首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nonphotochemical quenching (NPQ) is a mechanism of regulating light harvesting that protects the photosynthetic apparatus from photodamage by dissipating excess absorbed excitation energy as heat. In higher plants, the major light-harvesting antenna complex (LHCII) of photosystem (PS) II is directly involved in NPQ. The aggregation of LHCII is proposed to be involved in quenching. However, the lack of success in isolating native LHCII aggregates has limited the direct interrogation of this process. The isolation of LHCII in its native state from thylakoid membranes has been problematic because of the use of detergent, which tends to dissociate loosely bound proteins, and the abundance of pigment–protein complexes (e.g. PSI and PSII) embedded in the photosynthetic membrane, which hinders the preparation of aggregated LHCII. Here, we used a novel purification method employing detergent and amphipols to entrap LHCII in its natural states. To enrich the photosynthetic membrane with the major LHCII, we used Arabidopsis thaliana plants lacking the PSII minor antenna complexes (NoM), treated with lincomycin to inhibit the synthesis of PSI and PSII core proteins. Using sucrose density gradients, we succeeded in isolating the trimeric and aggregated forms of LHCII antenna. Violaxanthin- and zeaxanthin-enriched complexes were investigated in dark-adapted, NPQ, and dark recovery states. Zeaxanthin-enriched antenna complexes showed the greatest amount of aggregated LHCII. Notably, the amount of aggregated LHCII decreased upon relaxation of NPQ. Employing this novel preparative method, we obtained a direct evidence for the role of in vivo LHCII aggregation in NPQ.  相似文献   

2.
Light-harvesting pigment-protein complexes of photosystem II of plants have a dual function: they efficiently use absorbed energy for photosynthesis at limiting sunlight intensity and dissipate the excess energy at saturating intensity for photoprotection. Recent single-molecule spectroscopy studies on the trimeric LHCII complex showed that environmental control of the intrinsic protein disorder could in principle explain the switch between their light-harvesting and photoprotective conformations in vivo. However, the validity of this proposal depends strongly on the specificity of the protein dynamics. Here, a similar study has been performed on the minor monomeric antenna complexes of photosystem II (CP29, CP26, and CP24). Despite their high structural homology, similar pigment content and organization compared to LHCII trimers, the environmental response of these proteins was found to be rather distinct. A much larger proportion of the minor antenna complexes were present in permanently weakly fluorescent states under most conditions used; however, unlike LHCII trimers the distribution of the single-molecule population between the strongly and weakly fluorescent states showed no significant sensitivity to low pH, zeaxanthin, or low detergent conditions. The results support a unique role for LHCII trimers in the regulation of light harvesting by controlled fluorescence blinking and suggest that any contribution of the minor antenna complexes to photoprotection would probably involve a distinct mechanism.  相似文献   

3.
Light-harvesting pigment-protein complexes of photosystem II of plants have a dual function: they efficiently use absorbed energy for photosynthesis at limiting sunlight intensity and dissipate the excess energy at saturating intensity for photoprotection. Recent single-molecule spectroscopy studies on the trimeric LHCII complex showed that environmental control of the intrinsic protein disorder could in principle explain the switch between their light-harvesting and photoprotective conformations in vivo. However, the validity of this proposal depends strongly on the specificity of the protein dynamics. Here, a similar study has been performed on the minor monomeric antenna complexes of photosystem II (CP29, CP26, and CP24). Despite their high structural homology, similar pigment content and organization compared to LHCII trimers, the environmental response of these proteins was found to be rather distinct. A much larger proportion of the minor antenna complexes were present in permanently weakly fluorescent states under most conditions used; however, unlike LHCII trimers the distribution of the single-molecule population between the strongly and weakly fluorescent states showed no significant sensitivity to low pH, zeaxanthin, or low detergent conditions. The results support a unique role for LHCII trimers in the regulation of light harvesting by controlled fluorescence blinking and suggest that any contribution of the minor antenna complexes to photoprotection would probably involve a distinct mechanism.  相似文献   

4.
The colonial green alga Botryococcus braunii (BB) is a potential source of biofuel due to its natural high hydrocarbon content. Unfortunately, its slow growth limits its biotechnological potential. Understanding its photosynthetic machinery could help to identify possible growth limitations. Here, we present the first study on BB light-harvesting complexes (LHCs). We purified two LHC fractions containing the complexes in monomeric and trimeric form. Both fractions contained at least two proteins with molecular weight (MW) around 25 kDa. The chlorophyll composition is similar to that of the LHCII of plants; in contrast, the main xanthophyll is loroxanthin, which substitutes lutein in most binding sites. Circular dichroism and 77 K absorption spectra lack typical differences between monomeric and trimeric complexes, suggesting that intermonomer interactions do not play a role in BB LHCs. This is in agreement with the low stability of the BB LHCII trimers as compared to the complexes of plants, which could be related to loroxanthin binding in the central (L1 and L2) binding sites. The properties of BB LHCII are similar to those of plant LHCII, indicating a similar pigment organization. Differences are a higher content of red chlorophyll a, similar to plant Lhcb3. These differences and the different Xan composition had no effect on excitation energy transfer or fluorescence lifetimes, which were similar to plant LHCII.  相似文献   

5.
The light-harvesting chlorophyll a/b-protein complex of photosystem II (LHCII) is the most abundant membrane protein in green plants, and its degradation is a crucial process for the acclimation to high light conditions and for the recovery of nitrogen (N) and carbon (C) during senescence. However, the molecular mechanism of LHCII degradation is largely unknown. Here, we report that chlorophyll b reductase, which catalyzes the first step of chlorophyll b degradation, plays a central role in LHCII degradation. When the genes for chlorophyll b reductases NOL and NYC1 were disrupted in Arabidopsis thaliana, chlorophyll b and LHCII were not degraded during senescence, whereas other pigment complexes completely disappeared. When purified trimeric LHCII was incubated with recombinant chlorophyll b reductase (NOL), expressed in Escherichia coli, the chlorophyll b in LHCII was converted to 7-hydroxymethyl chlorophyll a. Accompanying this conversion, chlorophylls were released from LHCII apoproteins until all the chlorophyll molecules in LHCII dissociated from the complexes. Chlorophyll-depleted LHCII apoproteins did not dissociate into monomeric forms but remained in the trimeric form. Based on these results, we propose the novel hypothesis that chlorophyll b reductase catalyzes the initial step of LHCII degradation, and that trimeric LHCII is a substrate of LHCII degradation.  相似文献   

6.
Plant light-harvesting complex II (LHCII) is the key antenna complex for plant photosynthesis. We present coarse-grained molecular dynamics simulations of monomeric and trimeric LHCII in a realistic thylakoid membrane environment based on the Martini force field. The coarse-grained protein model has been optimized with respect to atomistic reference simulations. Our simulations provide detailed insights in the thylakoid lipid fingerprint of LHCII which compares well with experimental data from membrane protein purification. Comparing the monomer and trimeric LHCII reveals a stabilizing effect of trimerization on the chromophores as well as the protein. Moreover, the average chromophore distance shortens in the trimer leading to stronger excitonic couplings. When changing the native thylakoid environment to a model membrane the protein flexibility remains constant, whereas the chromophore flexibility is reduced. Overall, the presented LHCII model lays the foundation to investigate the μs dynamics of this key antenna protein of plants.  相似文献   

7.
A Kuttkat  R Grimm    H Paulsen 《Plant physiology》1995,109(4):1267-1276
The light-harvesting chlorophyll a/b-binding protein (LHCP) is largely protected against protease (except for about 1 kD on the N terminus) in the thylakoid membrane; this protease resistance is often used to assay successful insertion of LHCP into isolated thylakoids in vitro. In this paper we show that this protease resistance is exhibited by trimeric light-harvesting complex of photosystem II (LHCII) but not by monomeric LHCII in which about 5 kD on the N terminus of LHCP are cleaved off by protease. When a mutant version of LHCP that is unable to trimerize in an in vitro reconstitution assay is inserted into isolated thylakoids, it gives rise to only the shorter protease digestion product indicative of monomeric LHCII. We conclude that more of the N-terminal domain of LHCP is shielded in trimeric than in monomeric LHCII and that this difference in protease sensitivity can be used to distinguish between LHCP assembled in LHCII monomers or trimers. The data presented prove that upon insertion of LHCP into isolated thylakoids at least part of the protein spontaneously binds pigments to form LHCII, which then is assembled in trimers. The dependence of the protease sensitivity of thylakoid-inserted LHCP on the oligomerization state of the newly formed LHCII justifies caution when using a protease assay to verify successful insertion of LHCP into the membrane.  相似文献   

8.
Photosynthesis powers nearly all life on Earth. Light absorbed by photosystems drives the conversion of water and carbon dioxide into sugars. In plants, photosystem I (PSI) and photosystem II (PSII) work in series to drive the electron transport from water to NADP+. As both photosystems largely work in series, a balanced excitation pressure is required for optimal photosynthetic performance. Both photosystems are composed of a core and light-harvesting complexes (LHCI) for PSI and LHCII for PSII. When the light conditions favor the excitation of one photosystem over the other, a mobile pool of trimeric LHCII moves between both photosystems thus tuning their antenna cross-section in a process called state transitions. When PSII is overexcited multiple LHCIIs can associate with PSI. A trimeric LHCII binds to PSI at the PsaH/L/O site to form a well-characterized PSI–LHCI–LHCII supercomplex. The binding site(s) of the “additional” LHCII is still unclear, although a mediating role for LHCI has been proposed. In this work, we measured the PSI antenna size and trapping kinetics of photosynthetic membranes from Arabidopsis (Arabidopsis thaliana) plants. Membranes from wild-type (WT) plants were compared to those of the ΔLhca mutant that completely lacks the LHCI antenna. The results showed that “additional” LHCII complexes can transfer energy directly to the PSI core in the absence of LHCI. However, the transfer is about two times faster and therefore more efficient, when LHCI is present. This suggests LHCI mediates excitation energy transfer from loosely bound LHCII to PSI in WT plants.

The light-harvesting antennae of photosystem I facilitate energy transfer from trimeric light-harvesting complex II to photosystem I in the stroma lamellae membrane.  相似文献   

9.
Nonphotochemical quenching (NPQ) is the fundamental process by which plants exposed to high light intensities dissipate the potentially harmful excess energy as heat. Recently, it has been shown that efficient energy dissipation can be induced in the major light-harvesting complexes of photosystem II (LHCII) in the absence of protein-protein interactions. Spectroscopic measurements on these samples (LHCII gels) in the quenched state revealed specific alterations in the absorption and circular dichroism bands assigned to neoxanthin and lutein 1 molecules. In this work, we investigate the changes in conformation of the pigments involved in NPQ using resonance Raman spectroscopy. By selective excitation we show that, as well as the twisting of neoxanthin that has been reported previously, the lutein 1 pigment also undergoes a significant change in conformation when LHCII switches to the energy dissipative state. Selective two-photon excitation of carotenoid (Car) dark states (Car S(1)) performed on LHCII gels shows that the extent of electronic interactions between Car S(1) and chlorophyll states correlates linearly with chlorophyll fluorescence quenching, as observed previously for isolated LHCII (aggregated versus trimeric) and whole plants (with versus without NPQ).  相似文献   

10.
《Biophysical journal》2022,121(3):396-409
The xanthophyll cycle in the antenna of photosynthetic organisms under light stress is one of the most well-known processes in photosynthesis, but its role is not well understood. In the xanthophyll cycle, violaxanthin (Vio) is reversibly transformed to zeaxanthin (Zea) that occupies Vio binding sites of light-harvesting antenna proteins. Higher monomer/trimer ratios of the most abundant light-harvesting protein, the light-harvesting complex II (LHCII), usually occur in Zea accumulating membranes and have been observed in plants after prolonged illumination and during high-light acclimation. We present a combined NMR and coarse-grained simulation study on monomeric LHCII from the npq2 mutant that constitutively binds Zea in the Vio binding pocket. LHCII was isolated from 13C-enriched npq2 Chlamydomonas reinhardtii (Cr) cells and reconstituted in thylakoid lipid membranes. NMR results reveal selective changes in the fold and dynamics of npq2 LHCII compared with the trimeric, wild-type and show that npq2 LHCII contains multiple mono- or digalactosyl diacylglycerol lipids (MGDG and DGDG) that are strongly protein bound. Coarse-grained simulations on npq2 LHCII embedded in a thylakoid lipid membrane agree with these observations. The simulations show that LHCII monomers have more extensive lipid contacts than LHCII trimers and that protein-lipid contacts are influenced by Zea. We propose that both monomerization and Zea binding could have a functional role in modulating membrane fluidity and influence the aggregation and conformational dynamics of LHCII with a likely impact on photoprotection ability.  相似文献   

11.
Amphipols are short-chain amphipathic polymers designed to keep membrane proteins soluble in aqueous solutions. We have evaluated the effects of the interaction of amphipols with sarcoplasmic reticulum Ca(2+)-ATPase either in a membrane-bound or a soluble form. If the addition of amphipols to detergent-solubilized ATPase was followed by removal of detergent, soluble complexes formed, but these complexes retained poor ATPase activity, were not very stable upon long incubation periods, and at high concentrations they experienced aggregation. Nevertheless, adding excess detergent to diluted detergent-free ATPase-amphipol complexes incubated for short periods immediately restored full activity to these complexes, showing that amphipols had protected solubilized ATPase from the rapid and irreversible inactivation that otherwise follows detergent removal. Amphipols also protected solubilized ATPase from the rapid and irreversible inactivation observed in detergent solutions if the ATPase Ca(2+) binding sites remain vacant. Moreover, in the presence of Ca(2+), amphipol/detergent mixtures stabilized concentrated ATPase against inactivation and aggregation, whether in the presence or absence of lipids, for much longer periods of time (days) than detergent alone. Our observations suggest that mixtures of amphipols and detergents are promising media for handling solubilized Ca(2+)-ATPase under conditions that would otherwise lead to its irreversible denaturation and/or aggregation.  相似文献   

12.
Photosynthetic light harvesting in plants is regulated by phosphorylation-driven state transitions: functional redistributions of the major trimeric light-harvesting complex II (LHCII) to balance the relative excitation of photosystem I and photosystem II. State transitions are driven by reversible LHCII phosphorylation by the STN7 kinase and PPH1/TAP38 phosphatase. LHCII trimers are composed of Lhcb1, Lhcb2, and Lhcb3 proteins in various trimeric configurations. Here, we show that despite their nearly identical amino acid composition, the functional roles of Lhcb1 and Lhcb2 are different but complementary. Arabidopsis thaliana plants lacking only Lhcb2 contain thylakoid protein complexes similar to wild-type plants, where Lhcb2 has been replaced by Lhcb1. However, these do not perform state transitions, so phosphorylation of Lhcb2 seems to be a critical step. In contrast, plants lacking Lhcb1 had a more profound antenna remodeling due to a decrease in the amount of LHCII trimers influencing thylakoid membrane structure and, more indirectly, state transitions. Although state transitions are also found in green algae, the detailed architecture of the extant seed plant light-harvesting antenna can now be dated back to a time after the divergence of the bryophyte and spermatophyte lineages, but before the split of the angiosperm and gymnosperm lineages more than 300 million years ago.  相似文献   

13.
Moya I  Silvestri M  Vallon O  Cinque G  Bassi R 《Biochemistry》2001,40(42):12552-12561
We have studied the time-resolved fluorescence properties of the light-harvesting complexes (Lhc) of photosystem II (Lhcb) in order to obtain information on the mechanism of energy dissipation (non-photochemical quenching) which is correlated to the conversion of violaxanthin to zeaxanthin in excess light conditions. The chlorophyll fluorescence decay of Lhcb proteins LHCII, CP29, CP26, and CP24 in detergent solution is mostly determined by two lifetime components of 1.2-1.5 and 3.6-4 ns while the contribution of the faster component is higher in CP29, CP26, and CP24 with respect to LHCII. The xanthophyll composition of Lhc proteins affects the ratio of the lifetime components: when zeaxanthin is bound into the site L2 of LHCII, the relative amplitude of the faster component is increased and, consequently, the chlorophyll fluorescence quenching is enhanced. Analysis of quenching in mutants of Arabidopsis thaliana, which incorporate either violaxanthin or zeaxanthin in their Lhc proteins, shows that the extent of quenching is enhanced in the presence of zeaxanthin. The origin of the two fluorescence lifetimes was analyzed by their temperature dependence: since lifetime heterogeneity was not affected by cooling to 77 K, it is concluded that each lifetime component corresponds to a distinct conformation of the Lhc proteins. Upon incorporation of Lhc proteins into liposomes, a quenching of chlorophyll fluorescence was observed due to shortening of all their lifetime components: this indicates that the equilibrium between the two conformations of Lhcb proteins is displaced toward the quenched conformation in lipid membranes or thylakoids with respect to detergent solution. By increasing the protein density in the liposomes, and therefore the probability of protein-protein interactions, a further decrease of fluorescence lifetimes takes place down to values typical of quenched leaves. We conclude that at least two major factors determine the quenching of chlorophyll fluorescence in Lhcb proteins, i.e., intrasubunit conformational change and intersubunit interactions within the lipid membranes, and that these processes are both important in the photoprotection mechanism of nonphotochemical quenching in vivo.  相似文献   

14.
Trimeric (bT) and monomeric (bM) light-harvesting complex II (LHCII) with a chlorophyll a/b ratio of 0.03 were reconstituted from the apoprotein overexpressed in Escherichia coli. Chlorophyll/xanthophyll and chlorophyll/protein ratios of bT complexes and 'native' LHCII are rather similar, namely, 0.28 vs 0. 27 and 10.5 +/- 1.5 vs 12, respectively, indicating the replacement of most chlorophyll a molecules with chlorophyll b, leaving one chlorophyll a per trimeric complex. The LD spectrum of the bT complexes strongly suggests that the chlorophyll b molecules adopt orientations similar to those of the chlorophylls a that they replace. The circular dichroism (CD) spectra of bM and bT complexes indicate structural arrangements resembling those of 'native' LHCII. Thermolysin digestion patterns demonstrate that bT complexes are folded and organized like 'native' trimeric LHCII. Surprisingly, in the bT complexes at 77 K, half of the excitations that are created on either chlorophyll b or xanthophyll are transferred to chlorophyll a. No or very limited triplet transfer from chlorophyll b to xanthophyll appears to take place. However, the efficiency of triplet transfer from chlorophyll a to xanthophyll is close to 100%, even higher than in 'native' LHCII at 77 K. It is concluded from the triplet-minus-singlet and CD results that the single chlorophyll a molecule that on the average is present in each bT complex binds preferably next to a xanthophyll molecule at the interface between the monomers.  相似文献   

15.
In this work we modeled the circular dichroism (CD) spectrum of LHCII, the main light harvesting antenna of photosystem II of higher plants. Excitonic calculations are performed for a monomeric subunit, taken from the crystal structure of trimeric LHCII from spinach [Liu, Z. F., Yan, H. C., Wang, K. B., Kuang, T. Y., Zhang, J. P., Gui, L. L., An, X. M., and Chang, W. R. (2004) Nature 428, 287-292]. All of the major features of the CD spectrum above 450 nm are satisfactorily reproduced, and possible orientations of the Chl and carotenoid transition dipole moments are identified. The obtained modeling parameters are used to simulate the CD spectra of two complexes with altered pigment composition: a mutant lacking Chls a 611-612 and a complex lacking the carotenoid neoxanthin. By removing the relevant pigment(s) from the structure, we are able to reproduce their spectra, which implies that the alteration does not disturb the overall structure. The CD spectrum of trimeric LHCII shows a reversed relative intensity of the two negative bands around 470 and 490 nm as compared to monomeric LHCII. The simulations reproduce this reversal, indicating that it is mainly due to interactions between chromophores in different monomeric subunits, and the trimerization does not induce observable changes in the monomeric structure. Our simulated spectrum resembles one of two different trimeric CD spectra reported in literature. We argue that the differences in the experimental trimeric CD spectra are caused by changes in the strength of the monomer-monomer interactions due to the differences in detergents used for the purification of the complexes.  相似文献   

16.
《BBA》2014,1837(12):1981-1988
Minor light-harvesting complexes (Lhcs) CP24, CP26 and CP29 occupy a position in photosystem II (PSII) of plants between the major light-harvesting complexes LHCII and the PSII core subunits. Lack of minor Lhcs in vivo causes impairment of PSII organization, and negatively affects electron transport rates and photoprotection capacity. Here we used picosecond-fluorescence spectroscopy to study excitation-energy transfer (EET) in thylakoid membranes isolated from Arabidopsis thaliana wild-type plants and knockout lines depleted of either two (koCP26/24 and koCP29/24) or all minor Lhcs (NoM). In the absence of all minor Lhcs, the functional connection of LHCII to the PSII cores appears to be seriously impaired whereas the “disconnected” LHCII is substantially quenched. For both double knock-out mutants, excitation trapping in PSII is faster than in NoM thylakoids but slower than in WT thylakoids. In NoM thylakoids, the loss of all minor Lhcs is accompanied by an over-accumulation of LHCII, suggesting a compensating response to the reduced trapping efficiency in limiting light, which leads to a photosynthetic phenotype resembling that of low-light-acclimated plants. Finally, fluorescence kinetics and biochemical results show that the missing minor complexes are not replaced by other Lhcs, implying that they are unique among the antenna subunits and crucial for the functioning and macro-organization of PSII.  相似文献   

17.
Here we show how the protein environment in terms of detergent concentration/protein aggregation state, affects the sensitivity to pH of isolated, native LHCII, in terms of chlorophyll fluorescence quenching. Three detergent concentrations (200, 20 and 6 μM n-dodecyl β-d-maltoside) have been tested. It was found that at the detergent concentration of 6 μM, low pH quenching of LHCII is close to the physiological response to lumen acidification possessing pK of 5.5. The analysis has been conducted both using arbitrary PAM fluorimetry measurements and chlorophyll fluorescence lifetime component analysis. The second led to the conclusion that the 3.5 ns component lifetime corresponds to an unnatural state of LHCII, induced by the detergent used for solubilising the protein, whilst the 2 ns component is rather the most representative lifetime component of the conformational state of LHCII in the natural thylakoid membrane environment when the non-photochemical quenching (NPQ) was absent. The 2 ns component is related to a pre-aggregated LHCII that makes it more sensitive to pH than the trimeric LHCII with the dominating 3.5 ns lifetime component. The pre-aggregated LHCII displayed both a faster response to protons and a shift in the pK for quenching to higher values, from 4.2 to 4.9. We concluded that environmental factors like lipids, zeaxanthin and PsbS protein that modulate NPQ in vivo could control the state of LHCII aggregation in the dark that makes it more or less sensitive to the lumen acidification. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: Keys to Produce Clean Energy.  相似文献   

18.
Self-aggregation of isolated plant light-harvesting complexes (LHCs) upon detergent extraction is associated with fluorescence quenching and is used as an in vitro model to study the photophysical processes of nonphotochemical quenching (NPQ). In the NPQ state, in vivo induced under excess solar light conditions, harmful excitation energy is safely dissipated as heat. To prevent self-aggregation and probe the conformations of LHCs in a lipid environment devoid from detergent interactions, we assembled LHCII trimer complexes into lipid nanodiscs consisting of a bilayer lipid matrix surrounded by a membrane scaffold protein (MSP). The LHCII nanodiscs were characterized by fluorescence spectroscopy and found to be in an unquenched, fluorescent state. Remarkably, the absorbance spectra of LHCII in lipid nanodiscs show fine structure in the carotenoid and Qy region that is different from unquenched, detergent-solubilized LHCII but similar to that of self-aggregated, quenched LHCII in low-detergent buffer without magnesium ions. The nanodisc data presented here suggest that 1), LHCII pigment-protein complexes undergo conformational changes upon assembly in nanodiscs that are not correlated with downregulation of its light-harvesting function; and 2), these effects can be separated from quenching and aggregation-related phenomena. This will expand our present view of the conformational flexibility of LHCII in different microenvironments.  相似文献   

19.
The bioenergetics of light-harvesting by photosynthetic antenna proteins in higher plants is well understood. However, investigation into the regulatory non-photochemical quenching (NPQ) mechanism, which dissipates excess energy in high light, has led to several conflicting models. It is generally accepted that the major photosystem II antenna protein, LHCII, is the site of NPQ, although the minor antenna complexes (CP24/26/29) are also proposed as alternative/additional NPQ sites. LHCII crystals were shown to exhibit the short excitation lifetime and several spectral signatures of the quenched state. Subsequent structure-based models showed that this quenching could be explained by slow energy trapping by the carotenoids, in line with one of the proposed models. Using Fluorescence Lifetime Imaging Microscopy (FLIM) we show that the crystal structure of CP29 corresponds to a strongly quenched conformation. Using a structure-based theoretical model we show that this quenching may be explained by the same slow, carotenoid-mediated quenching mechanism present in LHCII crystals.  相似文献   

20.
In this work the photoprotective role of all xanthophylls in LHCII, Lhcb4, and Lhcb5 is investigated by laser-induced Triplet-minus-Singlet (TmS) spectroscopy. The comparison of native LHCII trimeric complexes with different carotenoid composition shows that the xanthophylls in sites V1 and N1 do not directly contribute to the chlorophyll triplet quenching. The largest part of the triplets is quenched by the lutein bound in site L1, which is located in close proximity to the chlorophylls responsible for the low energy state of the complex. The lutein in the L2 site is also active in triplet quenching, and it shows a longer triplet lifetime than the lutein in the L1 site. This lifetime difference depends on the occupancy of the N1 binding site, where neoxanthin acts as an oxygen barrier, limiting the access of O(2) to the inner domain of the Lhc complex, thereby strongly contributing to the photostability. The carotenoid triplet decay of monomeric Lhcb1, Lhcb4, and Lhcb5 is mono-exponential, with shorter lifetimes than observed for trimeric LHCII, suggesting that their inner domains are more accessible for O(2). As for trimeric LHCII, only the xanthophylls in sites L1 and L2 are active in triplet quenching. Although the chlorophyll to carotenoid triplet transfer is efficient (95%) in all complexes, it is not perfect, leaving 5% of the chlorophyll triplets unquenched. This effect appears to be intrinsically related to the molecular organization of the Lhcb proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号