首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The eggs, larvae and pelagic juveniles ofOstracion meleagris, Lactoria fornasini andLactoria diaphana were identified from reared and field collected specimens from Hawaii, Japan, Australia and the eastern Pacific. Eggs are large and pelagic with limited chorion ornamentation and a cluster of oil droplets. At hatching, larvae are well developed, rotund, and enclosed in a dermal sac. The sac disappears and dermal plates form prior to notochord flexion. Larvae of the three species can be distinguished by their pigment patterns and development of the carapace of ossified dermal plates. Eggs of the three species could not be distinguished. The larval stage ends at a small size (< 6 mm) but the juveniles may grow to a substantial size while remaining pelagic.L. diaphana matures and spawns while pelagic in the eastern Pacific.  相似文献   

2.
The pelagic eggs, yolk-sac and pelagic larvae of the macrourid fish, Coryphaenoides marginatus, from Suruga Bay in southern Japan, are described. The identification of the pelagic eggs based on 16S rRNA gene nucleotide sequences agreed with that obtained from morphological analyses. The spherical eggs, 1.14–1.30 mm in diameter, contained a single oil globule 0.30–0.38 mm in diameter, and had hexagonally patterned ornamentation on the chorion, 0.025–0.033 mm in width. Many melanophores were present on the anterodorsal region of the embryo after the caudal end had detached from the yolk. Within a day after hatching, each of the yolk-sac larvae had a body axis that was bent slightly at the anterior trunk region, many dorsal and lateral melanophores on the trunk plus several on the gut, and small irregular wrinkles on the dorsal and anal fin membranes. The pelagic larvae had a short caudal region in comparison to other known congeners (length 2.0–3.2+ times head length vs. 4–7, respectively), a short stalked pectoral fin base, and no elongate first dorsal and pelvic fin rays. They were further characterized by the presence of numerous very dense melanophores from just behind the eye to the anterior part of the caudal region at 5.1 mm head length (25.8+ mm total length). The significant difference in vertical distribution between the pelagic eggs and larvae (dominant depths ca. 200–350 m vs. ca. 10–100 m, respectively), with no subsequent collection of pelagic larvae with greater than 6 mm head length, indicate two stages (rising and falling) of ontogenic vertical migration.  相似文献   

3.
Larvae and juveniles of six species of Luciogobius were collected at Aritsu Beach on Okinawa Island using a small seine. Postflexion larvae were dominant during sampling and were collected when they approached the shoreline adjacent to or at the entrances to their adult habitats prior to settlement. Standard lengths of postflexion larvae ranged from 5.4 to 14.4 mm and varied depending on the species. The larvae occurred mainly from January to April, but some larvae were caught in October and November. Their pelagic larval durations were estimated to range from 17 to 36 days and varied depending on the species. Morphologies of field-caught larvae and juveniles and laboratory-reared juveniles were described. Six species were clearly distinguished based on fin ray and vertebral counts, proportions, body size, and pigment patterns. Although their taxonomic statuses could not be determined, it is thought that they have independent relatives in other regions.  相似文献   

4.
Embryonic and morphological development of larvae and juveniles of the amberjack,Seriola dumerili Risso, are described using specimens raised at Yaeyama Station (Ishigaki Island, Okinawa Pref.), Japan Sea Farming Association. The specimens obtained from brood fish (3 females, 3 males) were treated with gonadotropin and spawned on 6th of April 1987. The eggs of amberjack are pelagic, spherical in shape and 1.01–1.17 mm in diameter. The yolk is roughly segmented and has a single oil globule 0.22–0.24 mm in diameter. The perivitelline space is narrow. During development, a few melanophores and no xanthophores were observed on yolk. Hatching took place 35 hrs. 15 min. after spawning out at temperatures 23.1–23.7°C. The newly hatched larvae were 2.84–3.04mm in TL with 27 (13+14) myomeres and an oil globule anteriorly situated beyond the head. 3 days after hatching 4.00 mm TL, the mouth opened. 10 days after hatching 4.26 mm TL, small denticles appeared on the margin of the upper jaw and there were 1 anterior and 2 posterior preopecular spines. At 5.96mm TL, notochord was slightly flexed. Caudal, dorsal and anal fins with rudiments of rays appeared at 8.00 mm TL. The specific numbers of all fin rays and spines were obtained in a juvenile 9.60 mm TL. In a juvenile 34.25 mm TL, 54 days after hatching, the characteristic brown band of amberjack had appeared on head. Some notable changes in relative growth were observed at 5 mm and 15 mm in TL.  相似文献   

5.
Spawning of the hawkfish,Cirrhitichthys aureus, occurred repeatedly between a female and a male in the aquariums of the Marine Science Museum, Tokai University. The pair was collected from Suruga Bay by scuba diving and maintained for 50 days prior to spawning. In early September, 1979, the first successful spawning took place at 17:40 h after several repetitions of a courtship behavior sequence, which was initiated by the male. Spawning continued daily for 104 days between the two fish. Fertilized eggs were spherical, transparent and pelagic, and measured 0.75–0.78 mm in diameter. Hatching took place 19–22.5 hours after fertilization at 26.2–28.4°C. Newly hatched larvae, measuring 2.23–2.28 mm in total length, had a rather slender body with 12+18 = 30 myotomes and a large ellipsoid yolk sac. The front tip of the yolk sac protruded forward beyond the snout of the larvae. A single oil globule was situated in the front part of the yolk sac. The larvae were maintained for 4 days after fertilization. Larval characteristics ofC. aureus bore a close resemblance to those of other cirrhitid species especially in melanophore pigmentation along the dorsal and ventral surfaces.  相似文献   

6.
The larval and juvenile stages of Sebastes taczanowskii (Japanese name: Ezo-mebaru) are described and illustrated based on 33 wild specimens [7.1–26.9 mm in body length (BL)] collected in the Sea of Japan, and eight specimens of reared larvae extruded from the one specimen of a captive pregnant female. Larvae were extruded between 4.3–5.0 mm BL and notochord flexion occurred 5.7–9.0 mm BL. Transformation from postflexion larvae to pelagic juveniles occurred between 13 and 17 mm BL. Preflexion and flexion larvae have a single melanophore row on the dorsal surface on the tail, and an internal line of melanistic dashes on the ventral side of the tail. Lateral pigmentation of postflexion and transforming larval body surfaces are light. Compared with other Japanese rockfish species, S. taczanowskii is shallow-bodied throughout both larval and juvenile stages. We provide an identification key to preflexion and flexion stage rockfish larvae found around the Japanese archipelago, and comparisons with other species. Larval and juvenile S. taczanowskii occurred in both near-shore and relatively offshore water around Shakotan Peninsula-Ishikari Bay, Hokkaido in June and July.  相似文献   

7.
Cynoglossus abbreviatus spawns from mid-March to mid-April in the Sea of Shimabara in Kyushu. During the spawning season ovarian maturation was successfully induced by injection of the pituitary homogenate ofHypophthalmichthys molitrix. The dose of the aceton-dried pituitary homogenate was 6.5 mg/kg body weight ofC. abbreviatus. It took about 2 days for ovulation after injection at a water temperature of 14 to 16°C. Artificial fertilizations were accomplished on March 29, 1974 and again on April 7, 1984, using the females matured by hormone injection in the latter case only. The larvae were reared on the rotifers,Artemia nauplii,Tigriopus japonicus and copepods collected from the sea over a period of 113 days in 1974 and 58 days in 1984. The eggs were pelagic, spherical, 1.19–1.23 mm in diameter and had 30–50 oilglobules of 0.068–0.095 mm in diameter, and the perivitelline space was narrow. The incubation period was 90–98 hours at a water temperature of 14 to 16°C. The newly hatched larvae were 3.18–3.45 mm TL and had 61–64 myomeres. The larvae had many melanophores and xanthophores on the body, forming three bands on the caudal region, but were lacking chromatophores on the finfolds. The yolk was completely absorbed when the larvae attained a size of 4.7–5.6 mm TL 8 days after hatching. A single elongated dosai fin ray developed on the head in the 8-day old larvae. The ray was reduced in size as long as the other rays 1 or 2 days after metamorphosis. The rudiment of pectoral fins were found on the both sides of the body in the 2-day old larvae, but two of them disappeared after metamorphosis. A pelvic fin first appeared as a ventral bud just anterior to the gut in the larva of 8.39 mm TL. The full count of 4 rays was observed on the larva of 10.83 mm TL. Metamorphosis began 22 days after hatching when the larvae were 11.20 mm TL. The right eye began to shift the left side of the head at night and reached to the final place after 8.5 hours. It took about 36 hours to complete the metamorphosis, including the eye movement and fusion of the hole in the rostral beak. At the last stage of metamorphosis, the dosal, caudal, anal and ventral fins became confluent. The larvae reached the juvenile stage at a size of 13.5–14.0 mm TL, approximately 28 days after hatchling. The growth of larvae reared in 1974 is expressed by the following equations: Y1 = 3.448 · 1.0507x (8≦X≦28) Y2 = 6.3322 · 1.0275x (28≦X≦75) where Y is the total length (mm) and X is the number of days after hatching. Growth rate changed after metamorphosis.  相似文献   

8.
Larval and juvenile stages of kurosoi,Sebastes schlegeli, are described and illustrated from wild specimens. Some ecological aspects of larvae and juveniles are also described. Notochord flexion occurred between 5.6–7.5 mm SL. Transformation occurred between 13–20 mm SL. Preflexion and flexion larvae ofS. schlegeli can be distinguished from similar larvae by the pigmentation of the dorsal and ventral midlines of the tail and absence of pigmentation on the ventral portion of the rectum. After notochord flexion, the dorsal and lateral regions in both larvae and pelagic juveniles were heavily pigmented, suggesting adaptation for neustonic life style. Larvae and juveniles were caught at many coastal stations, but did not occur in cooler offshore waters. Larvae smaller than 20 mm SL inhabited surface waters. Until ca. 40 mm SL, juveniles inhabited mainly surface waters (without drifting seaweed), but also used other habitats, such as the drifting seaweed, and near the sea bed. Small larvae (<7 mm SL) fed mainly on copepod nauplii. Larger larvae fed on calanoid copepodites andEvadne nordmanni. Pelagic juveniles fed mainly on fish eggs, with fish larvae also being important food items for some individuals. Most food items taken by juveniles that were associated with drifting seaweed were eggs with attaching filaments (Cololabis saira andHyporhamphus sajori), suggesting that the high density of such food items both attracts and keeps juveniles around drifting seaweed.  相似文献   

9.
The larval and juvenile stages of kitsune-mebaru,Sebastes vulpes, based on 50 wild specimens collected in, the Sea of Japan, are described and illustrated, and some ecological aspects of the early life history (feeding, horizonal distribution and habitat shift) included. Preflexion larvae became extruded between 3.9–4.6 mm body length (BL) and notochord flexion occurred between 4.7–7.1 mm BL. Transformation from postflexion larvae to pelagic juventiles occurred between 13–17 mm BL. Compared with other rockfish species,S. vulpes is deep-bodied, throughout both larval and, juvenile stages. Larval and juvenileS. vulpes inhabit mainly coastal water surface layer (usually on the continental shelf), but do not occur offshore region (northwest of Oki Islands). Although someS. vulpes juveniles are associated with drifting seaweed, such clumps are not indispensable habitats for any stages. Surface-to-benthie migration of juveniles occurs at about 25 mm BL. Preflexion and flexion larvae feed mainly on copepod nauplii, and postflexion, transforming larvae and pelagic juveniles mainly on calanoid copepodites (Parracalanus parvus).  相似文献   

10.
11.
Development of eggs and larvae of the big roughy Gephyroberyx japonicus are described on the basis of specimens reared in captivity. Spherical eggs (diameter 1.26–1.35?mm) with a single oil globule were pelagic. Newly hatched larvae (2.8–3.1?mm in body length, BL) had strong linear pigmentation on the head and trunk. The mouth opened at ca. 3.5?mm BL; thereafter the yolk was absorbed. Notochord flexion started at ca. 4.5?mm BL when body depth increased rapidly, and melanophores spread to all of the body. Notochord flexion was completed at ca. 5.0?mm BL. Head spination and pelvic fins began to develop during the flexion stage.  相似文献   

12.
Embryonic, larval and juvenile development of the labrid fish,Halichoeres poecilopterus, is described using a laboratory-reared series. The eggs, measuring 0.60–0.72 mm in diameter, were pelagic and spherical with a single oil globule (0.12–0.16 mm in diameter). Hatching occurred 18 h 48 min after spawning. The newly-hatched larvae, measuring 1.46–1.70 mm TL, had 8–114 + 16–18 myomeres. A conspicuous melanophore appeared on the dorsal finfold 8 h after hatching, at ca. 2 mm TL. The yolk was completely absorbed 3 days after hatching, at 2.52–2.72 mm TL. Flexion of the notochord started at ca. 6 mm TL and was finished at ca. 8 mm TL. Aggregate numbers of all fin rays were completed at ca. 14 mm TL. Squamation was almost completed at ca. 20 mm TL.  相似文献   

13.
We report in situ behavioural observations of presettlement schooling in Priacanthus tayenus off Coral Bay, Western Australia collected using pelagic Baited Remote Underwater stereo-Video systems. Two groups of fish (8 and 9 individuals) were observed that aggregated into a single school. Mean total length was 24.1 mm (12.5–30.2 mm). The fish swam at a mean speed of 8.5 cm s?1 in a group spacing themselves more or less evenly at a distance of around one body length from the nearest neighbour within the school. P. tayenus appeared to be sometimes associated with juveniles of other species. The results presented here add to the limited, but growing body of literature on the schooling behaviour of the early pelagic stages of demersal fishes.  相似文献   

14.
Synopsis Chanos chanos belongs to a monotypic gonorynchiform family and is most closely related to the freshwater Ostariophysi. The earliest gonorynchiforms occurred in the Cretaceous of Brazil and west Africa. Chanos occurred in the freshwater Eocene deposits of Europe and North America, and probably invaded the circumtropical Tethys Sea during transgression episodes. At present, milkfish occurs near continental shelves and around oceanic islands throughout the tropical Indo-Pacific. Milkfish populations throughout the range show high genetic variation but low genetic divergence, similar to many other commercially important teleosts. The natural life history of milkfish is one of continual migration. Adults are relatively large (to 1.5 m or 15 kg), long-lived (to 15 years), pelagic and schooling. They spawn offshore near coral reefs or small islands. The eggs, embryos and larvae are pelagic and relatively larger than those of most marine species. Larvae ≥ 10 mm long and 2–3 weeks old move inshore via a combination of passive advection and active migration. Passing shore waters and surf zones, they settle in shallow-water depositional habitats such as mangrove swamps and coral lagoons, where they metamorphose and spend a few months as juveniles. Some juveniles may enter freshwater lakes where they grow into sub-adults but do not mature. Both small juveniles and large sub-adults go back to sea when they reach the size limit supportable by the habitat. Little else is known of the dynamics of wild populations of milkfish. A fishery on inshore larvae supports the centuries-old aquaculture of milkfish in southeast Asia. During the past ten years, milkfish have matured and spawned under various conditions of captivity, and hatcheries have produced larvae to supply the culture ponds. Much remains to be learned concerning the milkfish, particularly its ecology and physiology.  相似文献   

15.
Larvae and juveniles of the macrourid fish Coelorinchus kishinouyei, captured from the near-bottom habitat (ca. 1–10 m above the seafloor) at 186 to 500 m depth in Suruga Bay, Honshu, Japan, were examined for the presence, developmental state, and bacterial colonization of the fish’s internal ventral light organ. The specimens ranged from 3.6 mm to 8.5 mm head length, and all exhibited an external cluster of melanophores expanding anteriorly from around the anus that is thought to indicate the presence of an internal light organ. Histological analysis revealed the presence of a light organ in all examined specimens. In smaller specimens, the light organ was seen as a small nub of tissue associated with the intestine near the anus; the light organ gradually elongated anteriorly in larger specimens to form a bean-shaped structure composed of hollow, finger-like chambers. Bacteria were present within the light organ chambers of some, but not all larvae and all juveniles. In light organs not yet colonized by bacteria, the chambers exhibited a generally uniform appearance over their entire length. In colonized light organs, the bacteria were consistently present at the anterior-most tips of the chambers; furthermore, cells comprising chambers colonized by bacteria were swollen, and upon bacterial colonization the orientation of the chambers began to change from anterior–posterior to dorsal–ventral. The colonizing bacteria were identified as Photobacterium kishitanii based on sequence analysis of the luxA gene. These results suggest that formation of the light organ in C. kishinouyei begins during the fish’s pelagic phase, but that bacterial colonization of the light organ occurs after the larvae have reached the near-bottom habitat. Furthermore, colonization of the nascent light organ by P. kishitanii induces morphogenetic changes in the light organ.  相似文献   

16.
A total of 7,000 larval and juvenilePlecoglossus altivelis was collected at semimonthly intervals with a small seine in a surf zone of Tei beach facing Tosa Bay during the period of June 1982 to May 1983. They occurred in the surf zone from middle October to middle May. About 500 larvae and juveniles (10.9–59.9 mm TL) were used to examine their feeding habit. The feeding incidences by collection dates fluctuated from 0 to 100%, with 90.6% in total incidence. They fed mainly on copepods (e.g.Paracalanus parvus andOithona spp.) throughout postlarval and juvenile stages, while they first took small benthic animals at 53.0 mm TL. Their food compositions were influenced fundamentally by the planktonic fauna of the surf zone, but larvae under 20 mm TL tended to take relatively larger copepods.  相似文献   

17.
Early life history strategies of notothenioids at South Georgia   总被引:4,自引:0,他引:4  
Antarctic notothenioid early life history strategies are examined in general and then for common species at South Georgia. Channichthyids, bathydraconids, artedidraconids and some nototheniids have large eggs 3·0–4·9 mm whereas other nototheniids and arpagiferids have smaller eggs 1·6–2·7 mm. At South Georgia the larvae of species with large eggs hatched between August (late winter) and late November (late spring) at 11–16 mm standard length ( L s). Larvae of species with small eggs hatched mainly during October and December at 4.5–9 mm L s. Most of the larvae of all species attain urostyle flexion between October and January, and develop to the end of the larval stage between November and May. The duration of the larval stage varies from 2 months in species with smaller larvae to 6 months for some of the species with larger larvae. Two nototheniid species develop to the early juvenile stage before a channichthyid and a bathydraconid that hatch around 2 months earlier. During their first winter, the early-juveniles of most species with large eggs are pelagic, whereas those of species with small eggs may be pelagic or demersal. Four groups of strategies are proposed based on egg size and the winter ecotype of the early-juvenile stage.  相似文献   

18.
Rock cod Patagonotothen ramsayi (Regan, 1913) is one of the most abundant fish of the family Nototheniidae inhabiting the Patagonian Shelf and upper Slope in the southwest Atlantic. Recently, P. ramsayi became an important commercial species around the Falkland Islands with annual catch of 60,000–75,000 t. The present study aimed to reveal previously unknown aspects of reproductive biology of P. ramsayi during the first successful maintenance of adults for more than a year in an aquaculture facility with running seawater. The fish spawned at the end of austral winter. During spawning, males changed their coloration dramatically, occupied artificial shelters on the bottom and showed aggressive territorial behaviour. Egg masses were light-yellow to light-orange irregular spongiform. They were negatively buoyant, but located outside shelters and were ignored by males. Egg diameters varied between 2.1 and 2.3 mm, and the number of eggs per egg mass ranged from 26,800 to 123,400. Embryogenesis lasted 28–32 days. Total lengths of newly hatched larvae ranged from 6.2 to 6.7 mm. The yolk sac feeding period lasted approximately 11 days, during which the larvae showed negative phototaxis. One-month-old larvae attained 8.8–9.0 mm in length. This study confirms that P. ramsayi exhibit the reproductive strategy typical for nototheniid species occupying low-latitude peripheries of their distributional range, characterised by a combination of r-features (small eggs and larvae, high fecundity) and K-features (territorial behaviour and possible nest guarding).  相似文献   

19.
The effect of size, predator types and presence of multiple predators on the microhabitat use of larvae and juveniles of a sublittoral, semipelagically schooling fish, the two-spotted goby (Gobiusculus flavescens), was tested in two experiments. Larvae (15 and 25 days old, Experiment I) and juveniles (mean ± 1 S.E.: small, 15.9 mm ± 1.28; medium, 19.2 mm ± 1.43; and large, 23.4 mm ± 1.67, Experiment II) were allowed to choose between two sections of the tanks; an upper, representing a water column habitat, and a lower, artificially vegetated, representing the hyperbenthic habitat. Position of larvae or juveniles and the activity level of juveniles were recorded. Predator treatments were: (I) no predators (control), (II) a pelagic predator, the jellyfish Aurelia aurita L., (III) a hyperbenthic predator, the mysid Praunus flexuosus O.F. Müller or (VI) both predator types simultaneously. In Experiment I predators were restricted to the habitat which they were chosen to represent, while goby larvae could move freely. In Experiment II both predators and juvenile gobies were allowed to move freely between compartments.Increasing age caused larval gobies, but not juveniles to shift downwards. Only 25-day-old larvae and small juveniles avoided the mysid by shifting upwards. Larval response to A. aurita was also size dependant: 25-day-old larvae avoided medusae by shifting downwards, while 15 day olds did not. Emergent multiple predator effects were found for the vertical distribution of 15-day-old larvae and small juveniles. Larger juveniles were more active than smaller, both in the upper and the lower sections of tanks. P. flexuosus caused juvenile gobies in their vicinity (i.e. in the lower section) to increase their activity level, while small juveniles (but not medium-sized or large) increased their activity level even when further away (i.e. in the upper section). The presence of A. aurita led to a reduction in activity of small juveniles in its vicinity (i.e. in the upper section), while no response was observed among older juveniles or juveniles further away from the predator (i.e. in the lower section). Emergent multiple predator effects on the activity level of juveniles were not observed.  相似文献   

20.
Synopsis The growth and reproduction of Cantigaster valentini were studied in two sites at Lizard Island, Australia. C. valentini was found to be a gonochore, with a sex ratio very close to 1:1; sexes could be distinguished externally. The growth (in length) of known individuals from both sites was measured at least every two months over two years. Growth rates of males and females decrease as their sizes increase. Growth rates differ between sexes and between sites: males generally grow faster than females and individuals at Mermaid Cove generally grow faster than individuals at Palfrey Island. Spawning is demersal, it occurs daily between 0800 and 1600h, and continues year-round. For females the interval between successive spawnings varies from about 4 days in the warm-water season to about 10 days in the cool-water season. From a comparison of local reproductive output and local recruitment survivorship of larvae in the plankton was estimated to be much higher than in another species (Pomacentrus wardi) for which a similar estimate was available. We suggest that some aspects of the reproductive strategy of C. valentini differ from other, non-toxic reef fishes in ways consistent with a reduced threat of predation upon adults, eggs, and larvae: courtship and spawning are unhurried and occur throughout most of the day; spawning is unrelated to lunar cycles; there is no parental care or defense of fertilized eggs; and embryos often hatch on rising tides.Centre for Environmental and Urban StudiesSenior author's present address: School of Biological Sciences F07, University of Sydney, Sydney 2006, N.S.W., Australia  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号