首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Gossypium hirsutum L. is a widely cultivated species characterized by its high yield and wide environmental adaptability, while Gossypium barbadense is well known for its superior fiber quality. In the present report, we, for the first time, developed G. hirsutum chromosome segment introgression lines (ILs) in a G. barbadense background (GhILs_Gb) and genetically dissected the inheritance of lint yield and fiber quality of G. hirsutum in G. barbadense background. The GhILs_Gb contains introgressed segments spanning 4121.20 cM, which represents 82.20% of the tetraploid cotton genome, with an average length of 18.65 cM. A total of 39 quantitative trait loci (QTLs) for six traits are identified in this IL population planted in Xinjiang. Four QTL clusters are detected. Of them, however, three clusters have deleterious effects on fiber length and strength and boll weight, and only one cluster on Chr. D9 can be used in marker-assisted selection (MAS) to increase lint percentage and decrease micronaire value in G. barbadense. QTL mapping showed that most of yield-related QTLs detected have positive effects and increase lint yield in G. barbadense, while most of fiber quality-related QTLs have deleterious effects except for micronaire. It suggested that G. hirsutum evolved to have a high lint yield. Several lines improved in lint percentage and boll size in G. barbadense by introgressed one fragment of G. hirsutum have been developed from the GhILs_Gb. The ILs developed, and the analyses presented here will enhance the understanding of the genetics of lint yield and fiber quality in G. hirsutum and facilitate further molecular breeding to improve lint yield in G. barbadense.  相似文献   

2.
Quantitative trait loci (QTL) mapping provides a powerful tool for unraveling the genetic basis of yield and yield components as well as heterosis in upland cotton. In this research, a molecular linkage map of Xiangzamian 2 (Gossypium hirsutum L.)-derived recombinant inbred lines (RILs) was reconstructed based on increased expressed sequence tag–simple sequence repeat markers. Both the RILs and immortalized F2s (IF2) developed through intermating between RILs were grown under multiple environments. Yield and yield components including seed-cotton yield, lint yield, bolls/plant, boll weight, lint percentage, seed index, lint index and fruit branch number were measured and their QTL were repeatedly identified across environments by the composite interval mapping (CIM) method. From a total of 111 non-redundant QTL, 23 were detected in both two populations. In the meantime, multi-marker joint analyses showed that 16 of these QTL had significant environmental interaction. QTL for correlated traits tended to be collocated and most of the QTL for seed-cotton yield and lint yield were associated with QTL for at least one yield component, consistent with the results observed in correlation analyses. For many QTL with significant additive effects, positive alleles from CRI12, the inferior parent with lower yield performance, were associated with trait improvement. Trait performance of IF2s and the large number of QTL with positive dominant effects implied that dominance plays an important role in the genetic basis of heterosis in Xiangzamian 2 and that non-additive inheritance is also an important genetic mode for lint percentage in the population. These QTL can provide the bases for marker-assisted breeding programs of upland cotton.  相似文献   

3.
A 3-year study was conducted to determine the effects of mepiquat chloride and N levels on yield and quality of cotton (Gossypium hirsutum L.). Mepiquat chloride (MC) treatments did not significantlyaffect yields; however, cotton lint yields (1980) were 688, 949, 1,011, and 1,045 kg/ha for N rates of 0, 45, 90, and 135 kg/ha, respectively. Nitrogen by MC interactions on yield were not significant for any of the 3 years. MC treatments reduced plant height for all N levels. Plant height averages over all N levels were reduced 15–33% by the addition of MC. The MC treatments significantly increased the percent of Ca and Mg in the cotton leaves on a dry-weight basis. Nitrogen concentrations of the leaves were not affected by MC treatments. Leaf N levels were not significantly affected by N fertilization in 1979, but leaf N levels in 1980 were significantly increased at the 90 kg N/ha rate when compared with the check treatment.  相似文献   

4.
Identification of stable quantitative trait loci (QTLs) across different environments and mapping populations is a prerequisite for marker-assisted selection (MAS) for cotton yield and fiber quality. To construct a genetic linkage map and to identify QTLs for fiber quality and yield traits, a backcross inbred line (BIL) population of 146 lines was developed from a cross between Upland cotton (Gossypium hirsutum) and Egyptian cotton (Gossypium barbadense) through two generations of backcrossing using Upland cotton as the recurrent parent followed by four generations of self pollination. The BIL population together with its two parents was tested in five environments representing three major cotton production regions in China. The genetic map spanned a total genetic distance of 2,895 cM and contained 392 polymorphic SSR loci with an average genetic distance of 7.4 cM per marker. A total of 67 QTLs including 28 for fiber quality and 39 for yield and its components were detected on 23 chromosomes, each of which explained 6.65–25.27 % of the phenotypic variation. Twenty-nine QTLs were located on the At subgenome originated from a cultivated diploid cotton, while 38 were on the Dt subgenome from an ancestor that does not produce spinnable fibers. Of the eight common QTLs (12 %) detected in more than two environments, two were for fiber quality traits including one for fiber strength and one for uniformity, and six for yield and its components including three for lint yield, one for seedcotton yield, one for lint percentage and one for boll weight. QTL clusters for the same traits or different traits were also identified. This research represents one of the first reports using a permanent advanced backcross inbred population of an interspecific hybrid population to identify QTLs for fiber quality and yield traits in cotton across diverse environments. It provides useful information for transferring desirable genes from G. barbadense to G. hirsutum using MAS.  相似文献   

5.

Key message

A total of 62 SNPs associated with yield-related traits were identified by a GWAS. Based on significant SNPs, two candidate genes pleiotropically increase lint yield.

Abstract

Improved fibre yield is considered a constant goal of upland cotton (Gossypium hirsutum) breeding worldwide, but the understanding of the genetic basis controlling yield-related traits remains limited. To better decipher the molecular mechanism underlying these traits, we conducted a genome-wide association study to determine candidate loci associated with six yield-related traits in a population of 719 upland cotton germplasm accessions; to accomplish this, we used 10,511 single-nucleotide polymorphisms (SNPs) genotyped by an Illumina CottonSNP63K array. Six traits, including the boll number, boll weight, lint percentage, fruit branch number, seed index and lint index, were assessed in multiple environments; large variation in all phenotypes was detected across accessions. We identified 62 SNP loci that were significantly associated with different traits on chromosomes A07, D03, D05, D09, D10 and D12. A total of 689 candidate genes were screened, and 27 of them contained at least one significant SNP. Furthermore, two genes (Gh_D03G1064 and Gh_D12G2354) that pleiotropically increase lint yield were identified. These identified SNPs and candidate genes provide important insights into the genetic control underlying high yields in G. hirsutum, ultimately facilitating breeding programmes of high-yielding cotton.
  相似文献   

6.
Comparative proteomic analyses were performed to detail the evolutionary consequences of strong directional selection for enhanced fiber traits in modern upland cotton (Gossypium hirsutum L.). Using two complementary proteomic approaches, 2-DE and iTRAQ LC–MS/MS, fiber proteomes were examined for four representative stages of fiber development. Approximately 1,000 protein features were characterized using each strategy, collectively resulting in the identification and functional categorization of 1,223 proteins. Unequal contributions of homoeologous proteins were detected for over a third of the fiber proteome, but overall expression was balanced with respect to the genome-of-origin in the allopolyploid G. hirsutum. About 30 % of the proteins were differentially expressed during fiber development within wild and domesticated cotton. Notably, domestication was accompanied by a doubling of protein developmental dynamics for the period between 10 and 20 days following pollination. Expression levels of 240 iTRAQ proteins and 293 2-DE spots were altered by domestication, collectively representing multiple cellular and metabolic processes, including metabolism, energy, protein synthesis and destination, defense and stress response. Analyses of homoeolog-specific expression indicate that duplicated gene products in cotton fibers can be differently regulated in response to selection. These results demonstrate the power of proteomics for the analysis of crop domestication and phenotypic evolution.  相似文献   

7.

Key message

A major leaf shape locus (L) was mapped with molecular markers and genomically targeted to a small region in the D-genome of cotton. By using expression analysis and candidate gene mapping, two LMI1 -like genes are identified as possible candidates for leaf shape trait in cotton.

Abstract

Leaf shape in cotton is an important trait that influences yield, flowering rates, disease resistance, lint trash, and the efficacy of foliar chemical application. The leaves of okra leaf cotton display a significantly enhanced lobing pattern, as well as ectopic outgrowths along the lobe margins when compared with normal leaf cotton. These phenotypes are the hallmark characteristics of mutations in various known modifiers of leaf shape that culminate in the mis/over-expression of Class I KNOX genes. To better understand the molecular and genetic processes underlying leaf shape in cotton, a normal leaf accession (PI607650) was crossed to an okra leaf breeding line (NC05AZ21). An F2 population of 236 individuals confirmed the incompletely dominant single gene nature of the okra leaf shape trait in Gossypium hirsutum L. Molecular mapping with simple sequence repeat markers localized the leaf shape gene to 5.4 cM interval in the distal region of the short arm of chromosome 15. Orthologous mapping of the closely linked markers with the sequenced diploid D-genome (Gossypium raimondii) tentatively resolved the leaf shape locus to a small genomic region. RT-PCR-based expression analysis and candidate gene mapping indicated that the okra leaf shape gene (L o ) in cotton might be an upstream regulator of Class I KNOX genes. The linked molecular markers and delineated genomic region in the sequenced diploid D-genome will assist in the future high-resolution mapping and map-based cloning of the leaf shape gene in cotton.  相似文献   

8.
We crossed Luyuan343, containing the Gossypium barbadense (GB) genomic component, with Lumianyan22, a high-yielding Gossypium hirsutum (GH) variety, to evaluate the introgressive exogenous genomic components that contribute to fiber quality in upland cotton. A total of 158 of 334 mapping simple sequence repeats (SSR) loci screened from 18,467 SSR primer pairs were identified as putative GB introgression loci. Twenty-four quantitative trait loci (QTLs) for fiber quality and lint percentage were detected by WinQTLCart 2.5 based on three phenotypic datasets collected over 2 years in two different locations. Of these QTLs, 20 were mapped in the introgression chromosomal regions; the GB alleles contributed to improved fiber quality at eight loci, which were located in the introgression segments of chromosome (Chr.) 3, Chr.7 and Chr.25. A total of eight digenic epistasis and nine significant QTL × environment (QE) interactions were identified by QTLNetwork-2.2. Fiber elongation was found to be most easily influenced by environment since all QTLs for this trait showed significant QE interaction with large effects. Fiber length, fiber strength, and lint percentage were scarcely affected by environment as no or minor QE interaction effects for these traits were detected. Genome-wide identification of the introgressive GB components and mapping of the fiber-related QTLs indentified in this study will be beneficial for the simultaneous marker-assistant selection of improved fiber quality and lint yield in upland cotton breeding.  相似文献   

9.
MicroRNAs (miRNAs) play key roles in plant responses to various metal stresses. To investigate the miRNA-mediated plant response to heavy metals, cotton (Gossypium hirsutum L.), the most important fiber crop in the world, was exposed to different concentrations (0, 25, 50, 100, and 200 µM) of lead (Pb) and then the toxicological effects were investigated. The expression patterns of 16 stress-responsive miRNAs and 10 target genes were monitored in cotton leaves and roots by quantitative real-time PCR (qRT-PCR); of these selected genes, several miRNAs and their target genes are involved in root development. The results show a reciprocal regulation of cotton response to lead stress by miRNAs. The characterization of the miRNAs and the associated target genes in response to lead exposure would help in defining the potential roles of miRNAs in plant adaptation to heavy metal stress and further understanding miRNA regulation in response to abiotic stress.  相似文献   

10.
Seed size traits in soybean—length, width and thickness—and their corresponding ratios—length-to-width, length-to-thickness and width-to-thickness—play a crucial role in determining seed appearance, quality and yield. In this study, an attempt was made to detect quantitative trait loci (QTL) for the aforementioned seed size traits in F2:3, F2:4 and F2:5 populations from the direct and reciprocal crosses of Lishuizhongzihuang with Nannong 493-1, using multi-QTL joint analysis (MJA) along with composite interval mapping (CIM). A total of 121 main-effect QTL (M-QTL), six environmental effects, eight environment-by-QTL interactions, five cytoplasmic effects and 92 cytoplasm-by-QTL interactions were detected. Fifty-two common M-QTL across MJA and CIM, 21 common M-QTL in more than two populations and 5 M-QTL in all three populations showed the stability of the results. Five M-QTL had higher heritability, greater than 20%. In addition, 28 cytoplasm-by-QTL and 4 environment-by-QTL interactions were confirmed by CIM. Most M-QTL were clustered in eight chromosomal regions. Our results provide a good foundation for fine mapping, cloning and designed molecular breeding of favorable genes related to soybean seed size traits.  相似文献   

11.
A cotton fiber is a single and highly elongated ovule epidermal cell. However, the mechanism that governs the development of fiber traits remains unclear. In this study, we cloned a calcium-dependent protein kinase (GhCPK1) and an actin depolymerizing factor (GhADF1) from Gossypium hirsutum. Real-time PCR analyses indicated that the expression of GhCPK1 and GhADF1 correlated with the elongation pattern of cotton fibers. Yeast two-hybrid assays using full-length GhCPK1 and truncated forms of GhCPK1 as baits identified GhADF1 as an interactor of GhCPK1. Furthermore, GhCPK1 is capable of phosphorylating GhADF1 in vitro in a calcium-dependent manner, and the phosphorylation of GhADF1 by GhCPK1 occurs on the Ser-6 of GhADF1. In addition, we observed that the heterologous expression of the GhCPK1 gene induced longitudinal growth of the host cells by 3.18-fold, with no apparent effect on other aspects of the host cells. The results strongly suggest that GhCPK1 may regulate the function of GhADF1 by phosphorylating this protein during cotton fiber elongation.  相似文献   

12.
13.

Key message

A fiber length QTL, qFL-chr1, was fine mapped to a 0.9 cM interval of cotton chromosome 1. Two positional candidate genes showed positive correlation between gene expression level and fiber length.

Abstract

Prior analysis of a backcross-self mapping population derived from a cross between Gossypium hirsutum L. and G. barbadense L. revealed a QTL on chromosome 1 associated with increased fiber length (qFL-chr1), which was confirmed in three independent populations of near-isogenic introgression lines (NIILs). Here, a single NIIL, R01-40-08, was used to develop a large population segregating for the target region. Twenty-two PCR-based polymorphic markers used to genotype 1672 BC4F2 plants identified 432 recombinants containing breakpoints in the target region. Substitution mapping using 141 informative recombinants narrowed the position of qFL-chr1 to a 1.0-cM interval between SSR markers MUSS084 and CIR018. To exclude possible effects of non-target introgressions on fiber length, different heterozygous BC4F3 plants introgressed between SSR markers NAU3384 and CGR5144 were selected to develop sub-NILs. The qFL-chr1 was further mapped at 0.9-cM interval between MUSS422 and CIR018 by comparisons of sub-NIL phenotype, and increased fiber length by ~1 mm. The 2.38-Mb region between MUSS422 and CIR018 in G. barbadense contained 19 annotated genes. Expression levels of two of these genes, GOBAR07705 (encoding 1-aminocyclopropane-1-carboxylate synthase) and GOBAR25992 (encoding amino acid permease), were positively correlated with fiber length in a small F2 population, supporting these genes as candidates for qFL-chr1.
  相似文献   

14.
Improving yield is a major objective for cotton breeding schemes, and lint yield and its three component traits (boll number, boll weight and lint percentage) are complex traits controlled by multiple genes and various environments. Association mapping was performed to detect markers associated with these four traits using 651 simple sequence repeats (SSRs). A mixed linear model including epistasis and environmental interaction was used to screen the loci associated with these four yield traits by 323 accessions of Gossypium hirsutum L. evaluated in nine different environments. 251 significant loci were detected to be associated with lint yield and its three components, including 69 loci with individual effects and all involved in epistasis interactions. These significant loci explain ∼ 62.05% of the phenotypic variance (ranging from 49.06% ∼ 72.29% for these four traits). It was indicated by high contribution of environmental interaction to the phenotypic variance for lint yield and boll numbers, that genetic effects of SSR loci were susceptible to environment factors. Shared loci were also observed among these four traits, which may be used for simultaneous improvement in cotton breeding for yield traits. Furthermore, consistent and elite loci were screened with −Log10 (P-value) >8.0 based on predicted effects of loci detected in different environments. There was one locus and 6 pairs of epistasis for lint yield, 4 loci and 10 epistasis for boll number, 15 loci and 2 epistasis for boll weight, and 2 loci and 5 epistasis for lint percentage, respectively. These results provided insights into the genetic basis of lint yield and its components and may be useful for marker-assisted breeding to improve cotton production.  相似文献   

15.
Feeding by 10-day old mid-instar larvae of the native moth,Bactra verutana Zeller, coated with solutions of bentazon [3-isopropyl-1 H-3-benzothiadiazin-4(3H)-one 2,2-dioxide] or glyphosate [N-(phosphonomethyl) glycine], reduced the dry weight of purple (Cyperus rotundus L.) or yellow nutsedge (C. esculentus L.) an average 25% more than did uncoated larvae. The herbicide-coated larvae reduced dry weight by 71% for 4-week yellow nutsedge and by 80% for 2-week purple nutsedge plants within 15 days after release. This integrated approach was apparently not pratical, however, because larvae randomly damaged the non-target crops, cotton (Gossypium hirsutum L.) and turnip (Brassica rapa L.). The more mature larvae killed about 3% of the cotton and 14% of the turnip plants. Newly-emerged larvae were highly sensitive to the herbicides. Mature larvae are less host-specific than are newly-emerged larvae. Therefore, the use of repeated broadcasts of newly-emergedB. verutana larvae is still the best method known for using insects to control nutsedge.  相似文献   

16.

Key message

QTLs for fiber length mapped in three generations of advanced backcross populations derived from crossing Gossypium hirsutum and Gossypium mustelinum showed opportunities to improve elite cottons by introgression from wild relatives.

Abstract

The molecular basis of cotton fiber length in crosses between Gossypium hirsutum and Gossypium mustelinum was dissected using 21 BC3F2 and 12 corresponding BC3F2:3 and BC3F2:4 families. Sixty-five quantitative trait loci (QTLs) were detected by one-way analysis of variance. The QTL numbers detected for upper-half mean length (UHM), fiber uniformity index (UI), and short fiber content (SFC) were 19, 20, and 26 respectively. Twenty-three of the 65 QTLs could be detected at least twice near adjacent markers in the same family or near the same markers across different families/generations, and 32 QTLs were detected in both one-way variance analyses and mixed model-based composite interval mapping. G. mustelinum alleles increased UHM and UI and decreased SFC for five, one, and one QTLs, respectively. In addition to the main-effect QTLs, 17 epistatic QTLs were detected which helped to elucidate the genetic basis of cotton fiber length. Significant among-family genotypic effects were detected at 18, 16, and 16 loci for UHM, UI, and SFC, respectively. Six, two, and two loci showed genotype?×?family interaction for UHM, UI and SFC, respectively, illustrating complexities that might be faced in introgression of exotic germplasm into cultivated cotton. Co-location of many QTLs for UHM, UI, and SFC accounted for correlations among these traits, and selection of these QTLs may improve the three traits simultaneously. The simple sequence repeat (SSR) markers associated with G. mustelinum QTLs will assist breeders in transferring and maintaining valuable traits from this exotic source during cultivar development.
  相似文献   

17.

Key message

We report the first complete set of alien addition lines of G. hirsutum . The characterized lines can be used to introduce valuable traits from G. australe into cultivated cotton.

Abstract

Gossypium australe is a diploid wild cotton species (2n = 26, GG) native to Australia that possesses valuable characteristics unavailable in the cultivated cotton gene pool, such as delayed pigment gland morphogenesis in the seed and resistances to pests and diseases. However, it is very difficult to directly transfer favorable traits into cultivated cotton through conventional gene recombination due to the absence of pairing and crossover between chromosomes of G. australe and Gossypium hirsutum (2n = 52, AADD). To enhance the transfer of favorable genes from wild species into cultivated cotton, we developed a set of hirsutumaustrale monosomic alien chromosome addition lines (MAAL) using a combination of morphological survey, microsatellite marker-assisted selection, and molecular cytogenetic analysis. The amphidiploid (2n = 78, AADDGG) of G. australe and G. hirsutum was consecutively backcrossed with upland cotton to develop alien addition lines of individual G. australe chromosomes in G. hirsutum. From these backcross progeny, we generated the first complete set of chromosome addition lines in cotton; 11 of 13 lines are monosomic additions, and chromosomes 7Ga and 13Ga are multiple additions. MAALs of 1Ga and 11Ga were the first to be isolated. The chromosome addition lines can be employed as bridges for the transfer of desired genes from G. australe into G. hirsutum, as well as for gene assignment, isolation of chromosome-specific probes, flow sorting and microdissection of chromosome, development of chromosome-specific ‘‘paints’’ for fluorochrome-labeled DNA fragments, physical mapping, and selective isolation and mapping of cDNAs for a particular G. australe chromosome.  相似文献   

18.

Key message

This study demonstrates the first practical use of CSILs for the transfer of fiber quality QTLs into Upland cotton cultivars using SSR markers without detrimentally affecting desirable agronomic characteristics.

Abstract

Gossypium hirsutum is characterized by its high lint production and medium fiber quality compared to extra-long staple cotton G. barbadense. Transferring valuable traits or genes from G. barbadense into G. hirsutum is a promising but challenging approach through a traditional interspecific introgression strategy. We developed one set of chromosome segment introgression lines (CSILs), where TM-1, the genetic standard in G. hirsutum, was used as the recipient parent and the long staple cotton G. barbadense cv. Hai7124 was used as the donor parent by molecular marker-assisted selection (MAS). Among them, four CSILs, IL040-A4-1, IL080-D6-1, IL088-A7-3 and IL019-A2-6, found to be associated with superior fiber qualities including fiber length, strength and fineness QTL in Xinjiang were selected and backcrossed, and transferred these QTLs into three commercial Upland cotton cultivars such as Xinluzao (XLZ) 26, 41 and 42 grown in Xinjiang. By backcrossing and self-pollinating twice, five improved lines (3262-4, 3389-2, 3326-3, 3380-4 and 3426-5) were developed by MAS of background and introgressed segments. In diverse field trials, these QTLs consistently and significantly offered additive effects on the target phenotype. Furthermore, we also pyramided two segments from different CSILs (IL080-D6-1 and IL019-A2-6) into cultivar 0768 to accelerate breeding process purposefully with MAS. The improved lines pyramided by these two introgressed segments showed significant additive epistatic effects in four separate field trials. No significant alteration in yield components was observed in these modified lines. In summary, we first report that these CSILs have great potential to improve fiber qualities in Upland cotton MAS breeding programs.  相似文献   

19.
A modified algorithm for the improvement of composite interval mapping   总被引:27,自引:0,他引:27       下载免费PDF全文
Li H  Ye G  Wang J 《Genetics》2007,175(1):361-374
Composite interval mapping (CIM) is the most commonly used method for mapping quantitative trait loci (QTL) with populations derived from biparental crosses. However, the algorithm implemented in the popular QTL Cartographer software may not completely ensure all its advantageous properties. In addition, different background marker selection methods may give very different mapping results, and the nature of the preferred method is not clear. A modified algorithm called inclusive composite interval mapping (ICIM) is proposed in this article. In ICIM, marker selection is conducted only once through stepwise regression by considering all marker information simultaneously, and the phenotypic values are then adjusted by all markers retained in the regression equation except the two markers flanking the current mapping interval. The adjusted phenotypic values are finally used in interval mapping (IM). The modified algorithm has a simpler form than that used in CIM, but a faster convergence speed. ICIM retains all advantages of CIM over IM and avoids the possible increase of sampling variance and the complicated background marker selection process in CIM. Extensive simulations using two genomes and various genetic models indicated that ICIM has increased detection power, a reduced false detection rate, and less biased estimates of QTL effects.  相似文献   

20.

Key message

qFS07.1 controlling fiber strength was fine-mapped to a 62.6-kb region containing four annotated genes. RT-qPCR and sequence of candidate genes identified an LRR RLK gene as the most likely candidate.

Abstract

Fiber strength is an important component of cotton fiber quality and is associated with other properties, such as fiber maturity, fineness, and length. Stable QTL qFS07.1, controlling fiber strength, had been identified on chromosome 7 in an upland cotton recombinant inbred line (RIL) population from a cross (CCRI35?×?Yumian1) described in our previous studies. To fine-map qFS07.1, an F2 population with 2484 individual plants from a cross between recombinant line RIL014 and CCRI35 was established. A total of 1518 SSR primer pairs, including 1062, designed from chromosome 1 of the Gossypium raimondii genome and 456 from chromosome 1 of the G. arboreum genome (corresponding to the QTL region) were used to fine-map qFS07.1, and qFS07.1 was mapped into a 62.6-kb genome region which contained four annotated genes on chromosome A07 of G. hirsutum. RT-qPCR and comparative analysis of candidate genes revealed a leucine-rich repeat protein kinase (LRR RLK) family protein to be a promising candidate gene for qFS07.1. Fine mapping and identification of the candidate gene for qFS07.1 will play a vital role in marker-assisted selection (MAS) and the study of mechanism of cotton fiber development.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号