structure. Examples are the mass and the angular location of major maxima. Such structural features constitute a useful starting point for the analysis of liquid structure. To demonstrate this we have analyzed a molecular dynamics trajectory of an equimolar water-acetonitrile mixture. A new method to characterize the extrema of density distributions is used for the analysis. Using this method we draw some conclusions about different types of hydrogen bonds, their lifetimes, and their associated transition probabilities. We also draw some conclusions about recurrent molecular pair configurations.  相似文献   

3.
We demonstrate a method for simultaneous structure and function determination of integral membrane proteins. Electrical impedance spectroscopy shows that Staphylococcus aureus α-hemolysin channels in membranes tethered to gold have the same properties as those formed in free-standing bilayer lipid membranes. Neutron reflectometry provides high-resolution structural information on the interaction between the channel and the disordered membrane, validating predictions based on the channel's x-ray crystal structure. The robust nature of the membrane enabled the precise localization of the protein within 1.1 Å. The channel's extramembranous cap domain affects the lipid headgroup region and the alkyl chains in the outer membrane leaflet and significantly dehydrates the headgroups. The results suggest that this technique could be used to elucidate molecular details of the association of other proteins with membranes and may provide structural information on domain organization and stimuli-responsive reorganization for transmembrane proteins in membrane mimics.  相似文献   

4.
Protein aggregation is geared by aggregation-prone regions that self-associate by β-strand interactions. Charged residues and prolines are enriched at the flanks of aggregation-prone regions resulting in decreased aggregation. It is still unclear what drives the overrepresentation of these “aggregation gatekeepers”, that is, whether their presence results from structural constraints determining protein stability or whether they constitute a bona fide functional class selectively maintained to control protein aggregation. As functional residues are typically conserved regardless of their cost to protein stability, we compared sequence conservation and thermodynamic cost of these residues in 2659 protein families in Escherichia coli. Across protein families, we find gatekeepers to be under strong selective conservation while at the same time representing a significant thermodynamic cost to protein structure. This finding supports the notion that aggregation gatekeepers are not structurally determined but evolutionary selected to control protein aggregation.  相似文献   

5.
Phylogenetic and exon–intron structure analyses of intra- and interspecific fungal subtilisins in this study provided support for a mixed model of intron evolution: a synthetic theory of introns-early and introns-late speculations. Intraspecifically, there were three phase zero introns in Pr1A and its introns 1 and 2 located at the highly conserved positions were phylogentically congruent with coding region, which is in favor of the view of introns-early speculation, while intron 3 had two different sizes and was evolutionarily incongruent with coding region, the evidence for introns-late speculation. Noticeably, the subtilisin Pr1J gene from different strains of M. ansiopliae contained different number of introns, the strong evidence in support of introns-late theory. Interspecifically, phylogenetic analysis of 60 retrievable fungal subtilisins provided a clear relationship between amino acid sequence and gene exon–intron structure that the homogeneous sequences usually have a similar exon–infron structure. There were 10 intron positions inserted by highly biased phase zero introns across examined fungal subtilisin genes, half of these positions were highly conserved, while the others were species-specific, appearing to be of recent origins due to intron insertion, in favor of the introns-late theory. High conservations of positions 1 and 2 inserted by the high percentage of phase zero introns as well as the evidence of phylogenetic congruence between the evolutionary histories of intron sequences and coding region suggested that the introns at these two positions were primordial.Reviewing Editor:Dr. Manyuan Long  相似文献   

6.
The available data suggest that epidermis is organized as a system of discrete structural–functional units (SFUs) that reproduce both in vivo and in vitro. SFUs are formed in the culture of epidermal keratinocytes via self-organization of the developing cellular elements. SFUs are capable of self-maintenance and form a niche for stem cells. At the same time, due to the maintenance of asymmetric proliferation kinetics of the stem cells, SFUs serve as a barrier to their uncontrolled replication.  相似文献   

7.
Tyrosinase inhibitors have become increasingly critical agents in cosmetic, agricultural, and medicinal products. Although a large number of tyrosinase inhibitors have been reported, almost all the inhibitors were unfortunately evaluated by using commercial available mushroom tyrosinase. Here, we examined the inhibitory effects of three isomers of thujaplicin (α, β, and γ) on human tyrosinase and analyzed their binding modes using homology model and docking studies. As the results, γ-thujaplicin was found to strongly inhibit human tyrosinase with the IC50 of 1.15 μM, extremely superior to a well-known tyrosinase inhibitor kojic acid (IC50 = 571.17 μM). MM-GB/SA binding free energy decomposition analyses suggested that the potent inhibitory activity of γ-thujaplicin may be due to the interactions with His367, Ile368, and Val377 (hot spot amino acid residues) in human tyrosinase. Furthermore, the binding mode of α-thujaplicin indicated that Val377 and Ser380 may cause van der Waals clashes with the isopropyl group of α-thujaplicin. These results provide a novel structural insight into the hot spot of human tyrosinase for the specific binding of γ-thujaplicin and a way to optimize not only thujaplicins but also other lead compounds as specific inhibitors for human tyrosinase in a rational manner.  相似文献   

8.
Targeted genetic manipulation using homologous recombination is the method of choice for functional genomic analysis to obtain a detailed view of gene function and phenotype(s). The development of mutant strains with targeted gene deletions, targeted mutations, complemented gene function, and/or tagged genes provides powerful strategies to address gene function, particularly if these genetic manipulations can be efficiently targeted to the gene locus of interest using integration mediated by double cross over homologous recombination.Due to very high rates of nonhomologous recombination, functional genomic analysis of Toxoplasma gondii has been previously limited by the absence of efficient methods for targeting gene deletions and gene replacements to specific genetic loci. Recently, we abolished the major pathway of nonhomologous recombination in type I and type II strains of T. gondii by deleting the gene encoding the KU80 protein1,2. The Δku80 strains behave normally during tachyzoite (acute) and bradyzoite (chronic) stages in vitro and in vivo and exhibit essentially a 100% frequency of homologous recombination. The Δku80 strains make functional genomic studies feasible on the single gene as well as on the genome scale1-4.Here, we report methods for using type I and type II Δku80Δhxgprt strains to advance gene targeting approaches in T. gondii. We outline efficient methods for generating gene deletions, gene replacements, and tagged genes by targeted insertion or deletion of the hypoxanthine-xanthine-guanine phosphoribosyltransferase (HXGPRT) selectable marker. The described gene targeting protocol can be used in a variety of ways in Δku80 strains to advance functional analysis of the parasite genome and to develop single strains that carry multiple targeted genetic manipulations. The application of this genetic method and subsequent phenotypic assays will reveal fundamental and unique aspects of the biology of T. gondii and related significant human pathogens that cause malaria (Plasmodium sp.) and cryptosporidiosis (Cryptosporidium).  相似文献   

9.
A diverse series of amides were evaluated for aquatic toxicity (IGC50) assessed in the Tetrahymena pyriformis population growth impairment assay and for reactivity (EC50) with the model soft nucleophile thiol in the form of the cysteine residue of the tripeptide glutathione. All alkylamides along with some halo-substituted amides are well predicted by the simple hydrophobicity (log K ow)–electrophilicity (E lumo) response-surface model [log(IGC−1 50) = 0.45(log K ow) − 0.342(E lumo) − 1.11]. However, 2-halo amides with the halogen at the end of the molecule and α,β-unsaturated primary amides are among those derivatives identified as being more toxic than predicted by the model. Amides, which exhibit excess toxicity, were capable of forming covalent bonds through an SN2 displacement or a Michael addition. Moreover, only those amides exhibiting excess toxicity were reactive with thiol, suggesting that the reactivity with model nucleophiles such as the thiol group may provide a means of accurately defining reactive toxicants.  相似文献   

10.
11.
12.
The ADAMs belong to a disintegrin-like and metalloproteinase-containing protein family that are zinc-dependent metalloproteinases. These proteins share all or some of the following domain structure: a signal peptide, a propeptide, a metalloproteinase, a disintegrin, a cysteine-rich, and an epidermal growth factor (EGF)-like domains, a transmembrane region, and a cytoplasmic tail. ADAMs are widely distributed in many organs, tissues, and cells, such as brain, testis, epididymis, ovary, breast, placenta, liver, heart, lung, bone, and muscle. These proteins are capable of four potential functions: proteolysis, adhesion, fusion, and intracellular signaling. Because the number of ADAM genes has grown rapidly and the biological functions of most members are unclear, this review analyzes the protein structures and functions, their activation and processing, their known and potential activities, and their evolutionary relationships. A sequence alignment of human ADAMs is compiled and their homology and physical data are calculated. The conceivable functions of ADAMs in reproduction, development, and diseases are also discussed.  相似文献   

13.
Tailed bacteriophages and herpesviruses consist of a structurally well conserved dodecameric portal at a special 5-fold vertex of the capsid. The portal plays critical roles in head assembly, genome packaging, neck/tail attachment, and genome ejection. Although the structures of portals from phages φ29, SPP1, and P22 have been determined, their mechanistic roles have not been well understood. Structural analysis of phage T4 portal (gp20) has been hampered because of its unusual interaction with the Escherichia coli inner membrane. Here, we predict atomic models for the T4 portal monomer and dodecamer, and we fit the dodecamer into the cryo-electron microscopy density of the phage portal vertex. The core structure, like that from other phages, is cone shaped with the wider end containing the “wing” and “crown” domains inside the phage head. A long “stem” encloses a central channel, and a narrow “stalk” protrudes outside the capsid. A biochemical approach was developed to analyze portal function by incorporating plasmid-expressed portal protein into phage heads and determining the effect of mutations on head assembly, DNA translocation, and virion production. We found that the protruding loops of the stalk domain are involved in assembling the DNA packaging motor. A loop that connects the stalk to the channel might be required for communication between the motor and the portal. The “tunnel” loops that project into the channel are essential for sealing the packaged head. These studies established that the portal is required throughout the DNA packaging process, with different domains participating at different stages of genome packaging.  相似文献   

14.
The type VI secretion system (T6SS) is a specialized macromolecular complex dedicated to the delivery of protein effectors into both eukaryotic and bacterial cells. The general mechanism of action of the T6SS is similar to the injection of DNA by contractile bacteriophages. The cytoplasmic portion of the T6SS is evolutionarily, structurally and functionally related to the phage tail complex. It is composed of an inner tube made of stacked Hcp hexameric rings, engulfed within a sheath and built on a baseplate. This sheath undergoes cycles of extension and contraction, and the current model proposes that the sheath contraction propels the inner tube toward the target cell for effector delivery. The sheath comprises two subunits: TssB and TssC that polymerize under an extended conformation. Here, we show that isolated TssB forms trimers, and we report the crystal structure of a C-terminal fragment of TssB. This fragment comprises a long helix followed by a helical hairpin that presents surface-exposed charged residues. Site-directed mutagenesis coupled to functional assay further showed that these charges are required for proper assembly of the sheath. Positioning of these residues in the extended T6SS sheath structure suggests that they may mediate contacts with the baseplate.  相似文献   

15.
The Streptococcus faecalis ND547 and Bacillus stearothermophilus 19 genes that code for DNA methyltransferases (MTases, M.) of restriction–modification (RM) systems with the same recognition sequence, 5-GCATC-3 were cloned and sequenced. The Bst19I RM system includes two MTases, M1.Bst19I and M2.Bst19I. The SfaNI RM system has only one MTase, M.SfaNI, whose N and C domains are homologous to M2.Bst19I and M1.Bst19I, respectively. Both M1.Bst19I and M2.Bst19I and the two domains of M.SfaNI contain conserved elements, which are arranged in the order characteristic of class N6-adenine MTases. The enzymes of the SfaNI and Bst19I RM systems proved to be highly homologous to their FokI and BstF5I counterparts, which was explained by the presence of the common tetranucleotide 5-GATG-3 in their recognition sites. Based on sequence homology, the spatial arrangement of highly conserved amino acid residues was determined using the known three-dimensional model of M.DpnIIA, which belongs to the same MTase class.  相似文献   

16.
It is well known that DNA folding in the eukaryotic cell nucleus is tightly coupled with the operation of epigenetic mechanisms defining the repertoires of the genes expressed in different types of cells. To understand these mechanisms, it is important to know how DNA is packaged in chromatin. About 30 years ago a hypothesis was formulated, according to which epigenetic mechanisms operate not at the level of individual genes, but rather groups of genes localized in structurally and functionally isolated genomic segments that were called structural and functional domains. The question of what exactly these domains constitute has been re-examined multiple times as our knowledge of principles of chromatin folding has changed. In this review, we discuss structural and functional genomic domains in light of the current model of interphase chromosome organization based on the results of analysis of spatial proximity between remote genomic elements.  相似文献   

17.
To develop an alternative to hyperthermia for the induction of hsp70 for presurgical cytoprotection, we investigated the optimal exposure conditions for magnetic field induction of hsp70. Normal human breast cells (HTB124) were exposed to 60-Hz magnetic fields and hsp70 levels were measured following three different exposure conditions: continuous exposure up to 3 h, a single 20-min exposure, and a single 20-min exposure followed by repeated 20-min exposures at different field strengths. In cells exposed continuously for 3 h, hsp70 levels peaked (46%) within 20 min and returned to control levels by 2 h. Following a single 20-min exposure, the return of hsp70 levels to control values extended to more than 3 h. When cells underwent a 20-min exposure followed by repeated 20-min exposures (restimulation) with different field strengths, additional increases in hsp70 levels were induced: 31% at 1 h, 41% at 2 h, and 30% at 3 h. J. Cell. Biochem. 71:577–583, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

18.
Six structurally related 3-keto-substituted macrolide antibiotics (ketolides) were compared for concentration-dependent inhibitory effects on growth rate, viable cell number, and protein synthesis rates in Staphylococcus aureus cells. Inhibitory effects on 50S ribosomal subunit formation were also examined, as this is a second target for these antibiotics. A concentration range of 0.01 to 0.1 microg/ml was tested. An IC50 for inhibition of translation and 50S synthesis was measured for each compound, to relate structural features to inhibitory activity. ABT-773 was the most effective of the six compounds tested with an IC50 = 0.035 microg/ml. HMR 3004 was almost as effective with an IC50 = 0.05 microg/ml. Two 2-fluoroketolides (HMR 3562 and HMR 3787) were equivalent in their inhibitory activity with an IC50 = 0.06 microg/ml. Telithromycin (HMR 3647) had an IC50 = 0.08 microg/ml, and HMR 3832 was least effective with an IC50 = 0.11 microg/ml. Each antibiotic had an equivalent inhibitory effect on translation and 50S subunit formation. These results indicate specific structural features of these antimicrobial agents, which contribute to defined inhibitory activities against susceptible organisms.  相似文献   

19.
Aldose reductase (AR) is considered a potential mediator of diabetic complications and is a drug target for inhibitors of diabetic retinopathy and neuropathy in clinical trials. However, the physiological role of this enzyme still has not been established. Since effective inhibition of diabetic complications will require early intervention, it is important to delineate whether AR fulfills a physiological role that cannot be compensated by an alternate aldo–keto reductase. Functional genomics provides a variety of powerful new tools to probe the physiological roles of individual genes, especially those comprising gene families. Several eucaryotic genomes have been sequenced and annotated, including yeast, nematode and fly. To probe the function of AR, we have chosen to utilize the budding yeast Saccharomyces cerevisiae as a potential model system. Unlike Caenorhabditis elegans and D. melanogaster, yeast provides a more desirable system for our studies because its genome is manipulated more readily and is able to sustain multiple gene deletions in the presence of either drug or auxotrophic selectable markers. Using BLAST searches against the human AR gene sequence, we identified six genes in the complete S. cerevisiae genome with strong homology to AR. In all cases, amino acids thought to play important catalytic roles in human AR are conserved in the yeast AR-like genes. All six yeast AR-like open reading frames (ORFs) have been cloned into plasmid expression vectors. Substrate and AR inhibitor specificities have been surveyed on four of the enzyme forms to identify, which are the most functionally similar to human AR. Our data reveal that two of the enzymes (YDR368Wp and YHR104Wp) are notable for their similarity to human AR in terms of activity with aldoses and substituted aromatic aldehydes. Ongoing studies are aimed at characterizing the phenotypes of yeast strains containing single and multiple knockouts of the AR-like genes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号