共查询到20条相似文献,搜索用时 15 毫秒
1.
Chromosomal aberrations induced by double strand DNA breaks 总被引:4,自引:0,他引:4
It has been suggested that introduction of double strand DNA breaks (DSBs) into mammalian chromosomes can lead to gross chromosomal rearrangements through improper DNA repair. To study this phenomenon, we employed a model system in which a double strand DNA break can be produced in human cells in vivo at a predetermined location. The ensuing chromosomal changes flanking the breakage site can then be cloned and characterized. In this system, the recognition site for the I-SceI endonuclease, whose 18 bp recognition sequence is not normally found in the human genome, is placed between a strong constitutive promoter and the Herpes simplex virus thymidine kinase (HSV-tk) gene, which serves as a negative selectable marker. We found that the most common mutation following aberrant DSB repair was an interstitial deletion; these deletions typically showed features of non-homologous end joining (NHEJ), such as microhomologies and insertions of direct or inverted repeat sequences. We also detected more complex rearrangements, including large insertions from adjacent or distant genomic regions. The insertion events that involved distant genomic regions typically represented transcribed sequences, and included both L1 LINE elements and sequences known to be involved in genomic rearrangements. This type of aberrant repair could potentially lead to gene inactivation via deletion of coding or regulatory sequences, or production of oncogenic fusion genes via insertion of coding sequences. 相似文献
2.
B Rydberg 《International journal of radiation biology and related studies in physics, chemistry, and medicine》1985,47(1):57-61
The DNA unwinding method was used to estimate DNA breakage in Chinese hamster cells exposed to heavy ions with LET in the range of 750-5000 keV/micron. Comparison of the primary induced unwinding rate per dose unit for ions with various track diameters but similar LET showed a pronounced influence on the track diameter. Low-energy ions, producing thin tracks with diameters (penumbra) in the submicrometer region, were almost two orders of magnitude less efficient than more energetic ions producing tracks with diameters of several micrometers and about three orders of magnitude less efficient than X-rays. For the thin tracks, clustering of breaks was indicated by comparison of the DNA unwinding rates in two different alkaline solutions. The results indicate that the unwinding rate cannot be used as a good measurement for DNA breaks in this case. The residual unwinding remaining after 4 h of repair at 37 degrees C correlated well with the ability of the various ions to produce cell-killing. 相似文献
3.
We have tested the ability of T4 DNA ligase to rejoin radiation-induced DNA strand breaks in living hamster cells (CHO-K1, EM9, xrs-5). T4 DNA ligase was introduced into cells by electroporation prior to x-irradiation. Single- and double-strand breaks were measured by the alkaline comet assay technique, and double-strand breaks (DSBs) were evaluated by the pulsed-field gel electrophoresis method. In the comet assay, the three cell lines showed reduced tail moments following pretreatment with T4 DNA ligase, both directly after irradiation and after repair incubation for 4 h. Similarly, the results obtained from pulsed-field gel electrophoresis showed reduced DSB frequencies after pretreatment with T4 DNA ligase. We conclude that exogeneous T4 ligase contributes to rejoining of radiation-induced strand breaks. 相似文献
4.
We have previously shown that human cancer cells deficient in DNA mismatch repair (MMR) are resistant to the chemotherapeutic methylating agent temozolomide (TMZ) and can be sensitized by the base excision repair (BER) blocking agent methoxyamine (MX) [21]. To further characterize BER-mediated repair responses to methylating agent-induced DNA damage, we have now evaluated the effect of MX on TMZ-induced DNA single strand breaks (SSB) by alkaline elution and DNA double strand breaks (DSB) by pulsed field gel electrophoresis in SW480 (O6-alkylguanine-DNA-alkyltransferase [AGT]+, MMR wild type) and HCT116 (AGT+, MMR deficient) colon cancer cells. SSB were evident in both cell lines after a 2-h exposure to equitoxic doses of temozolomide. MX significantly increased the number of TMZ-induced DNA-SSB in both cell lines. In contrast to SSB, TMZ-induced DNA-DSB were dependent on MMR status and were time-dependent. Levels of 50 kb double stranded DNA fragments in MMR proficient cells were increased after TMZ alone or in combination with O6-benzylguanine or MX, whereas, in MMR deficient HCT116 cells, only TMZ plus MX produced significant levels of DNA-DSB. Levels of AP endonuclease, XRCC1 and polymerase beta were present in both cell lines and were not significantly altered after MX and TMZ. However, cleavage of a 30-mer double strand substrate by SW480 and HCT116 crude cell extracts was inhibited by MX plus TMZ. Thus, MX potentiation of TMZ cytotoxicity may be explained by the persistence of apurinic/apyrimidinic (AP) sites not further processed due to the presence of MX. Furthermore, in MMR-deficient, TMZ-resistant HCT116 colon cancer cells, MX potentiates TMZ cytotoxicity through formation of large DS-DNA fragmentation and subsequent apoptotic signalling. 相似文献
5.
《Free radical research》2013,47(3):266-275
AbstractCholesterol (Ch) can be oxidized by reactive oxygen species, forming oxidized products such as Ch hydroperoxides (ChOOH). These hydroperoxides can disseminate the peroxidative stress to other cell compartments. In this work, the ability of ChOOH to induce strand breaks and/or base modifications in a plasmid DNA model was evaluated. In addition, HPLC/MS/MS analyses were performed to investigate the formation of 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodGuo) after the incubation of 2′-deoxyguanosine (dGuo) with ChOOH and Cu2+. In the presence of copper ions, ChOOH induced DNA strand breaks in time and concentration-dependent manners. Purine and pyrimidine base modifications were also observed, as assessed respectively by the treatment with Fpg and Endo III repair enzymes. The detection of 8-oxodGuo by HPLC/MS/MS is in agreement with the dGuo oxidation in plasmid DNA. ChOOH-derived DNA damage adds further support to the role of lipid peroxidation in inducing DNA modifications and mutation. 相似文献
6.
Ronsein GE de Oliveira MC Medeiros MH Miyamoto S Di Mascio P 《Free radical research》2011,45(3):266-275
Cholesterol (Ch) can be oxidized by reactive oxygen species, forming oxidized products such as Ch hydroperoxides (ChOOH). These hydroperoxides can disseminate the peroxidative stress to other cell compartments. In this work, the ability of ChOOH to induce strand breaks and/or base modifications in a plasmid DNA model was evaluated. In addition, HPLC/MS/MS analyses were performed to investigate the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) after the incubation of 2'-deoxyguanosine (dGuo) with ChOOH and Cu(2+). In the presence of copper ions, ChOOH induced DNA strand breaks in time and concentration-dependent manners. Purine and pyrimidine base modifications were also observed, as assessed respectively by the treatment with Fpg and Endo III repair enzymes. The detection of 8-oxodGuo by HPLC/MS/MS is in agreement with the dGuo oxidation in plasmid DNA. ChOOH-derived DNA damage adds further support to the role of lipid peroxidation in inducing DNA modifications and mutation. 相似文献
7.
Epicatechin (EC), a polyphenolic antioxidant compound found in tea, apples and chocolate offered protection to DNA against ionizing radiation induced damages. Under in vitro conditions of radiation exposure, plasmid pBR322 DNA was protected by EC in a concentration dependent manner. The dose modifying factor for 0.2 mM EC for 50% protection of the plasmid DNA was found to be 6.0. EC when administered to mice 1 h prior to exposure to 4 Gy gamma-radiation protected cellular DNA against radiation-induced strand breaks in peripheral blood leukocytes, as revealed in alkaline comet assay studies. Thus, EC was found to protect DNA from gamma-radiation indiced strand breaks under in vitro as well as in vivo conditions of radiation exposure. 相似文献
8.
Chinese hamster ovary (CHO-K1) cell line and two of its DNA double strand break (DSB) repair deficient mutant cell lines, xrs-5 (Ku80 mutant) and irs-20 (DNA-PKcs mutant), were treated with various concentrations of sodium arsenite for 2.5h, and the colony forming abilities were studied. The wild type cells showed the highest cell survival, while xrs-5 cells showed the lowest survival, and irs-20 cells had an intermediate survival. These results are very similar to the cell survival curves induced by X-rays in these three cell lines. Our data also show the dose dependent induction of DNA-DSBs in these cell lines exposed to arsenite. However, in order to obtain a similar cell survival in wild type cells, twice as many DNA-DSBs are necessary with arsenite exposure when compared with X-rays, suggesting that the types of DNA lesions leading to DSB induced by arsenite are different from those by X-rays. Based on these data, further mechanistic investigations including the involvement of DNA-DSB repair proteins are warranted in the recovery process from arsenic (As) exposure. 相似文献
9.
10.
Bleomycin (BLM) induces DNA damage in living cells. In this report we analyzed the role of chromatin compactness in the differential response of mosquito (ATC-15) and mammalian (CHO) cells to DNA strand breaks induced by BLM. We used cells unexposed and exposed to sodium butyrate (NaB), which induces chromatin decondensation. By nucleoid sedimentation assay and digestions of nuclei with DNAse I, untreated mosquito cells (no BLM; no NaB) were shown to have more chromatin condensation than untreated CHO cells. By alkaline unwinding ATC-15 cells treated with NaB showed more BLM-induced DNA strand breaks than NaB-untreated CHO cells. The time-course of BLM-induced DNA damage to nuclear DNA was similar for NaB-untreated mammalian and insect cells, but with mosquito cells showing less DNA strand breaks, both at physiological temperatures and at 4 °C. However, when DNA repair was inhibited by low temperatures and chromatin was decondensed by NaB treatments, differences in BLM-induced DNA damage between these cells lines were no longer observed. In both cell lines, NaB did not affect BLM action on cell growth and viability. On the other hand, the low sensitivity of ATC-15 cells to BLM was reflected in their better growth efficiency. These cells exhibited a satisfactory growth at BLM doses that produced a permanent arrest of growth in CHO cells. The data suggest that mosquito cells might have linker DNAs shorter than those of mammalian cells, which would result in the observed both greater chromatin condensation and greater resistance to DNA damage induced by BLM as compared to CHO cells. 相似文献
11.
Shoichi Iseki 《Experimental cell research》1986,167(2):311-326
The nick-translation procedure without external addition of DNase was performed in situ on sections of various rat organs to detect possible DNA single-strand breaks (nicks) in normal tissues. The freshly frozen sections were briefly fixed in ethanol/acetone and nick-translated in the presence of E. coli DNA polymerase I. A significant difference in the amount of nuclear reaction was found among the different cell populations as detected by autoradiography following incorporation of tritiated TTP as well as by histochemical staining following incorporation of biotin-dUTP into nuclei. Such incorporation of triphosphates was localized in the DNA and was entirely dependent on E. coli DNA polymerase I. The nuclei with the highest reactivity were found in skeletal muscle cells, lymphocytes in various lymphatic organs, the proliferative cells in the gastrointestinal tract, stratified squamous epithelial cells, duct epithelial cells of salivary gland and the maturing spermatids in the seminiferous tubules. These results suggest that, under the conditions adopted, the cells in various tissues reveal different chromatin structures resulting in varying rates of nick translation reaction. Such difference(s) in chromatin structure, presumably including that in the number of DNA single-strand breaks or in the level of endogenous nuclease activity, may be associated with the mechanisms involved in cell growth and differentiation. 相似文献
12.
The bis-dioxopiperazine ICRF-193 has long time been considered as a pure topoisomerase II catalytic inhibitor able to exert its inhibitory effect on the enzyme without stabilization of the so-called cleavable complex formed by DNA covalently bound to topoisomerase II. In recent years, however, this concept has been challenged, as a number of reports have shown that ICRF-193 really "poisons" the enzyme, most likely through a different mechanism from that shown by the classical topoisomerase II poisons used in cancer chemotherapy. In the present investigation, we have carried out a study of the capacity of ICRF-193 to induce DNA strand breaks, as classical poisons do, in cultured V79 and irs-2 Chinese hamster lung fibroblasts using the comet assay and pulsed-field gel electrophoresis (PFGE). Our results clearly show that ICRF-193 readily induces breakage in DNA through a mechanism as yet poorly understood. 相似文献
13.
14.
Closed circular mitochondrial DNA in mammalian cells was degradated to the open circular form by exposure of the cells to the carcinogens N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) and 4-nitroquinoline 1-oxide (4NQO). MNNG caused more strand scission of mitochondrial DNA than 4NQO at the same concentration. The action of the carcinogens on mitochondrial DNA did not parallel that with nuclear DNA which was damaged by 4NQO more markedly than by MNNG. Mitochondrial DNA damaged by carcinogens was not repaired during 4-20 h of post-treatment incubation of the cells. Incorporation of labeled thymidine into the closed circular mitochondrial DNA, decreased by the treatment of cells with carcinogens, recovered during post-treatment incubation. 相似文献
15.
E Dikomey J Franzke 《International journal of radiation biology and related studies in physics, chemistry, and medicine》1986,50(5):893-908
Repair kinetics of DNA strand breaks were investigated after exposing exponentially growing CHO cells to X-radiation or to internal beta-rays from incorporated tritium, respectively. DNA strand breaks were analysed by the alkaline unwinding technique followed by chromatography on hydroxyapatite. For either type of radiation, the repair kinetics are statistically best described by a sum of three exponential components. The half-times determined are tau I approximately 2 min, tau II approximately 20 min and tau III approximately 170 min; they are identical for both types of radiation. But the initial fractions of the components are different for X- and internal beta-rays; X-rays; fI = 0.70, fII = 0.25, fIII = 0.05; internal beta-rays: fI = 0.40, fII = 0.40, fIII = 0.20. Components I and II are considered to represent the repair of two different classes of single-strand breaks and component III the repair of double-strand breaks. Two alternative interpretations for the occurrence of the two classes of single-strand breaks are discussed. 相似文献
16.
Summary Chinese hamster cells (Cl : 1) were labelled with3H-thymidine or125Iododeoxyuridine for 18 h and after 3 h in non-radioactive medium they were stored at 0° C up to 6 h. The number of DNA strand breaks observed after the labelling period (37° C) or after treatment at 0° C was determined using the DNA-unwinding technique.125I-decays in DNA were significantly more efficient than3H-decays in introducing unrepairable DNA strand breaks during the labelling period. 32% of125I-induced and 3% of3H-induced DNA strand breaks were unrepaired after 21 h at 37° C. Comparison between the effects of125I- or 3H-disintegrations in DNA in three different ways shows 7–12 times more pronounced effects for125I-decays. For125I-labelled cells 3–4 DNA strand breaks were found per decay and the corresponding value for3H- labelled cells was 2. 相似文献
17.
DNA strand breaks produced by oxidative stress in mammalian cells exhibit 3'-phosphoglycolate termini. 下载免费PDF全文
In recent years two mechanisms have been proposed for the production of DNA strand breaks in cells undergoing oxidative stress: (i) DNA attack by OH radical, produced by Fenton reaction catalyzed by DNA-bound iron; and (ii) DNA attack by calcium-activated nucleases, due to the increase of cytosolic and nuclear calcium induced by oxidative stress. We set out to investigate the participation of the former mechanism by detecting and quantifying 3'-phosphoglycolate, a 3' DNA terminus known to be formed by OH radical attack to the deoxyribose moiety, followed by sugar ring rupture and DNA strand rupture. These structures were found in DNA of monkey kidney cells exposed to hydrogen peroxide, iron nitrilotriacetate or ascorbate, all species known to favor a cellular pro-oxidant status. The method employed to measure 3' phosphoglycolate was the 32P-postlabeling assay. Repair time course experiments showed that it takes 10 h for 3'-phosphoglycolate to be removed from DNA. It was found that the DNA of both control cells and cells exposed to hydrogen peroxide had a very poor capacity of supporting in vitro DNA synthesis, catalyzed by DNA polymerase I. If the DNA was previously incubated with exonuclease III, an enzyme able to expose 3'-OH primers by removal of 3'-phosphoglycolate and 3'-phosphate termini the in vitro synthesis was substantially increased. This result shows that either of these termini are present at the break and that 3'-hydroxyl termini are virtually absent. At least 25% of the strand breaks exhibited 3'-phosphoglycolate termini as determined by the 32P-postlabeling assay, but due to the characteristic of the method this percentage is likely to be higher. These results favor the hypothesis that an oxidative agent generated by Fenton reaction is responsible for DNA strand breakage in cells undergoing oxidative stress. 相似文献
18.
《Cell cycle (Georgetown, Tex.)》2013,12(15):3035-3044
DNA double strand breaks (DSBs) are among the most deleterious forms of lesions and deciphering the details of the chromatin landscape induced around DSBs represents a great challenge for molecular biologists.Chromatin Immunoprecipitation, followed by microarray hybridisation (ChIP-chip) or high-throughput sequencing (ChIP-seq), are powerful techniques that provide high-resolution maps of protein-genome interactions. However, applying these techniques to study chromatin changes induced around DSBs was previously hindered due to a lack of suitable DSB induction techniques.We have recently developed an experimental system utilizing a restriction enzyme fused to a modified oestrogen receptor ligand binding domain (AsiSI-ER), which generates multiple, sequence-specific and unambiguously positioned DSBs across the genome upon induction with 4-hydroxytamoxifen (4OHT) 1. Cell lines expressing this construct represent a powerful tool to study specific chromatin changes during DSB repair, enabling high-resolution profiling of DNA repair complexes and chromatin modifications induced around DSBs. Using this system, we have recently produced the first map of gH2AX, a DSB-induced chromatin modification, on two human chromosomes and have investigated its spreading properties 1. Here we provide additional data characterizing the cell lines, present a genome-wide profile of gH2AX obtained by ChIP-seq, and discuss the potential of our system towards investigations of previously uncharacterized aspects of DSB repair. 相似文献
19.
Illegitimate recombination induced by DNA double-strand breaks in a mammalian chromosome. 总被引:15,自引:2,他引:15 下载免费PDF全文
We examined DNA double-strand-break-induced mutations in the endogenous adenine phosphoribosyl-transferase (APRT) gene in cultured Chinese hamster ovary cells after exposure to restriction endonucleases. PvuII, EcoRV, and StuI, all of which produce blunt-end DNA double-strand breaks, were electroporated into CHO-AT3-2 cells hemizygous at the APRT locus. Colonies of viable cells containing mutations at APRT were expanded, and the mutations that occurred during break repair were analyzed at the DNA sequence level. Restriction enzyme-induced mutations consisted of small deletions of 1 to 36 bp, insertions, and combinations of insertions and deletions at the cleavage sites. Most of the small deletions involved overlaps of one to four complementary bases at the recombination junctions. Southern blot analysis revealed more complex mutations, suggesting translocation, inversion, or insertion of larger chromosomal fragments. These results indicate that blunt-end DNA double-strand breaks can induce illegitimate (nonhomologous) recombination in mammalian chromosomes and that they play an important role in mutagenesis. 相似文献
20.
N. A. Littlefield B. S. Hass S. J. James L. A. Poirier 《Cell biology and toxicology》1994,10(2):127-135
Magnesium, an essential metal that is important in the normal functioning of DNA, has been shown to interact with some of the toxic heavy metals in respect to biochemical and molecular mechanisms and in altering the tumorigenic process. This study examined the influence of magnesium in combination with nickel and cadmium in respect to damage of the DNA molecule. The purpose of this study was to evaluate the influence of magnesium on the amelioration of the toxic metals nickel and cadmium in respect to sustaining DNA damage. Two types of lymphocytes were used, i.e., primary Fischer 344 rat splenocytes and AHH-1 TK+/-, a human B-lymphoblastoid cell line that has been spontaneously transformed. These cells were grown in either a magnesium-free or magnesium-supplemented RPMI 1640 medium that was specifically formulated for this study. A 2x2 factorial design was employed with magnesium and either nickel or cadmium serving as the two factors. The experimental groups were as follows: +Mg+Ni, +Mg–Ni, –Mg+Ni, –Mg–Ni, with cadmium alternating for the nickel in the subsequent studies. The nickel or cadmium was added at a concentration of 50 mol/L. The presence of double-stranded DNA was determined in each of the respective treatment groups with the two types of cell lines. Based on the results of this study, nickel is not directly toxic to DNA, whereas cadmium produces damage directly on the DNA molecule. The magnesium has little or no direct influence on the occurrence of DNA damage from nickel since the toxicity of nickel appears to be manifested in areas other than the DNA molecule, such as in the heterochromatin. The presence of cadmium in the treatment group resulted in DNA damage, which in turn was reduced significantly by the presence of magnesium.Abbreviations ds DNA
double-stranded DNA
- i.p.
intraperitoneally 相似文献